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INITIAL DATA PROBLEMS FOR THE TWO-COMPONENT
CAMASSA-HOLM SYSTEM

XIAOHUAN WANG

Abstract. This article concerns the study of some properties of the two-
component Camassa-Holm system. By constructing two sequences of solutions

of the two-component Camassa-Holm system, we prove that the solution map

of the Cauchy problem of the two-component Camassa-Holm system is not
uniformly continuous in Hs(R), s > 5/2.

1. Introduction

Many authors have studied shallow water equations, of which a typical exam-
ple is Camassa-Holm (CH) equation. This equation has been extended to a two-
component integrable system (CH2) by combining its integrability property with
compressibility, or free-surface elevation dynamics in its shallow-water interpreta-
tion [10, 23]:

mt + umx + 2mux + σρρx = 0, t > 0, x ∈ R,
ρt + (ρu)x = 0, t > 0, x ∈ R,

(1.1) 1.1

where m = u − uxx and σ = ±1. We remark that σ = 1 is the hydrodynamically
relevant choice, see the discussion in [10]. Local well-posedness of (1.1) with σ = 1
was obtained by [10, 11]. The precise blow-up scenarios and blow-up phenomena
of strong solution for (1.1) was established by [10, 11, 13, 15, 19, 17]. Guan-Yin
obtained the existence of global weak solution to (1.1). Just recently, Gui and Liu
[18] studied (1.1) with σ = 1 in Besov space and they obtained the local well-
posedness. In this paper, we consider the Cauchy problem of (1.1) and study the
some properties of it.

If ρ ≡ 0, then (1.1) becomes the well-known Camassa-Holm equation [3]. In the
past decade, the Camassa-Holm equation has attracted much attention because of
its integrability and the existence of multi-peakon solutions, see [1]-[7] and [33]-
[35] for the details. The Cauchy problem and initial boundary value problem of
the Camassa-Holm equation have been studied extensively [5, 12]. It has been
shown that the Camassa-Holm equation is locally well-posedness [5] for initial data
u0 ∈ Hs(R), s > 3/2. Moreover, it has global strong solutions [5] and finite time
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blow-up solutions [5, 6, 8]. On the other hand, it has global weak solution in
H1(R) [1, 2, 3, 7]. The advantage of the Camassa-Holm equation in comparison
with the KdV equation lies in the fact that the Camassa-Holm equation has peaked
solutions and models wave breaking (i.e. the solution remains bounded while its
slope becomes unbounded in finite time [3, 5, 6, 30]). Here peaked solutions are
actually peaked traveling waves, similar to the waves of greatest height encountered
in classical hydrodynamics, see the discussion in the papers [4, 9, 31]. Moreover,
there is a rich geometric structure underlying the Camassa-Holm equation, see the
discussion in the papers [25, 26].

Recently, some properties of solutions to the Camassa-Holm equation have been
studied by many authors. Himonas et al. [20] studied the persistence properties
and unique continuation of solutions of the Camassa-Holm equation. They showed
that a strong solution of the Camassa-Holm equation, initially decaying exponen-
tially together with its spacial derivative, must be identically equal to zero if it
also decays exponentially at a later time, see [35, 14] for the similar properties of
solutions to other shallow water equation. Just recently, Himonas-Kenig [21] and
Himonas et al. [22] considered the non-uniform dependence on initial data for the
Camassa-Holm equation on the line and on the circle, respectively. Lv et al. [27]
obtained the non-uniform dependence on initial data for µ-b equation. Lv-Wang
[28] considered the (1.1) with ρ = γ−γxx and obtained the non-uniform dependence
on initial data. Wang [32] obtained the non-uniform dependence on initial data of
periodic Camassa-Holm system. Tang-Wang [29] obtained the Hölder continuous
of Camassa-Holm system.

In this paper, we consider the non-uniform dependence on initial data for (1.1).
We remark that there is significant difference between (1.1) and (1.1) with ρ =
γ − γxx. It is easy to see that when ρ = γ − γxx, there are some similar properties
between the two equations in (1.1). Thus the proof of non-uniform dependence
on initial data to (1.1) with ρ = γ − γxx is similar to the single equation, for
example, Camassa-Holm equation. But in (1.1), ρ and u have different properties,
see Theorem 2.1. This needs construct different asymptotic solution, see section
3. Besides, the results in this paper are different from those in [27] because of the
difference of the two operators 1− ∂xx and µ− ∂xx.

This article is organized as follows. In section 2, we recall the well-posedness
result of Constantin-Ivanov [10] and Escher et al. [11] and use it to prove the basic
energy estimate from which we derive a lower bound for the lifespan of the solution
as well as an estimate of the Hs(R)×Hs−1(R) norm of the solution (u(t, x), ρ(t, x))
in terms of Hs(R) × Hs−1(R) norm of the initial data (u0, ρ0). In section 3, we
construct approximate solutions, compute the error and estimate the H1-norm of
this error. In section 4, we estimate the difference between approximate and actual
solutions, where the exact solution is a solution to (1.1) with initial data given by
the approximate solutions evaluated at time zero. The non-uniform dependence on
initial data for (1.1) is established in section 5 by constructing two sequences of
solutions to (1.1) in a bounded subset of the Sobolev space Hs(R), whose distance
at the initial time is converging to zero while at any later time it is bounded below
by a positive constant.

Notation. In the following, we denote by ∗ the spatial convolution. Given a
Banach space Z, we denote its norm by ‖ · ‖Z . Since all space of functions are
over R, for simplicity, we drop R in our notations of function spaces if there is no



EJDE-2014/148 TWO-COMPONENT CAMASSA-HOLM SYSTEM 3

ambiguity. Let [A,B] = AB − BA denotes the commutator of linear operator A
and B. Set ‖z‖2Hs×Hs−1 = ‖u‖2Hs + ‖ρ‖2Hs−1 , where z = (u, ρ).

