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EXISTENCE OF SOLUTIONS TO DIRICHLET IMPULSIVE
DIFFERENTIAL EQUATIONS THROUGH A LOCAL

MINIMIZATION PRINCIPLE

GHASEM A. AFROUZI, SAEID SHOKOOH, ARMIN HADJIAN

Abstract. A critical point theorem (local minimum result) for differentiable

functionals is used for proving that a Dirichlet impulsive differential equation

admits at least one non-trivial solution. Some particular cases and a concrete
example are also presented.

1. Introduction

In this article, we study the existence of at least one non-trivial classical solution
to the nonlinear Dirichlet boundary-value problem

−(p(t)u′(t))′ + q(t)u(t) = λf(t, u(t)), t ∈ [0, T ], t 6= tj ,

u(0) = u(T ) = 0,

∆u′(tj) = λIj(u(tj)), j = 1, 2, . . . , n,

(1.1)

where T > 0, p ∈ C1([0, T ], ]0,+∞[), q ∈ L∞([0, T ]), λ ∈]0,+∞[, f : [0, T ]×R→ R
is an L1-Carathéodory function, 0 = t0 < t1 < t2 < · · · < tn < tn+1 = T ,
∆u′(tj) = u′(t+j ) − u′(t−j ) = limt→t+j

u′(t) − limt→t−j
u′(t) and Ij : R → R are

continuous for every j = 1, 2, . . . , n.
The study of impulsive boundary-value problems is important due to its vari-

ous applications in which abrupt changes at certain times in the evolution process
appear. The dynamics of evolving processes is often subjected to abrupt changes
such as shocks, harvesting, and natural disasters. Often these short-term perturba-
tions are treated as having acted instantaneously or in the form of impulses. Such
problems arise in physics, population dynamics, biotechnology, pharmacokinetics,
industrial robotics.

Recently, many researchers pay their attention to impulsive differential equations
by variational method and critical point theory, and we refer the reader to [12, 15,
17, 18, 19, 20] and references cited therein.

Our analysis is mainly based on the critical point theorem by Bonanno [2],
contained in Theorem 2.1 below. This theorem has been used in several works
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to obtain existence results for different kinds of problems (see, for instance, [1, 4,
5, 6, 7, 8, 9, 10, 11, 13, 14]).

2. Preliminaries

Our main tool is Ricceri’s variational principle [16, Theorem 2.5] as given in [2,
Theorem 5.1] which is below recalled (see also [2, Proposition 2.1]).

For a given non-empty set X, and two functionals Φ,Ψ : X → R, we define the
functions

β(r1, r2) := inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[) Ψ(u)−Ψ(v)
r2 − Φ(v)

and

ρ(r1, r2) := sup
v∈Φ−1(]r1,r2[)

Ψ(v)− supu∈Φ−1(]−∞,r1]) Ψ(u)
Φ(v)− r1

for all r1, r2 ∈ R, with r1 < r2.

Theorem 2.1 ([2, Theorem 5.1]). Let X be a reflexive real Banach space; Φ : X →
R be a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux
differentiable function whose Gâteaux derivative admits a continuous inverse on
X∗; Ψ : X → R be a continuously Gâteaux differentiable function whose Gâteaux
derivative is compact. Assume that there are r1, r2 ∈ R, with r1 < r2, such that

β(r1, r2) < ρ(r1, r2). (2.1)

Then, setting Iλ := Φ−λΨ, for each λ ∈] 1
ρ(r1,r2) ,

1
β(r1,r2) [ there is u0,λ ∈ Φ−1(]r1, r2[)

such that Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(]r1, r2[) and I ′λ(u0,λ) = 0.

In the Sobolev space X := H1
0 (0, T ), consider the inner product

(u, v) :=
∫ T

0

p(t)u′(t)v′(t) dt+
∫ T

0

q(t)u(t)v(t) dt ,

which induces the norm

‖u‖ :=
(∫ T

0

p(t)(u′(t))2 dt+
∫ T

0

q(t)(u(t))2 dt
)1/2

.

