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INITIAL DATA PROBLEMS FOR THE TWO-COMPONENT
CAMASSA-HOLM SYSTEM

XIAOHUAN WANG

ABSTRACT. This article concerns the study of some properties of the two-
component Camassa-Holm system. By constructing two sequences of solutions
of the two-component Camassa-Holm system, we prove that the solution map
of the Cauchy problem of the two-component Camassa-Holm system is not
uniformly continuous in H*(R), s > 5/2.

1. INTRODUCTION

Many authors have studied shallow water equations, of which a typical exam-
ple is Camassa-Holm (CH) equation. This equation has been extended to a two-
component integrable system (CH2) by combining its integrability property with
compressibility, or free-surface elevation dynamics in its shallow-water interpreta-
tion [10, 23]:

my + umg + 2muy +opp, =0, t>0, v €R,

pt+ (pu) =0, t>0, z€R, (1.1)
where m = u — uy, and 0 = £1. We remark that ¢ = 1 is the hydrodynamically
relevant choice, see the discussion in [10]. Local well-posedness of (1.1) with o =1
was obtained by [10, 11]. The precise blow-up scenarios and blow-up phenomena
of strong solution for (1.1) was established by [10, 11, 13, 15, 19, 17]. Guan-Yin
obtained the existence of global weak solution to (1.1). Just recently, Gui and Liu
[18] studied (1.1) with ¢ = 1 in Besov space and they obtained the local well-
posedness. In this paper, we consider the Cauchy problem of (1.1) and study the
some properties of it.

If p =0, then (1.1) becomes the well-known Camassa-Holm equation [3]. In the
past decade, the Camassa-Holm equation has attracted much attention because of
its integrability and the existence of multi-peakon solutions, see [1]-[7] and [33]-
[35] for the details. The Cauchy problem and initial boundary value problem of
the Camassa-Holm equation have been studied extensively [5, 12]. It has been
shown that the Camassa-Holm equation is locally well-posedness [5] for initial data
ug € H*(R), s > 3/2. Moreover, it has global strong solutions [5] and finite time
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blow-up solutions [5, 6, 8]. On the other hand, it has global weak solution in
HYR) [1, 2, 3, 7]. The advantage of the Camassa-Holm equation in comparison
with the KdV equation lies in the fact that the Camassa-Holm equation has peaked
solutions and models wave breaking (i.e. the solution remains bounded while its
slope becomes unbounded in finite time [3, 5, 6, 30]). Here peaked solutions are
actually peaked traveling waves, similar to the waves of greatest height encountered
in classical hydrodynamics, see the discussion in the papers [4, 9, 31]. Moreover,
there is a rich geometric structure underlying the Camassa-Holm equation, see the
discussion in the papers [25, 26].

Recently, some properties of solutions to the Camassa-Holm equation have been
studied by many authors. Himonas et al. [20] studied the persistence properties
and unique continuation of solutions of the Camassa-Holm equation. They showed
that a strong solution of the Camassa-Holm equation, initially decaying exponen-
tially together with its spacial derivative, must be identically equal to zero if it
also decays exponentially at a later time, see [35, 14] for the similar properties of
solutions to other shallow water equation. Just recently, Himonas-Kenig [21] and
Himonas et al. [22] considered the non-uniform dependence on initial data for the
Camassa-Holm equation on the line and on the circle, respectively. Lv et al. [27]
obtained the non-uniform dependence on initial data for u-b equation. Lv-Wang
[28] considered the (1.1) with p = y—~,, and obtained the non-uniform dependence
on initial data. Wang [32] obtained the non-uniform dependence on initial data of
periodic Camassa-Holm system. Tang-Wang [29] obtained the Holder continuous
of Camassa-Holm system.