2. Local well-posedness

In this section we first recall the known results of Constantin-Ivanov [10] and
Escher et al. [11] and give a new estimate of the solution to (1.1).

Let Λ = (1 − ∂2
x)1/2. Then the operator Λ−2 acting on L2(R) can be expressed

by its associated Green’s function G(x) = 1
2e
−|x| as

Λ−2f(x) = (G ∗ f)(x) =
1
2

∫ ∞
−∞

e−|x−y|f(y)dy, f ∈ L2(R).

Hence (1.1) is equivalent to the system

ut + uux = −∂xΛ−2
(
u2 +

1
2
u2
x +

1
2
ρ2
)
, t > 0, x ∈ R,

ρt + uρx = −uxρ, t > 0, x ∈ R,
(2.1) 2.1

with initial data

u(0, x) = u0(x), ρ(0, x) = ρ0(x), x ∈ R. (2.2) 2.1a

The following result is given by Constantin-Ivanov [10] and Escher et al. [11].

t2.1 Theorem 2.1. Given z0 = (u0, ρ0) ∈ Hs × Hs−1, s ≥ 2. Then there exists a
maximal existence time T = T (‖z0‖Hs×Hs−1) > 0 and a unique solution z = (u, ρ)
to (2.1) with (2.2) such that

z = z(·, z0) ∈ C([0, T );Hs ×Hs−1) ∩ C1([0, T );Hs−1 ×Hs−2).

Moreover, the solution depends continuously on the initial data, i.e. the mapping

z0 7→ z(·, z0) : Hs ×Hs−1 → C([0, T );Hs ×Hs−1) ∩ C1([0, T );Hs−1 ×Hs−2)

is continuous.

Next, we will give an explicit estimate for the maximal existence time T . Also,
we will show that at any time t in the time interval [0, T0] the Hs-norm of the
solution z(t, x) is dominated by the Hs-norm of the initial data z0(x). In order to
do this, we need the following lemmas.

l2.3 Lemma 2.2 ([24]). If r > 0, then

‖[Λr, f ]g‖2 ≤ C(‖fx‖∞‖Λr−1g‖2 + ‖Λrf‖2‖g‖∞),

where C is a positive constant depending only on r.

t2.2 Theorem 2.3. Let s > 5/2. If z = (u, ρ) is a solution of (2.1) with initial data z0
described in Theorem 2.1, then the maximal existence time T satisfies

T ≥ T0 :=
1

2Cs‖z0‖Hs×Hs−1
, (2.3) 2.2

where Cs is a constant depending only on s. Also, we have

‖z(t)‖Hs×Hs−1 ≤ 2‖z0‖Hs×Hs−1 , 0 ≤ t ≤ T0. (2.4) 2.3
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Proof. The derivation of the lower bound for the maximal existence time (2.3) and
the solution size estimate (2.4) is based on the following differential inequality for
the solution z:

1
2
d

dt
‖z(t)‖2Hs×Hs−1 ≤ Cs‖z(t)‖3Hs×Hs−1 , 0 ≤ t < T. (2.5) 2.4

Suppose that (2.5) holds. Then, integrating (2.5) from 0 to t, we have

‖z(t)‖Hs×Hs−1 ≤ ‖z0‖Hs×Hs−1

1− Cs‖z0‖Hs×Hs−1t
.

From this inequality it follows that ‖z(t)‖Hs×Hs−1 is finite if Cs‖z0‖Hs×Hs−1t < 1.
Let T0 = 1

2Cs‖z0‖Hs×Hs−1
, then, for 0 ≤ t ≤ T0, we have

‖z(t)‖Hs×Hs−1 ≤ ‖z0‖Hs×Hs−1

1− Cs‖z0‖Hs×Hs−1T0
= 2‖z0‖Hs×Hs−1 .

Now we prove the inequality (2.5). Note that the products uux and uρx are only
in Hs−1 if u, ρ ∈ Hs. To deal with this problem, we will consider the following
modified system

(Jεu)t + Jε(uux) = −∂xΛ−2
(
Jεu

2 +
1
2
Jεu

2
x +

1
2
Jερ

2
)
, t > 0, x ∈ R,

(Jερ)t + Jε(uρx) = −Jε(uxρ), t > 0, x ∈ R,
(2.6) 2.5

where for each ε ∈ (0, 1] the operator Jε is the Friedrichs mollifier defined by

Jεf(x) = Jε(f)(x) = jε ∗ f.

Here jε(x) = 1
ε j(

x
ε ), and j(x) is a C∞ function supported in the interval [−1, 1]

such that j(x) ≥ 0,
∫

R j(x)dx = 1. Applying the operator Λs and Λs−1 to the first
and second equations of (2.6) respectively, then multiplying the resulting equations
by ΛsJεu and Λs−1Jερ, respectively, and integrating them with respect to x ∈ R,
we obtain

1
2
d

dt
‖Jεu‖2Hs = −

∫
R

ΛsJε(uux)ΛsJεudx

−
∫

R
∂xΛs−2∂xΛ−2

(
Jεu

2 +
1
2
Jεu

2
x +

1
2
Jερ

2
)

ΛsJεudx,
(2.7) 2.6

1
2
d

dt
‖Jερ‖2Hs−1 = −

∫
R

Λs−1Jε(uρx)Λs−1Jερdx−
∫

R
Λs−1Jε(uxρ)Λs−1Jερdx.