Then the following Poincaré-type inequality holds:[ ∫ T

0

u2(t) dt
]1/2

≤ T

π

[ ∫ T

0

(u′)2(t) dt
]1/2

. (2.2)

Let us introduce some notation that will be used later. Assume that T 2q−

π2 > −p−,
where

p− := ess inft∈[0,T ] p(t) > 0, q− := ess inft∈[0,T ] q(t).

Moreover, put σ0 := min{T 2q−/π2, 0} and δ :=
√
p− + σ0. Then, we have the

following useful proposition.

Proposition 2.2. Let u ∈ X. Then

‖u′‖L2([0,T ]) ≤
1
δ
‖u‖, (2.3)

‖u‖∞ ≤
√
T

2δ
‖u‖. (2.4)
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Proof. First we prove (2.3). To this end, let q− ≥ 0. Then, σ0 = 0 and δ =
√
p−.

Therefore,

‖u′‖2L2([0,T ]) ≤
1
p−

∫ T

0

p(t)|u′(t)|2 dt

≤ 1
p−

∫ T

0

(
p(t)|u′(t)|2 + q(t)|u(t)|2

)
dt =

1
δ2
‖u‖2.

Thus, the desired inequality (2.3) follows. On the other hand, if q− < 0, we have

σ0 = T 2q−

π2 and δ =
√
p− + T 2q−

π2 . Obviously,

q−‖u‖2L2([0,T ]) ≤
∫ T

0

q(t)|u(t)|2 dt.

Now, applying inequality (2.2) and bearing in mind that q− < 0, one has

T 2q−

π2
‖u′‖2L2([0,T ]) ≤ q

−‖u‖2L2([0,T ]).

By the above inequalities we have

T 2q−

π2
‖u′‖2L2([0,T ]) ≤

∫ T

0

q(t)|u(t)|2 dt.

This inequality together with

p−‖u′‖2L2([0,T ]) ≤
∫ T

0

p(t)|u′(t)|2 dt,

imply (2.3).
In view of Hölder’s inequality and (2.3), one has

‖u‖∞ ≤
√
T

2
‖u′‖L2([0,T ]) ≤

√
T

2δ
‖u‖,

which completes and the proof. �

Put k :=
(
‖p‖∞ + T 2

π2 ‖q‖∞
)1/2. Then, from (2.2) we have

‖u‖ ≤ k‖u′‖L2([0,T ]). (2.5)

Here and in the sequel f : [0, T ]×R→ R is an L1-Carathéodory function, namely:
(a) the mapping t 7→ f(t, x) is measurable for every x ∈ R;
(b) the mapping x 7→ f(t, x) is continuous for almost every t ∈ [0, T ];
(c) for every ρ > 0 there exists a function lρ ∈ L1([0, T ]) such that

sup
|x|≤ρ

|f(t, x)| ≤ lρ(t)

for almost every t ∈ [0, T ].
Corresponding to f we introduce the function F : [0, T ]× R→ R as follows

F (t, x) :=
∫ x

0

f(t, ξ) dξ,

for all (t, x) ∈ [0, T ]× R.
By a classical solution of problem (1.1), we mean a function

u ∈
{
w ∈ C([0, T ]) : w|[tj ,tj+1] ∈ H2([tj , tj+1])

}
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that satisfies the equation in (1.1) a.e. on [0, T ] \ {t1, . . . , tn}, the limits u′(t+j ),
u′(t−j ), j = 1, . . . , n, exist, satisfy the impulsive conditions ∆u′(tj) = λIj(u(tj))
and the boundary condition u(0) = u(T ) = 0.

We say that a function u ∈ X is a weak solution of problem (1.1), if u satisfies∫ T

0

p(t)u′(t)v′(t) dt+
∫ T

0

q(t)u(t)v(t) dt

− λ
(∫ T

0

f(t, u(t))v(t) dt−
n∑
j=1

p(tj)Ij(u(tj))v(tj)
)

= 0,

for any v ∈ X.