In this paper, we consider the non-uniform dependence on initial data for (1.1).
We remark that there is significant difference between (1.1) and (1.1) with p =
Y — Yzz- It is easy to see that when p = v — v,., there are some similar properties
between the two equations in (1.1). Thus the proof of non-uniform dependence
on initial data to (1.1) with p = v — 7., is similar to the single equation, for
example, Camassa-Holm equation. But in (1.1), p and u have different properties,
see Theorem 2.1. This needs construct different asymptotic solution, see section
3. Besides, the results in this paper are different from those in [27] because of the
difference of the two operators 1 — 9,, and p — Opy-

This article is organized as follows. In section 2, we recall the well-posedness
result of Constantin-Ivanov [10] and Escher et al. [11] and use it to prove the basic
energy estimate from which we derive a lower bound for the lifespan of the solution
as well as an estimate of the H*(R) x H*~1(R) norm of the solution (u(t, ), p(t, z))
in terms of H*(R) x H*"!(R) norm of the initial data (ug,po). In section 3, we
construct approximate solutions, compute the error and estimate the H'-norm of
this error. In section 4, we estimate the difference between approximate and actual
solutions, where the exact solution is a solution to (1.1) with initial data given by
the approximate solutions evaluated at time zero. The non-uniform dependence on
initial data for (1.1) is established in section 5 by constructing two sequences of
solutions to (1.1) in a bounded subset of the Sobolev space H*(R), whose distance
at the initial time is converging to zero while at any later time it is bounded below
by a positive constant.

Notation. In the following, we denote by * the spatial convolution. Given a
Banach space Z, we denote its norm by || - ||z. Since all space of functions are
over R, for simplicity, we drop R in our notations of function spaces if there is no
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ambiguity. Let [A, B] = AB — BA denotes the commutator of linear operator A

and B. Set |22, g1 = [ul%. + o], where = = (u,p).

2. LOCAL WELL-POSEDNESS

In this section we first recall the known results of Constantin-Ivanov [10] and
Escher et al. [11] and give a new estimate of the solution to (1.1).

Let A = (1 —02)'/2. Then the operator A~2 acting on L?(R) can be expressed
by its associated Green’s function G(z) = Le~1*l as

A2 @) = (@ ) = 5 | T e legay, f e L(R).

2 — 00

Hence (1.1) is equivalent to the system

1 1
U + Uy, = —8IA_2(u2 +—u? + §p2), t>0, zeR,

gl (2.1)
pt+upw:_uwp7 t>07 xGR,
with initial data
u(0,2) = uo(z), p0,z)=po(x), zeR. (2.2)

The following result is given by Constantin-Ivanov [10] and Escher et al. [11].

Theorem 2.1. Given zyg = (ug,po) € H* x H*"', s > 2. Then there erists a
mazimal exzistence time T = T(||zo|| s xms—1) > 0 and a unique solution z = (u, p)
to (2.1) with (2.2) such that

z=2(-,20) € C([0,T); H® x H*"')nC*([0,T); H*™' x H*™?).
Moreover, the solution depends continuously on the initial data, i.e. the mapping
20— (-, 20) : HS x H™2 = C([0,T); H® x H=H)nCY([0,T); H*~! x H*7?)
18 continuous.

Next, we will give an explicit estimate for the maximal existence time 7. Also,
we will show that at any time ¢ in the time interval [0,Tp] the H®-norm of the
solution z(¢, ) is dominated by the H*-norm of the initial data zo(x). In order to
do this, we need the following lemmas.

Lemma 2.2 ([24]). Ifr > 0, then
ITA", flgllz < Cllfalloo 1A gll2 + A" Fll2llgl o)

where C' is a positive constant depending only on r.