(2.8) 2.7

Similar to [32], we can estimate the right-hand sides of (2.7) and (2.8). We obtain

1
2
d

dt
‖Jεu‖2Hs ≤ Cs(‖u‖∞ + ‖ρ‖∞ + ‖ux‖∞ + ‖ρx‖∞)(‖u‖2Hs + ‖ρ‖2Hs−1),

1
2
d

dt
‖Jερ‖2Hs−1 ≤ Cs(‖u‖∞ + ‖ρ‖∞ + ‖ux‖∞ + ‖ρx‖∞)(‖u‖2Hs + ‖ρ‖2Hs−1).

Consequently,

1
2
d

dt

(
‖Jεu‖2Hs + ‖Jερ‖2Hs−1

)
≤ Cs(‖u‖∞ + ‖ρ‖∞ + ‖ux‖∞ + ‖ρx‖∞)(‖u‖2Hs + ‖ρ‖2Hs−1).
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Then, letting ε aproach 0, we have
1
2
d

dt

(
‖u‖2Hs + ‖ρ‖2Hs−1

)
≤ Cs(‖u‖∞+ ‖ρ‖∞+ ‖ux‖∞+ ‖ρx‖∞)(‖u‖2Hs + ‖ρ‖2Hs−1),

or
1
2
d

dt
‖z(t)‖2Hs×Hs−1 ≤ Cs(‖u(t)‖C1 + ‖ρ‖C1)‖z(t)‖2Hs×Hs−1 . (2.9) 2.19

Since s > 5/2, using Sobolev’s inequality we have that

‖u(t)‖C1 ≤ Cs‖u(t)‖Hs , ‖ρ(t)‖C1 ≤ Cs‖ρ(t)‖Hs−1 .

From (2.9) we obtain the desired inequality (2.5). This completes the proof of
Theorem 2.3. �

Recall that ‖z(t)‖2Hs×Hs−1 = ‖u(t)‖2Hs + ‖ρ(t)‖2Hs−1 , where z(t) = (u(t), ρ(t)).
It follows from Theorem 2.3 that

‖u(t)‖Hs , ‖ρ(t)‖Hs−1 ≤ ‖z(t)‖Hs×Hs−1 ≤ 2‖z0‖Hs×Hs−1 , 0 ≤ t ≤ T0. (2.10) 2.20

r2.1 Remark 2.4. Comparing Theorem 2.3 with that in [28], we will see that there
exists a significant different between (1.1) and (1.1) with ρ = γ − γxx. In the other
words, we require s > 5/2 because of the Sobolev embedding Theorem. But in
paper [28], since u and γ have the same property, we assume that s > 3/2.

3. Approximate solutions

In this section we first construct a two-parameter family of approximate solutions
by using a similar method to [21], then compute the error and last estimate the
H1-norm of the error.

Following [21], our approximate solutions uω,λ = uω,λ(t, x) and ρω,λ = ρω,λ(t, x)
to (2.1) will consist of a low frequency and a high frequency part, i.e.

uω,λ = ul + uh, ρω,λ = ρl + ρh,

where ω is in a bounded set of R and λ > 0. The high frequency part is given by

uh = uh,ω,λ(t, x) = λ−
1
2 δ−sφ

( x
λδ
)

cos(λx− ωt),

ρh = ρh,ω,λ(t, x) = λ−
1
2 δ−s+1ψ

( x
λδ
)

cos(λx− ωt),
(3.1) 3.1

where φ and ψ are C∞ cut-off functions such that

φ(x) =

{
1 if |x| < 1,
0 if |x| ≥ 2,

ψ(x) =

{
1 if |x| < 1,
0 if |x| ≥ 2.

The low frequency part (ul, ρl) = (ul,ω,λ(t, x), ρl,ω,λ(t, x)) is the solution to (2.1)
with initial data

ul(0, x) = ωλ−1φ̃
( x
λδ
)
, ρl(0, x) = ωλ−1ψ̃

( x
λδ
)
, x ∈ R, (3.2) 3.2

where φ̃ and ψ̃ are C∞0 (R) functions such that

φ̃(x) = 1 if x ∈ suppφ ∪ suppψ.

We first study the properties of (ul, ρl) and (uh, ρh). The high frequency part
(uh, ρh) defined by (3.1) satisfies

‖uh(t)‖Hs ≈ O(1), ‖ρh(t)‖Hs−1 ≈ O(1) for λ� 1

because of the following result.
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l3.1 Lemma 3.1 ([21]). Let ψ ∈ S(R), 1 < δ < 2 and α ∈ R. Then for any s ≥ 0 we
have that

lim
λ→∞

λ−
1
2 δ−s‖ψ

( x
λδ
)

cos(λx− α)‖Hs =
1√
2
‖ψ‖2. (3.3) 3.3

Relation (3.3) is also true if cos is replaced by sin.

For the low frequency part (ul, ρl), we have the following result.

l3.2 Lemma 3.2. Let ω belong to a bounded set of R, 1 < δ < 2 and λ � 1. Then
the initial-value problem (2.1)-(3.2) has a unique solution (ul, ρl) ∈ C([0, T );Hs)×
C([0, T );Hs−1), for all s > 5/2, satisfying the estimates

‖ul(t)‖Hs ≤ Csλ−1+ 1
2 δ, ‖ρl(t)‖Hs−1 ≤ Cs−1λ

−1+ 1
2 δ.

Proof. The existence and uniqueness of local a solution can be derived from Theo-
rem 2.1 for s > 5/2.