Lemma 2.3 ([3, Lemma 2.3]). The function u ∈ X is a weak solution of problem
(1.1) if and only if u is a classical solution of (1.1).

Lemma 2.4 ([3, Lemma 3.1]). Assume that
(A1) there exist constants η, θ > 0 and σ ∈ [0, 1[ such that

|Ij(x)| ≤ 2η|x|+ θ|x|σ+1 for all x ∈ R, j = 1, 2, . . . , n.

Then, for any u ∈ X, we have∣∣ n∑
j=1

p(tj)
∫ u(tj)

0

Ij(x) dx
∣∣ ≤ n∑

j=1

p(tj)
(
η‖u‖2∞ +

θ

σ + 2
‖u‖σ+2
∞

)
. (2.6)

Also put

p̃ :=
n∑
j=1

p(tj), µ(τ) :=
√

2kτ
δ

, Γc :=
η

c
+
( θ

σ + 2

)
cσ−1,

where η, θ, σ are given by (A1) and c, τ are positive constants. We assume through-
out, and without further mention, that the assumption (A1) holds.

3. Main results

For a given non-negative constant ν and a positive constant τ with δ2ν2 6= 2k2τ2,
put

aτ (ν) :=

∫ T
0

max|x|≤ν F (t, x) dt+ p̃ν3Γν + p̃(µ(τ))3Γµ(τ) −
∫ 3T/4

T/4
F (t, τ) dt

δ2ν2 − 2k2τ2
.

Theorem 3.1. Assume that there exist a non-negative constant ν1 and two positive
constants ν2 and τ , with ν1 <

√
2τ < δν2/k, such that

(A2) F (t, ξ) ≥ 0 for all (t, ξ) ∈ ([0, T4 ] ∪ [ 3T
4 , T ])× [0, τ ];

(A3) aτ (ν2) < aτ (ν1).
Then, for each λ ∈] 2

T aτ (ν1) ,
2

T aτ (ν2) [, problem (1.1) admits at least one non-trivial
classical solution u0 ∈ X such that

2δν1√
T

< ‖u0‖ <
2δν2√
T
.

Proof. The aim is to apply Theorem 2.1 to our problem. To this end, we introduce
the functionals Φ,Ψ : X → R by setting

Φ(u) :=
1
2
‖u‖2,
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Ψ(u) :=
∫ T

0

F (t, u(t)) dt−
n∑
j=1

p(tj)
∫ u(tj)

0

Ij(x) dx,

for every u ∈ X, and put

Iλ(u) := Φ(u)− λΨ(u) ∀ u ∈ X.
Clearly, Φ and Ψ are well defined and continuously Gâteaux differentiable function-
als whose Gâteaux derivatives at the point u ∈ X are the functionals Φ′(u),Ψ′(u) ∈
X∗, given by

Φ′(u)(v) =
∫ T

0

p(t)u′(t)v′(t) dt+
∫ T

0

q(t)u(t)v(t) dt,

Ψ′(u)(v) =
∫ T

0

f(t, u(t))v(t) dt−
n∑
j=1

p(tj)Ij(u(tj))v(tj),

for every v ∈ X. Moreover, Φ is coercive and sequentially weakly lower semi-
continuous and Ψ is sequentially weakly upper semicontinuous. Also, Φ′ admits
a continuous inverse on X∗ and Ψ′ is compact. Note that the critical points of
the functional Iλ in X are exactly the weak solutions of problem (1.1). We verify
condition (2.1) of Theorem 2.1. To this end, we put

r1 :=
2δ2

T
ν2

1 , r2 :=
2δ2

T
ν2

2 ,

w(t) :=


4τ
T t, if t ∈ [0, T/4[,
τ, if t ∈ [T/4, 3T/4],
4τ
T (T − t), if t ∈]3T/4, T ].

It is easy to verify that w ∈ X and, in particular, taking (2.3) and (2.5) into
account, one has

8δ2τ2

T
≤ ‖w‖2 ≤ 8k2τ2

T
.