Theorem 2.3. Let s > 5/2. If z = (u, p) is a solution of (2.1) with initial data zo
described in Theorem 2.1, then the maximal existence time T satisfies

1

T>Ty:= , 2.3
QCSH'ZOHHS x Hs—1 ( )

where Cy is a constant depending only on s. Also, we have
||Z(t)HH5><H5*1 S 2||ZOHH5><H5*17 0 StST(). (24)

H

1
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Proof. The derivation of the lower bound for the maximal existence time (2.3) and
the solution size estimate (2.4) is based on the following differential inequality for
the solution z:

1d
SOt xres < Ol e, 01T, (25)
Suppose that (2.5) holds. Then, integrating (2.5) from 0 to ¢, we have

HZOHbeHb 1
1—Cslz0

12| erexcmra—r <

|isxpe—1t’

From this inequality it follows that ||z(¢)|| s x grs—1 18 finite if Csl|2zo|| s xms—1t < 1.
Let Ty = , then, for 0 <t < Ty, we have

2Cs |20l s grs—1

||ZO||stH571
z(t s ps—1 <
H ()HH xHs=1 S 1= Cyl|

= 2||ZQHHS x Hs—1.

HexHs-110

Now we prove the inequality (2.5). Note that the products uu, and up, are only
in H°~1 if u,p € H®. To deal with this problem, we will consider the following
modified system

1 1
(Jow); 4 Jo(uny) = —0, A2 (Jsu2 + §Jgui + §J€p2), t>0, xeR,
(Jep)t + Je(upy) = —Je(ugp), t>0, x €R,

(2.6)

where for each e € (0, 1] the operator J. is the Friedrichs mollifier defined by

Jef(x) = Jo(f)(x) = je = [.

Here jo(z) = 1j(%), and j(x) is a C* function supported in the interval [—1,1]
such that j(x) >0, [ j(x)dz = 1. Applying the operator A* and A*~' to the first
and second equations of (2.6) respectively, then multiplying the resulting equations
by A®J.u and A*~1.J.p, respectively, and integrating them with respect to = € R,
we obtain

1
Sl = — [ AN e
R
2.7)
1 1

- / Op N 20, A2 (Jsu2 + fJaui + fJapz)ASJEuda:,
1d a1 - o o
th” Jepllfrs = A Je(upz) A~ Jopda — A J(upp) N Jopda.

(2.8)
Similar to [32], we can estimate the right-hand sides of (2.7) and (2.8). We obtain

2 dtllJ ullfre < Cslllullos + l1plloo + lualloo + loalloc) (lullZrs + Nl 7)),

zdtlleplle 1 < Cs(llullos + llplloo + lluzlloo + Nowlloc) (lullFrs + 1ol Fa-1)-
Consequently,
1d
52 (el + 1epl3-2)

< Csllulloo + llplloe + l[ualloe + llpalloo) (Nlullzre + llpll7—1)-
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Then, letting € aproach 0, we have

1d
> dq (lullzs + llplZ—) < Cslllullso + llplloo + 1tz lloo + llpzlloo) (lullZre + ol Zr—),
or

1d 9 9

3 g POl s < Cslu®ller + llplle) 2Oz e (2.9)

Since s > 5/2, using Sobolev’s inequality we have that

[u@®)llcr < Csllu@®llms,  Np®ller < Csllp@ o1

From (2.9) we obtain the desired inequality (2.5). This completes the proof of
Theorem 2.3. O

Recall that [[2(t)[|7., gor = [[u®)|[Fe + [p(®)]F.—1, where 2(t) = (u(t), p(t)).
It follows from Theorem 2.3 that

() lzss e Nas—1 < |zE) | msxms—1 < 2||20llgsxms—1, 0<t<Tp. (2.10)

Remark 2.4. Comparing Theorem 2.3 with that in [28], we will see that there
exists a significant different between (1.1) and (1.1) with p = v — 7,,. In the other
words, we require s > 5/2 because of the Sobolev embedding Theorem. But in
paper [28], since u and v have the same property, we assume that s > 3/2.

3. APPROXIMATE SOLUTIONS

In this section we first construct a two-parameter family of approximate solutions
by using a similar method to [21], then compute the error and last estimate the
H'-norm of the error.