It follows from [21, Lemma 5] that

‖ψ
( x
λδ
)
‖Hs ≤ λδ/2‖ψ‖Hs ,

where s ≥ 0 and ψ ∈ S(R). Using the above inequality, we have that the initial
data (ul(0, x), ρl(0, x)) satisfies the estimate

‖ul(0)‖Hs ≤ |ω|λ−1+ 1
2 δ‖φ̃‖Hs , ‖ρl(0)‖Hs−1 ≤ |ω|λ−1+ 1

2 δ‖ψ̃‖Hs−1 ,

which decay if δ < 2 and ω is in a bounded set of R. Recall that ‖zl(t)‖2Hs×Hs−1 =
‖ul(t)‖2Hs + ‖ρl(t)‖2Hs−1 , we obtain

‖zl(0)‖Hs×Hs−1 = (‖ul(0)‖2Hs+‖ρl(0)‖2Hs−1)1/2 ≤ |ω|λ−1+ 1
2 δ(‖φ̃‖2Hs+‖ψ̃‖2Hs−1)1/2.

It follows from (3.2) that zl(0) ∈ Hs × Hs−1 for all s > 5/2. If s > 5/2, then
from estimate (2.3) of Theorem 2.3, we have

‖ul(t)‖Hs ≤ Cs‖ul(0)‖Hs ≤ Csλ−1+ 1
2 δ,

‖ρl(t)‖Hs−1 ≤ Cs‖ρl(0)‖Hs−1 ≤ Cs−1λ
−1+ 1

2 δ.

The proof is complete. �

Now we compute the error. Substituting the approximate solution (uω,λ, ρω,λ)
into the first and second equation of (2.1), we obtain the error

E = uht + ulu
h
x + uhulx + uhuhx + ∂xΛ−2

(
(uh)2 + k1ulu

h

+
1
2

(uhx)2 + ulxu
h
x +

1
2

(ρh)2 + ρlρ
h
)
,

F = ρht + ulρ
h
x + uhρlx + uhρhx + ρhulx + ρlu

h
x + ρhuhx,

where we have used that (ul, ρl) solves (3.2).
Direct calculation shows that

uht (t, x) = ωλ−
1
2 δ−sφ

( x
λδ
)

sin(λx− ωt),

ρht (t, x) = ωλ−
1
2 δ−s+1ψ

( x
λδ
)

sin(λx− ωt).
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Since φ̃ = 1 if x ∈ suppφ ∪ suppψ, we can write uht and ρht in the form

uht (t, x) = ωφ̃
( x
λδ
)
λ−

1
2 δ−sφ

( x
λδ
)

sin(λx− ωt)

= λul(0, x)λ−
1
2 δ−sφ

( x
λδ
)

sin(λx− ωt),

ρht (t, x) = ωφ̃
( x
λδ
)
λ−

1
2 δ−s+1ψ

( x
λδ
)

sin(λx− ωt)

= λul(0, x)λ−
1
2 δ−s+1ψ

( x
λδ
)

sin(λx− ωt).

(3.4) 3.4

Computing the spacial derivatives of uh and ρh, we have

uhx(t, x) = −λλ− 1
2 δ−sφ

( x
λδ
)

sin(λx− ωt) + λ−
3
2 δ−sφ′

( x
λδ
)

cos(λx− ωt),

ρhx(t, x) = −λλ− 1
2 δ−s+1ψ

( x
λδ
)

sin(λx− ωt) + λ−
3
2 δ−s+1ψ′

( x
λδ
)

cos(λx− ωt).
(3.5) 3.5

Combining (3.4) with (3.5), we obtain

uht (t, x) + ulu
h
x(t, x) = λ[ul(0, x)− ul(t, x)]λ−

1
2 δ−sφ

( x
λδ

)
sin(λx− ωt)

+ ul(t, x)λ−
3
2 δ−sφ′

( x
λδ
)

cos(λx− ωt),

ρht (t, x) + ulρ
h
x(t, x) = λ[ul(0, x)− ul(t, x)]λ−

1
2 δ−s+1ψ

( x
λδ
)

sin(λx− ωt)

+ ul(t, x)λ−
3
2 δ−s+1ψ′

( x
λδ

)
cos(λx− ωt).

Therefore, we can rewrite the error E and F as

E = E1 + E2 + · · ·+ E8, F = F1 + F2 + · · ·+ F6,

where

E1 = −λ[ul(0, x)− ul(t, x)]λ−
1
2 δ−sφ

( x
λδ
)

sin(λx+ ωt),

E2 = ul(t, x)λ−
3
2 δ−sφ′

( x
λδ
)

cos(λx+ ωt),

E3 = −uhulx, E4 = −uhuhx,

E5 = −∂xΛ−2
(k1

2
(uh)2 +

k2

2
(ρh)2

)
, E6 = −∂xΛ−2

(
k1ulu

h + k2ρlρ
h
)
,

E7 = −(3− k1)∂xΛ−2(ulxuhx), E8 =
3− k1

2
∂xΛ−2

(
(uhx)2

)
,

F1 = −k3λ[ul(0, x)− ul(t, x)]λ−
1
2 δ−s+1ψ

( x
λδ
)

sin(λx+ ωt),

F2 = k3ul(t, x)λ−
3
2 δ−s+1ψ′

( x
λδ
)

cos(λx+ ωt),

F3 = −k3u
hρlx, F4 = −k3u

hρhx,

F5 = −k3

(
ρhulx + ρlu

h
x + ρhuhx

)
.

Now we are ready to estimate the H1-norm of each error Ei and the L2-norm of
each error Fj (i = 1, . . . , 8, j = 1, . . . , 6). Let C be a generic positive constant. For
any positive quantities P and Q, we write P . Q (P & Q) means that P ≤ CQ
(P ≥ CQ) in the following.