So, we have
4δ2τ2

T
≤ Φ(w) ≤ 4k2τ2

T
.

From the condition ν1 <
√

2τ < δν2/k, we obtain r1 < Φ(w) < r2. Moreover, for
all u ∈ X such that u ∈ Φ−1(] − ∞, r2[), from (2.4), one has |u(t)| < ν2 for all
t ∈ [0, T ], from which it follows

sup
u∈Φ−1(]−∞,r2[)

Ψ(u) = sup
u∈Φ−1(]−∞,r2[)

(∫ T

0

F (t, u(t)) dt−
n∑
j=1

p(tj)
∫ u(tj)

0

Ij(x) dx
)

≤
∫ T

0

max
|x|≤ν2

F (t, x) dt+ p̃ν3
2Γν2 .

Arguing as before, we obtain

sup
u∈Φ−1(]−∞,r1])

Ψ(u) ≤
∫ T

0

max
|x|≤ν1

F (t, x) dt+ p̃ν3
1Γν1 .

Since 0 ≤ w(t) ≤ τ for each t ∈ [0, T ], assumption (A2) ensures that∫ T/4

0

F (t, w(t)) dt+
∫ T

3T/4

F (t, w(t)) dt ≥ 0,
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and so

Ψ(w) ≥
∫ 3T/4

T/4

F (t, τ) dt−
n∑
j=1

p(tj)
∫ w(tj)

0

Ij(x) dx

≥
∫ 3T/4

T/4

F (t, τ) dt− p̃ (µ(τ))3Γµ(τ).

Therefore, we have

β(r1, r2) ≤
supu∈Φ−1(]−∞,r2[) Ψ(u)−Ψ(w)

r2 − Φ(w)

≤

∫ T
0

max|x|≤ν2 F (t, x) dt+ p̃ν3
2Γν2 + p̃(µ(τ))3Γµ(τ) −

∫ 3T/4

T/4
F (t, τ) dt

2δ2ν2
2

T − 4k2τ2

T

=
T

2
aτ (ν2).

On the other hand, we have

ρ(r1, r2) ≥
Ψ(w)− supu∈Φ−1(]−∞,r1]) Ψ(u)

Φ(w)− r1

≥

∫ 3T/4

T/4
F (t, τ) dt− p̃(µ(τ))3Γµ(τ) − p̃ν3

1Γν1 −
∫ T

0
max|x|≤ν1 F (t, x) dt

4k2τ2

T − 2δ2ν2
1

T

=
T

2
aτ (ν1).

So, from assumption (A3), it follows that β(r1, r2) < ρ(r1, r2). Therefore, from
Theorem 2.1, for each λ ∈] 2

Taτ (ν1) ,
2

Taτ (ν2) [, the functional Iλ admits at least one
critical point u0 such that r1 < Φ(u0) < r2; that is,

2δν1√
T

< ‖u0‖ <
2δν2√
T
,

and the proof is complete. �

Now, we point out the following consequence of Theorem 3.1.

Theorem 3.2. Assume that there are two positive constants ν and τ , with
√

2kτ <
δν, such that assumption (A2) in Theorem 3.1 holds. Furthermore, suppose that

(A4)
R T
0 max|x|≤ν F (t,x) dt+p̃ν3Γν

ν2 < δ2

2k2

R 3T/4
T/4 F (t,τ) dt−p̃ (µ(τ))3Γµ(τ)

τ2 .
Then, for each

λ ∈
] 4k2τ2

T∫ 3T/4

T/4
F (t, τ) dt− p̃ (µ(τ))3Γµ(τ)

,
2δ2ν2

T∫ T
0

max|x|≤ν F (t, x) dt+ p̃ν3Γν

[
,

problem (1.1) admits at least one non-trivial classical solution u0 ∈ X such that
|u0(t)| < ν for all t ∈ [0, T ].