Following [21], our approximate solutions u“** = u**(t,x) and p* = p= (¢, x)
to (2.1) will consist of a low frequency and a high frequency part, i.e.

uo =l pPN =4,
where w is in a bounded set of R and A > 0. The high frequency part is given by

ul = uheA it x) = A‘%*‘Mﬁ(%) cos(Ax — wt),
(3.1)

_ls_¢ X
Pt = pheAt, ) = A3 +1w(ﬁ) cos(A\x — wt),

where ¢ and 1 are C*° cut-off functions such that
1 oif e <, 1 oif e <1,
o) = {0 g >2, V@ {0 if |z| > 2.

The low frequency part (ug, p1) = (u,wa(t, ), prwr(t, ) is the solution to (2.1)
with initial data

1T 1T
u(0,2) = wA 1¢<ﬁ)’ p1(0,2) = wA 1w(ﬁ)’ r € R, (3.2)
where ¢ and ¢ are C$°(R) functions such that
é(a:) =1 ifx € supp¢Usupp.

We first study the properties of (u;,p;) and (u”,p"). The high frequency part
(ul, p") defined by (3.1) satisfies

la"(®) - = OQ), " Oller ~ O(1) for A> 1

because of the following result.
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Lemma 3.1 ([21]). Let ¢ € S(R), 1 < ¢ <2 and a € R. Then for any s > 0 we

have that
1
Jim ATE 0 (55) cos(h — o)l = sl (3.3)
Relation (3.3) is also true if cos is replaced by sin.
For the low frequency part (u;, p;), we have the following result.

Lemma 3.2. Let w belong to a bounded set of R, 1 < § < 2 and A > 1. Then
the initial-value problem (2.1)-(3.2) has a unique solution (u;, p;) € C([0,T); H®) x
C([0,T); H*~1), for all s > 5/2, satisfying the estimates

hu(®)lls+ < CATHE, [lon(®) e < Caa AT,

Proof. The existence and uniqueness of local a solution can be derived from Theo-
rem 2.1 for s > 5/2.
It follows from [21, Lemma 5] that

T
19 (55) e < A2,

where s > 0 and ¥ € S(R). Using the above inequality, we have that the initial
data (u;(0,z), pi(0,2)) satisfies the estimate

— 1 7 — 1 7
e 012z < 1A 220Gl e, Noa(0)| g1 < |wIATHF 21 roa,

which decay if § < 2 and w is in a bounded set of R. Recall that ||z ()||%.. ye—1 =
(). + lpu(8) .-, we obtain

122 (0) 1 zrs 151 = (lue(O) I3 + 102 (0) 1) "? < |wIATH 22 ([[ 1|7 + 191 Fa-0) /2.

It follows from (3.2) that 2;(0) € H® x H*! for all s > 5/2. If s > 5/2, then
from estimate (2.3) of Theorem 2.3, we have

lur ()| zr= < Collwn(0)] = < CsATIF22,
ot zre-1 < Csllpr(0)||zre—1 < Coy A™1H20,
The proof is complete. 0

w,)\7 W )\)

Now we compute the error. Substituting the approximate solution (u“*, p*

into the first and second equation of (2.1), we obtain the error
E= u? + uluZ + uPug, + uhug +9,A72 ((uh)2 + kqugu®

1 1
() gl + 5 (") + i),

F = pi +wpl + v pip +uplk + pMure + prull + p"ul,

where we have used that (u;, p;) solves (3.2).
Direct calculation shows that

ul(t, x) = w/\_%‘s_sqb(%) sin(Az — wt),
pl(t,z) = w/\_%6_8+11/}(%) sin(Azx — wt).
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Since ¢ = 1 if = € supp ¢ Usupp ¢, we can write u}* and p in the form
ug (t,x) = wtﬁ(%)x%‘“w(i) sin(\z — wt)
uy(0, :1:))\*5‘S ScZ)( )sin()\x — wt),
ot x) =w ( ))\*55 S+11/1( ) sin(Az — wt)
u (0, )\~ E’SHw(F) sin(Az — wt).
Computing the spacial derivatives of u" and p”, we have
ul(t,z) = —)\A’%‘S*Sgﬁ(; ) sin(Az — wt) + A~ 20-s gy ( =) cos(Ax — wt),

ph(t,z) = 7}\)\—%57%177[](%) sin(Az — wt) + A" 2075 Ly ( =) cos( Az — wt).
(3.5)