8 X. WANG EJDE-2014/148

Estimates of ‖E1‖H1 and ‖F1‖L2 . Note that

‖fg‖H1 ≤
√

2‖f‖C1‖g‖H1 , ∀f ∈ C1, g ∈ H1,

and ‖φ
(
x
λδ

)
sin(λx− ωt)‖C1 = λ‖φ‖∞, we have

‖E1‖H1 = λ1− 1
2 δ−s‖φ

( x
λδ

)
sin(λx− ωt)[ul(0, x)− ul(t, x)]‖H1

. λ1− 1
2 δ−s‖φ

( x
λδ

)
sin(λx− ωt)‖C1‖ul(0, x)− ul(t, x)‖H1

. λ2− 1
2 δ−s‖ul(0, x)− ul(t, x)‖H1 .

(3.6) 3.6

To estimate the H1-norm of the difference ul(0, x) − ul(t, x), we apply the funda-
mental theorem of calculus in time variable to obtain

‖ul(0, x)− ul(t, x)‖H1 =
∫ t

0

‖ult(τ)‖H1dτ.

It follows from the first equation of (3.2) that

‖ult(t)‖H1 ≤ ‖ululx‖H1 + ‖∂xΛ−2
(
u2
l +

1
2
u2
lx +

1
2
ρ2
l

)
‖H1

≤ ‖ul‖H1‖ul‖H2 + ‖u2
l +

1
2
u2
lx +

1
2
ρ2
l ‖2

. ‖ul‖2H2 + ‖ul‖∞‖ul‖2 + ‖ulx‖∞‖ul‖H1 + ‖ρl‖∞‖ρl‖2

. ‖ul‖2H2 + ‖ul‖2H1 + ‖ρl‖2H2

. ‖ul‖2H3 + ‖ρl‖2H3

. λ−2+δ, λ� 1,

(3.7) 3.7

where we have used Lemma 3.2 and the Sobolev embedding Theorem Hs ↪→ L∞

for s > 3/2.
Combining (3.6) and (3.7), we obtain

‖E1‖H1 . λ−s+
1
2 δ, λ� 1.

Similarly,
‖F1‖L2 . λ−s+

1
2 δ, λ� 1.

Estimates of ‖Ei‖H1 and ‖Fj‖H1 , i = 2, . . . , 8, j = 2, 3. In [28], the authors
obtained the following estimates

‖E2‖H1 . λ−s−δ,

‖E3‖H1 , ‖E6‖H1 , ‖E7‖H1 . λ−
1
2 δ−s+1λ−1+ 1

2 δ,

‖E4‖H1 , ‖E5‖H1 , ‖E8‖H1 . λ−
1
2 δ−2s+2

Similar to the estimate of ‖E2‖H1 , we have

‖F2‖L2 . λ−s−δ, λ� 1.

Direct calculation shows that

‖F3‖L2 = ‖uhρlx‖L2 . ‖uh‖L∞‖ρlx‖H1 . λ−
1
2 δ−sλ−1+ 1

2 δ, λ� 1.

Estimates of ‖F4‖L2 . It follows from (3.1) that

‖uhx(t)‖∞ . λ−
1
2 δ−s+1, ‖ρhx(t)‖∞ . λ−

1
2 δ−s+2, λ� 1. (3.8) 3.8
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By using Lemma 3.1, we have

‖uh(t)‖Hk = λ−
1
2 δ−s‖φ

( x
λδ
)

cos(λx− ωt)‖Hk

= λ−s+kλ−
1
2 δ−k‖φ

( x
λδ
)

cos(λx− ωt)‖Hk

. λ−s+k, λ� 1.

(3.9) 3.9

The above inequality also holds for ρh(t). Combining (3.8) and (3.9), we obtain
that, for λ� 1,

‖F4‖L2 = ‖uhρhx‖L2 . ‖uh‖∞‖ρh‖H1 . λ−
1
2 δ−sλ−s+2 . λ−

1
2 δ−2s+2.

Estimate of ‖F5‖L2 . It follows from (3.8) and (3.9) that

‖F5‖L2 = ‖
(
ρhulx + ρlu

h
x + ρhuhx

)
‖L2

≤
(
‖ρh‖∞‖ulx‖H1 + ‖uhx‖∞‖ρl‖H1 + ‖ρh‖∞‖uhx‖L2

)
. ‖ρh‖∞‖ul‖H2 + ‖uhx‖∞‖ρl‖H2 + ‖ρh‖∞‖uhx‖H1

. λ−
1
2 δ−sλ−1+ 1

2 δ + λ−
1
2 δ−s+1λ−1+ 1

2 δ + λ−
1
2 δ−s+1λ−s+1,

which gives ‖F5‖H1 . λ−
1
2 δ−2s+2, λ� 1.

Collecting all error estimates together, we have the following theorem.

t3.1 Theorem 3.3. Let s > 5/2 and 1 < δ < 2. When ω is in a bounded set of R and
λ� 1, we have that

‖E‖H1 . λ−rs , ‖F‖L2 . λ−rs , for λ� 1, 0 < t < T, (3.10) 3.10

where rs = s− 1
2δ > 0.

4. Difference between approximate and actual solutions

In this section, we estimate the difference between the approximate and ac-
tual solutions. Let (uω,λ(t, x), ρω,λ(t, x)) be the solution to (2.1) with initial data
the value of the approximate solution (uω,λ(t, x), ρω,λ(t, x)) at time zero, that is,
(uω,λ(t, x), ρω,λ(t, x)) satisfies

∂tuω,λ − uω,λ∂xuω,λ − ∂xΛ−2(u2
ω,λ +

1
2

(∂xuω,λ)2 +
1
2
ρ2
ω,λ) = 0, t > 0, x ∈ R,

∂tρω,λ − uω,λ∂xρω,λ − (∂xuω,λρω,λ + ∂xρω,λuω,λ) = 0, t > 0, x ∈ R,

uω,λ(0, x) = uω,λ(0, x) = ωλ−1φ̃
( x
λδ
)