Proof. The conclusion follows from Theorem 3.1, by taking ν1 = 0 and ν2 = ν.
Indeed, owing to assumption (A4), one has

aτ (ν) <

(
1− 2k2τ2

ν2δ2

)( ∫ T
0

max|x|≤ν F (t, x) dt+ p̃ν3Γν
)

δ2ν2 − 2k2τ2
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=

∫ T
0

max|x|≤ν F (t, x) dt+ p̃ν3Γν
δ2ν2

.

On the other hand,

aτ (0) =

∫ 3T/4

T/4
F (t, τ) dt− p̃(µ(τ))3Γµ(τ)

2k2τ2
.

Now, owing to assumption (A4) and (2.4), it is sufficient to invoke Theorem 3.1 for
concluding the proof. �

The following result gives the existence of at least one non-trivial classical solu-
tion in X to problem (1.1) in the autonomous case. Let f : R→ R be a continuous
function. Put F (x) :=

∫ x
0
f(ξ) dξ for all x ∈ R. We have the following result as a

direct consequence of Theorem 3.1.

Theorem 3.3. Assume that there exist a non-negative constant ν1 and two positive
constants ν2 and τ , with ν1 <

√
2τ < δν2/k, such that

(A5) f(x) ≥ 0 for all x ∈ [−ν2,max{ν2, τ}];
(A6)

TF (ν2) + p̃ν2
3Γν2 + p̃ (µ(τ))3Γµ(τ) − T

2 F (τ)
δ2ν2

2 − 2k2τ2

<
TF (ν1) + p̃ν1

3Γν1 + p̃(µ(τ))3Γµ(τ) − T
2 F (τ)

δ2ν2
1 − 2k2τ2

.

Then, for each

λ ∈
] 2δ2ν2

2 − 4k2τ2

T
(
TF (ν2) + p̃ ν2

3Γν2 + p̃ (µ(τ))3Γµ(τ) − T
2 F (τ)

) ,
2δ2ν2

2 − 4k2τ2

T
(
TF (ν1) + p̃ ν1

3Γν1 + p̃ (µ(τ))3Γµ(τ) − T
2 F (τ)

)[,
the problem

−(p(t)u′(t))′ + q(t)u(t) = λf(u(t)), t ∈ [0, T ], t 6= tj ,

u(0) = u(T ) = 0,

∆u′(tj) = λIj(u(tj)), j = 1, 2, . . . , n,

(3.1)

admits at least one non-trivial classical solution u0 ∈ X such that
2δν1√
T

< ‖u0‖ <
2δν2√
T
.

Proof. Since δ ≤ k, from the condition ν1 <
√

2τ < δν2
k we obtain ν1 < ν2.

Therefore, assumption (A5) means f(x) ≥ 0 for each x ∈ [−ν1, ν1] and f(x) ≥ 0
for each x ∈ [−ν2, ν2], which implies

max
x∈[−ν1,ν1]

F (x) = F (ν1) and max
x∈[−ν2,ν2]

F (x) = F (ν2).

So, from assumptions (A5) and (A6), we arrive at assumptions (A2) and (A3),
respectively. Hence, Theorem 3.1 yields the conclusion. �

Theorem 3.4. Let f : R→ R be a non-negative continuous function such that

(A7) limξ→0+
f(ξ)
ξ = +∞.
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Then, for each λ ∈]0, 2δ2

T supν>0
ν2

TF (ν)+p̃ν3Γν
[, problem (3.1) admits at least one

non-trivial classical solution u0 ∈ X.

Proof. For fixed λ as in the conclusion, there exists a positive constant ν such that

λ(TF (ν) + p̃ν3Γν) <
2δ2ν2

T
. (3.2)

Moreover, assumption (A7) implies that limt→0+
F (ξ)
ξ2 = +∞. On the other hand,

lim
ξ→0+

(µ(ξ))3Γµ(ξ)

ξ2
=

{
η
(√

2 k
δ

)2
, if 0 < σ < 1,

Γ1

(√
2 k
δ

)2
, if σ = 0.

Therefore,

lim
ξ→0+

F (ξ)− (µ(ξ))3Γµ(ξ)

ξ2
= +∞.