+ λ−
1
2 δ−sφ

( x
λδ
)

cos(λx), x ∈ R,

ρω,λ(0, x) = ρω,λ(0, x) = ωλ−1ψ̃
( x
λδ
)

+ λ−
1
2 δ−s+1ψ

( x
λδ
)

cos(λx), x ∈ R.
(4.1) 4.1

Note that (uω,λ(0, x), ρω,λ(0, x)) ∈ Hs × Hs−1, s ≥ 2, it follows from Lemma 3.2
and (3.9) that

‖uω,λ(0, x)‖Hs ≤ ‖ul(0)‖Hs + ‖uh(0)‖Hs . λ−1+ 1
2 δ + 1, λ� 1,

‖ρω,λ(0, x)‖Hs−1 ≤ ‖ρl(0)‖Hs−1 + ‖ρh(0)‖Hs−1 . λ−1+ 1
2 δ + 1, λ� 1.

Therefore, if s > 5/2, by using Theorem 2.1 and 2.3, we have that for any ω in a
bounded set and λ� 1, problem (4.1) has a unique solution zω,λ ∈ C([0, T ];Hs)×
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C([0, T ];Hs−1) with

T &
1

‖zω,λ(0)‖Hs×Hs−1
&

1
1 + λ−1+ 1

2 δ
& 1. (4.2) a.1

To estimate the difference between the approximate and actual solutions, we let

v = uω,λ − uω,λ, σ = ρω,λ − ρω,λ.

Then (v, σ) satisfies

vt − vvx + uω,λvx + vuω,λx − ∂xΛ−2
[
v2 +

1
2
v2
x

+
1
2
σ2 − 2uω,λv − uω,λx vx − ρω,λσ

]
= Ẽ, t > 0, x ∈ R,

σt − vσx + uω,λσx + vρω,λx −
(
σvx − uω,λσ − ρω,λvx

)
= F̃ , t > 0, x ∈ R,

v(0, x) = σ(0, x) = 0, x ∈ R,

(4.3) 4.2

where

Ẽ = uω,λt + uω,λuω,λx + ∂xΛ−2
(

(uω,λ)2 +
1
2

(uω,λx )2 +
1
2

(ρω,λ)2
)
,

F̃ = ρω,λt + uω,λρω,λx + +ρω,λuω,λx ,

Similar to the prove of Theorem 3.3, Ẽ and F̃ satisfy the H1-norm estimation
(3.10). Now we prove that the H1-norm of difference decays.

t4.1 Theorem 4.1. Let 1 < δ < 2 and s > 5/2, then

‖v(t)‖H1 . λ−rs , ‖σ(t)‖L2 . λ−rs , 0 ≤ t ≤ T, λ� 1,

where rs = s− 1
2δ > 0.

Proof. Note that

1
2
d

dt
‖v(t)‖2H1 =

∫
R

(vvt + vxvxt)dx, (4.4) 4.3

1
2
d

dt
‖σ(t)‖2L2 =

∫
R
σσtdx. (4.5) 4.4

Applying the operator 1− ∂2
x = Λ2 to both sides of the first equations of (4.3), we

have

vt = Λ2Ẽ − Λ2(uω,λvx − vuω,λx )− (2uω,λv + uω,λx vx + ρω,λσ)x

+
1
2

(σ2)x + 3vvx − 2vxvxx − vvxxx + vxxt,
(4.6) 4.5

σt = F̃ − (uω,λσx + vρω,λx )− (uω,λx σ + ρω,λvx) + (vσ)x. (4.7) 4.6

Substituting (4.6) and (4.7) into (4.4) and (4.5), respectively, we obtain

1
2
d

dt
‖v(t)‖2H1 =

∫
R
vΛ2Ẽdx−

∫
R
vΛ2(uω,λvx + vuω,λx )dx

−
∫

R
v(2uω,λv + uω,λx vx + ρω,λσ)xdx+

1
2

∫
R
v(σ2)xdx

+
∫

R
(v(3vvx − 2vxvxx − vvxxx + vxxt) + vxvxt)dx,

(4.8) 4.7
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1
2
d

dt
‖σ(t)‖2L2 =

∫
R
σF̃dx−

∫
R
σ(uω,λσx + vρω,λx )dx

−
∫

R
σ(ρω,λvx + σuω,λx )dx+

∫
R
σ(vσ)xdx.

(4.9) 4.8

A direct calculation yields∫
R

(v(3vvx − 2vxvxx − vvxxx + vxxt) + vxvxt)dx

=
∫

R
[(v3)x − (v2vxx)x + (vvxt)x]dx = 0.

Substituting the above equalities in (4.8), and adding the resulting equations, we
obtain

1
2
d

dt

(
‖v(t)‖2H1 + ‖σ(t)‖2L2

)
=
∫

R
vΛ2Ẽdx+

∫
R
σF̃dx−

∫
R
vΛ2(uω,λvx + vuω,λx )dx

−
∫

R
σ(uω,λσx + vρω,λx )dx−

∫
R
v(2uω,λv + uω,λx vx + ρω,λσ)xdx

−
∫

R
σ(ρω,λvx + σuω,λx )dx+

∫
R

[1
2
v(σ2)x + σ(vσ)x

]
dx

:= I1 + I2 + · · ·+ I7.

We first look at the last term I7. Integrating by parts gives

I7 =
∫

R

[1
2
v(σ2)x + σ(vσ)x

]
dx = 0.

Estimates of integrals I1 and I2. Integrating by parts and applying the
Cauchy-Schwarz inequality, we have∣∣∣ ∫

R
vΛ2Ẽdx

∣∣∣ =
∣∣∣ ∫

R
(vẼ − vxẼx)dx

∣∣∣ ≤ ‖Ẽ‖H1‖v(t)‖H1 ,∣∣∣ ∫
R
σF̃dx

∣∣∣ ≤ ‖F̃‖L2‖σ(t)‖L2 .

Estimates of integrals I3-I6. Similar to that in [28], we obtain
6∑
i=3

Ii . (‖uω,λ(t)‖∞ + ‖uω,λx (t)‖∞ + ‖uω,λxx (t)‖∞ + ‖ρω,λ(t)‖∞)

× (‖v(t)‖2H1 + ‖σ(t)‖2L2).

Combining the estimations for I1–I7, we have
1
2
d

dt
(‖v(t)‖2H1 + ‖σ(t)‖2L2)

. (‖Ẽ‖H1 + ‖F̃‖H1)(‖v(t)‖H1 + ‖σ(t)‖L2)

+ (‖uω,λ(t)‖∞ + ‖uω,λx (t)‖∞ + ‖uω,λxx (t)‖∞ + ‖ρω,λ(t)‖∞ + ‖ρω,λx (t)‖∞)

× (‖v(t)‖2H1 + ‖σ(t)‖2H1).

(4.10) 4.9

It follows from (3.1) that

uhx = −λ− 3
2 δ−sφ′

( x
λδ

)
cos(λx− ωt)− λ− δ2−s+1φ

( x
λδ

)
sin(λx− ωt),
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uhxx = λ−
5
2 δ−sφ′′

( x
λδ
)

cos(λx− ωt)− 2λ−
3
2 δ−s+1φ′

( x
λδ
)

sin(λx− ωt)

− 2λ−
1
2 δ−s+2φ

( x
λδ
)

cos(λx− ωt).

Hence
‖uh(t)‖∞ + ‖uhx(t)‖∞ + ‖uhxx(t)‖∞ . λ−( 1

2 δ+s−2), λ� 1.
By using Lemma 3.2, we have

‖ul(t)‖∞ + ‖ulx(t)‖∞ + ‖ulxx(t)‖∞ . λ−(1− 1
2 δ), λ� 1.

Therefore,

‖uω,λ(t)‖∞ + ‖uω,λx (t)‖∞ + ‖uω,λxx (t)‖∞ . λ−ρs , λ� 1, (4.11) 4.10

where ρs = min{ 1
2δ + s− 2, 1− 1

2δ} > 0 for any s > 1 if δ is chosen appropriately
in the interval (1, 2). Similarly, we can prove that

‖ρω,λ(t)‖∞ . λ−s, ‖ρω,λx (t)‖∞ . λ−ρs λ� 1. (4.12) 4.11

Let z̃(t, x) = (v(t, x), σ(t, x)) and ‖z̃(t)‖2H1×L2 = ‖v(t)‖2H1 + ‖σ(t)‖2L2 , then by
(4.10)-(4.12), we obtain that

1
2
d

dt
‖z̃(t)‖2H1×L2 . (‖Ẽ‖H1 + ‖F̃‖L2)‖z̃(t)‖H1×L2 + λ−ρs‖z̃(t)‖2H1

. λ−rs‖z̃(t)‖H1×L2 + λ−ρs‖z̃(t)‖2H1×L2 , λ� 1,

where we have used Theorem 3.3. Consequently,
d

dt
‖z̃(t)‖H1×L2 . λ−ρs‖z̃(t)‖H1×L2 + λ−rs , λ� 1. (4.13) 4.12

Since ‖z̃(0)‖H1×L2 = (‖v(0)‖2H1 + ‖σ(0)‖2L2)1/2 = 0 and for s > 1, we can choose
δ ∈ (1, 2) such that ρs ≥ 0, by (4.13) and Gronwall’s inequality, we obtain

‖z̃(t)‖H1×L2 . λ−rs , 0 ≤ t ≤ T, λ� 1.

Note that
‖v(t)‖H1 , ‖σ(t)‖L2 ≤ ‖z̃(t)‖H1×L2 ,

we see that
‖v(t)‖H1 , ‖σ(t)‖L2 . λ−rs , 0 ≤ t ≤ T, λ� 1.

This completes the proof. �

5. Non-uniform dependence

In this section, we prove non-uniform dependence for (2.1) by taking advantage
of the information provided by Theorem 2.1-2.3, Theorem 3.3 and Theorem 4.1.
Our main result is the following.

t5.1 Theorem 5.1. If s > 5/2, then the data-to-solution z(0) → z(t) for (2.1) is not
uniformly continuous from any bounded subset of Hs×Hs−1 into C([−T, T ];Hs)×
C([−T, T ];Hs−1), where z(0) = (u0(x), ρ0(x)) and z(t) = (u(t, x), ρ(t, x)). More
precisely, there exist two sequences of solutions (uλ(t), ρλ(t)) and (ũλ(t), ρ̃λ(t)) to
the differential equations of (2.1) in C([−T, T ];Hs)× C([−T, T ];Hs−1) such that

‖uλ(t)‖Hs + ‖ũλ(t)‖Hs + ‖ρλ(t)‖Hs−1 + ‖ρ̃λ(t)‖Hs−1 . 1, (5.1)

lim
λ→∞

‖uλ(0)− ũλ(0)‖Hs = lim
λ→∞

‖ρλ(0)− ρ̃λ(0)‖Hs−1 = 0, (5.2) 5.2

lim inf
λ→∞

(‖uλ(t)− ũλ(t)‖Hs + ‖ρλ(t)− ρ̃λ(t)‖Hs−1) & sin t, |t| < T ≤ 1. (5.3) 5.3
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Proof. Let (uλ(t), ρλ(t)) = (u1,λ(t, x), ρ1,λ(t, x)) and let (ũλ(t), ρ̃λ(t)) =
(u−1,λ(t, x), ρ−1,λ(t, x)), where (u1,λ(t, x), ρ1,λ(t, x)) and (u−1,λ(t, x), ρ−1,λ(t, x)) be
the unique solution to problem (4.1) with initial data (u1,λ(0, x), ρ1,λ(0, x)) and
(u−1,λ(0, x), ρ−1,λ(0, x)), respectively. From Theorem 2.1 these solutions belong to
C([0, T ];Hs) × C([0, T ];Hs−1). By (4.2) and the assumptions after Theorem 2.1,
we see that T is independent of λ � 1. Letting k = [s] + 2 and using estimate
(2.10), we have