So, a positive constant τ satisfying
√

2kτ < δν can be chosen such that

λ
( T

2 F (τ)− p̃ (µ(τ))3Γµ(τ)

τ2

)
>

4k2

T
. (3.3)

Hence, taking (3.2) and (3.3) into account, Theorem 3.1 ensures the conclusion. �

Remark 3.5. Taking (A7) into account, fix ρ > 0 such that f(ξ) > 0 for all
ξ ∈]0, ρ[. Then, put

λρ :=
2δ2

T
sup
ν∈]0,ρ[

ν2

TF (ν) + p̃ν3Γν
.

The result of Theorem 3.4 for every λ ∈]0, λρ[ holds with |u0(t)| < ρ for all t ∈ [0, T ],
where u0 is the ensured non-trivial classical solution in X.

Example 3.6. Let I(u(t1)) = u(t1) for some t1 ∈ (0, 1). Then I : R → R is a
continuous function satisfying the sublinear growth condition (A1) with η = θ = 1

3

and σ = 0. Now, put p(t) = 1, q(t) = −π2

2 for all t ∈ [0, 1] and f(ξ) = (1 + ξ)eξ for
every ξ ∈ R. Clearly, one has δ = 1√

2
. Hence, since

sup
ν∈]0,1[

ν2∫ ν
0
f(ξ) dξ + ν3Γν

= sup
ν∈]0,1[

ν2

νeν + ν3Γν
=

2
2e+ 1

,

from Remark 3.5, for every λ ∈
]
0, 2

2e+1

[
the problem

−u′′(t)− π2

2
u(t) = λ(1 + u(t))eu(t), a.e. in [0, 1],

u(0) = u(1) = 0,

∆u′(t1) = λu(t1),

has at least one non-trivial classical solution u0 ∈ H1
0 (0, 1) such that |u0(t)| < 1 for

all t ∈ [0, 1].

Here, we point out a special situation of our main result when the nonlinear
term has separable variables. To be precise, let α ∈ L1([0, T ]) such that α(t) ≥ 0
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a.e. t ∈ [0, T ], α 6≡ 0, and let g : R → R be a nonnegative continuous function.
Consider the following Dirichlet boundary-value problem

−(p(t)u′(t))′ + q(t)u(t) = λα(t)g(u(t)), t ∈ [0, T ], t 6= tj ,

u(0) = u(T ) = 0,

∆u′(tj) = λIj(u(tj)), j = 1, 2, . . . , n.

(3.4)

Put G(x) :=
∫ x

0
g(ξ) dξ for all x ∈ R, and set ‖α‖1 :=

∫ T
0
α(t) dt and α0 :=∫ 3T/4

T/4
α(t) dt.

Corollary 3.7. Let Ij(x) ≤ 0 for all x ∈ R, j = 1, . . . , n. Assume that there exist
a non-negative constant ν1 and two positive constants ν2 and τ , with ν1 <

√
2τ <

δν2/k, such that

(A8)

G(ν2)‖α‖1 + p̃ν3
2Γν2 + p̃(µ(τ))3Γµ(τ) −G(τ)α0

δ2ν2
2 − 2k2τ2

<
G(ν1)‖α‖1 + p̃ν3

1Γν1 + p̃(µ(τ))3Γµ(τ) −G(τ)α0

δ2ν2
1 − 2k2τ2

.

Then, for each

λ ∈
] 2δ2ν2

1 − 4k2τ2

T
(
G(ν1)‖α‖1 + p̃ν3

1Γν1 + p̃(µ(τ))3Γµ(τ) −G(τ)α0

) ,
2δ2ν2

2 − 4k2τ2

T
(
G(ν2)‖α‖1 + p̃ν3

2Γν2 + p̃(µ(τ))3Γµ(τ) −G(τ)α0

)[,
problem (3.4) admits at least one positive classical solution u0 ∈ X, such that

2δν1√
T

< ‖u0‖ <
2δν2√
T
.

Proof. Put f(t, ξ) := α(t)g(ξ) for all (t, ξ) ∈ [0, T ]×R. Clearly, F (t, x) = α(t)G(x)
for all (t, x) ∈ [0, T ]×R. Therefore, taking into account that G is a non-decreasing
function, Theorem 3.1 and [3, Lemma 3.6] ensure the conclusion. �

An immediate consequence of Corollary 3.7 is the following.

Corollary 3.8. Let Ij(x) ≤ 0 for all x ∈ R, j = 1, . . . , n. Assume that there exist
two positive constants ν and τ , with

√
2kτ < δν, such that

(A9) G(ν)‖α‖1+p̃ν3Γν
ν2 < δ2

2k2
G(τ)α0−p̃(µ(τ))3Γµ(τ)

τ2 .

Then, for each

λ ∈
] 4k2τ2

T
(
G(τ)α0 − p̃(µ(τ))3Γµ(τ)

) , 2δ2ν2

T
(
G(ν)‖α‖1 + p̃ν3Γν

)[,
problem (3.4) admits at least one positive classical solution u0 ∈ X, such that
|u0(t)| < ν for all t ∈ [0, T ].

The above corollary follows directly from Theorem 3.2 and [3, Lemma 3.6].



10 G. A. AFROUZI, S. SHOKOOH, A. HADJIAN EJDE-2014/147

Now, consider the nonlinear Dirichlet boundary-value problem

−u′′(t) + a(t)u′(t) + b(t)u(t) = λh(t, u(t)), t ∈ [0, T ], t 6= tj ,

u(0) = u(T ) = 0,

∆u′(tj) = λIj(u(tj)), j = 1, 2, . . . , n,

(3.5)

where h : [0, T ] × R → R is an L1-Carathéodory function and a, b ∈ L∞([0, T ])
satisfy the following conditions

ess inft∈[0,T ] a(t) ≥ 0, ess inft∈[0,T ]

{
b(t)e−A(t)

}
> − π

2

T 2
e−A(T ),

where A(t) be a primitive of a(t).
It is easy to see that the solutions of (1.1) are solutions of (3.5) if

p(t) = e−
R t
0 a(ξ) dξ, q(t) = b(t)e−

R t
0 a(ξ) dξ, f(t, u) = h(t, u)e−

R t
0 a(ξ) dξ.

Let H(t, x) :=
∫ x

0
h(t, ξ) dξ. Then, by a simple computation, we obtain

F (t, x) = e−A(t)H(t, x), ∀(t, x) ∈ [0, T ]× R.
Set

k̃ :=
(

1 +
T 2

π2
‖be−A‖∞

)1/2

, σ̃0 := min
{T 2

π2
ess inft∈[0,T ]

(
b(t)e−A(t)

)
, 0
}
,

δ̃ :=
√
e−A(T ) + σ̃0.

For a given non-negative constant ν and a positive constant τ with δ̃2ν2 6= 2k̃2τ2,
put µ̃(τ) :=

√
2k̃τ/δ̃ and

ãτ (v) :=
(∫ T

0

e−A(t) max
|x|≤ν

H(t, x) dt+ p̃ν3Γν + p̃ (µ̃(τ))3Γµ̃(τ)

−
∫ 3T/4

T/4

e−A(t)H(t, τ) dt
)/(

δ̃2ν2 − 2k̃2τ2
)
.

With the above notation and by Theorem 3.1, we obtain the following existence
property for problem (3.5).

Theorem 3.9. Assume that there exist a non-negative constant ν1 and two positive
constants ν2 and τ , with ν1 <

√
2τ < δ̃ν2/k̃, such that

(A10) H(t, ξ) ≥ 0 for all (t, ξ) ∈ ([0, T4 ] ∪ [ 3T
4 , T ])× [0, τ ];

(A11) ãτ (ν2) < ãτ (ν1).
Then, for each λ ∈] 2

T ãτ (ν1) ,
2

T ãτ (ν2) [, problem (3.5) admits at least one non-trivial
classical solution u0 ∈ X such that

2δ̃ν1√
T

< ‖u0‖ <
2δ̃ν2√
T
.
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