‖u±1,λ(t)‖Hk , ‖ρ±1,λ(t)‖Hk−1 . ‖z±1,λ(0)‖Hk×Hk−1 , (5.4) 5.4

where z±1,λ(0) = (u±1,λ(0), ρ±1,λ(0)) and ‖z±1,λ(0)‖2Hk×Hk−1 = ‖u±1,λ(0)‖2Hk +
‖ρ±1,λ(0)‖2Hk−1 . If λ is large enough, then from Lemma 3.1 we have

‖u±1,λ(t)‖Hk ≤ ‖u±1,λ(t)‖Hk + λ−
1
2 δ−s‖φ

( x
λδ
)

cos(λx− ωt)‖Hk

. λ−1+ 1
2 δ + λk−s‖φ‖2,

which gives
‖u±1,λ(t)‖Hk . λk−s. (5.5) 5.5

Combining (5.4) with (5.5), we obtain

‖u±1,λ(t)‖Hk . λk−s, λ� 1. (5.6) 5.6

Estimates (5.5) and (5.6) yield

‖u±1,λ(t)− u±1,λ(t)‖Hk . λk−s, λ� 1. (5.7) 5.7

Theorem 4.1 implies

‖u±1,λ(t)− u±1,λ(t)‖H1 . λ−rs , λ� 1. (5.8) 5.8

Now, applying the interpolation inequality

‖ϕ‖Hs ≤ ‖ϕ‖(s2−s)/(s2−s1)Hs1 ‖ϕ‖(s−s1)/(s2−s1)Hs2

with s1 = 1 and s2 = [s] + 2 = k, and using estimates (5.7) and (5.8), we obtain

‖u±1,λ(t)− u±1,λ(t)‖Hs

≤ ‖u±1,λ(t)− u±1,λ(t)‖(k−s)/(k−1)
H1 ‖u±1,λ(t)− u±1,λ(t)‖(s−1)/(k−1)

Hk

. λ−rs(k−s)/(k−1)λ(k−s)(s−1)/(k−1)

. λ−(rs−s+1)(k−s)/(k−1), λ� 1.

Hence
‖u±1,λ(t)− u±1,λ(t)‖Hs . λ−εs , λ� 1, (5.9) 5.9

where εs = (1− 1
2δ)/(s+ 2).

Next, we prove (5.2) and (5.3). Note that 0 < δ < 2, we have

‖u1,λ(0)− u−1,λ(0)‖Hs = 2λ−1‖φ̃
( x
λδ
)
‖Hs ≤ 2λ−1+ 1

2 δ‖φ̃‖Hs → 0,

‖ρ1,λ(0)− ρ−1,λ(0)‖Hs−1 = 2λ−1‖ψ̃
( x
λδ
)
‖Hs−1 ≤ 2λ−1+ 1

2 δ‖ψ̃‖Hs−1 → 0

as λ → ∞, which implies that (5.2) holds. Now, we prove (5.3). It is easy to see
that

lim inf
λ→∞

(‖uλ(t)− ũλ(t)‖Hs + ‖ρλ(t)− ρ̃λ(t)‖Hs−1) ≥ lim inf
λ→∞

‖uλ(t)− ũλ(t)‖Hs .
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Thus we only prove that

lim inf
λ→∞

‖uλ(t)− ũλ(t)‖Hs & sin t, |t| < T ≤ 1.

Obviously,

‖u1,λ(t)− u−1,λ(t)‖Hs

≥ ‖u1,λ(t)− u−1,λ(t)‖Hs − ‖u1,λ(t)− u1,λ(t)‖Hs − ‖u−1,λ(t)− u−1,λ(t)‖Hs .

It follows from (5.9) that

‖u1,λ(t)− u−1,λ(t)‖Hs ≥ ‖u1,λ(t)− u−1,λ(t)‖Hs − cλ−εs , λ� 1,

which implies that

lim inf
λ→∞

‖u1,λ(t)− u−1,λ(t)‖Hs ≥ lim inf
λ→∞

‖u1,λ(t)− u−1,λ(t)‖Hs . (5.10) 5.10

The identity cosα− cosβ = −2 sin α+β
2 sin α−β

2 gives

u1,λ(t)− u−1,λ(t) = ul,1,λ(t)− ul,−1,λ(t) + 2λ−
1
2 δ−sφ

( x
λδ
)

sinλx sin t.

Thus,

‖u1,λ(t)− u−1,λ(t)‖Hs

≥ 2λ−
1
2 δ−s‖φ

( x
λδ
)

sinλx‖Hs | sin t| − ‖ul,1,λ(t)‖Hs − ‖ul,−1,λ(t)‖Hs

& λ−
1
2 δ−s‖φ

( x
λδ
)

sinλx‖Hs | sin t| − λ−1+ 1
2 δ, λ� 1.

Letting λ→∞ in the above inequality, we have

lim inf
λ→∞

‖u1,λ(t)− u−1,λ(t)‖Hs & | sin t|. (5.11) 5.11

Summing inequalities (5.10) and (5.11) up, it yields inequality (5.3). This completes
the proof. �
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