Combining (3.4) with (3.5), we obtain
ul(t, ) + wul (t, ) = N (0, 2) — wy(t, 2)]A"2075¢ (%) sin(Az — wt)
oy (t, )N 2075 ( =) cos(Ax — wt),
(1) + uiph(t, ) = A (0,) — w(,2)A~ 3 (55 sin(rz — w)
gty o) AT EOs Ly ( ) cos(Az — wt).
Therefore, we can rewrite the error £ and F' as
E=FE +FEy+--+FEs, F=F +F,+--+ Fg,

where
E; = —Muw(0,z) — ul(t,x)])\_%5_s¢(%) sin(Ax + wt),
Ey = wy(t, a:))fﬁé S¢ ( )cos()\x + wt),
B3 = —uuy,, Ej=—uul,

k k
Es = —(%A_Q(—l(uh)2 + —Q(ph)2>7 Eg = —0,A? (kluluh + kgplph) ,

2 2
2 h 3— kl 2
E7 = —(3 - kl)amA (ulzur), Eg 8 A (( z) ) 5

Fy = —ksA\[u (0, 2) — w(t, x)])\_%‘s_s‘ﬂz/}(—&) sin(Az + wt),

Fy = ksu(t, 2)\~ Fo—stlyy ( )cos()\x + wt),
Fy = —ksu"p,, Fy= —ksu"pl,
s = —ks (p"we + prul + pult) .

Now we are ready to estimate the H'-norm of each error E; and the L?-norm of

each error F; (1 =1,...,8,j=1,...,6). Let C be a generic positive constant. For

any positive quantities P and @, we write P < @ (P = Q) means that P < CQ
(P > CQ) in the following.
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Estimates of ||F1||g: and || Fi| 2. Note that

1£glm < V20 flerllgla, YfeCt geHY,
and [|¢ (55 ) sin(Az — wt)||cr = Al|@]|oc, We have

—15—s €z .
1Bxlim = N30 (55 ) sin(A — wt) (0, 2) = wi(t, )]
XA () sin(ha - wh)cru0,2) - wlt. ) (BO)
S ATy (0, 2) — wi (8, @) | a1

To estimate the H!'-norm of the difference u;(0,z) — wu;(t,x), we apply the funda-
mental theorem of calculus in time variable to obtain

t
| (0, 2) — wi(t, )| g2 =/ e (7) || g dr
0

It follows from the first equation of (3.2) that
1

el < Nzl + 10247 (uf + 5

1
2
< Nl + llulloo luallz + urelloo [l 2+ llotllsc o2 (3.7)

S lullre + Nl + lloellZ

1

1
< all el = + 1 + Suis + 5p7ll2

< lwallFs + ol Zs
SATE A1,

where we have used Lemma 3.2 and the Sobolev embedding Theorem H?® — L*
for s > 3/2.
Combining (3.6) and (3.7), we obtain

|Ex|[m S A5T20, A> 1.
Similarly,
IFyfg2 SATH200 A1

Estimates of || E;|| g and ||F}||g1, i =2,...,8,5 = 2,3. In [28], the authors
obtained the following estimates

B2l S A0,
_1ls5_ _ 1
Bl g, || Esller, [|Brllgn S A207H A0,

1 Esllges 1 Esll g, | Esllar S 2302542

Similar to the estimate of || Esl| g1, we have
[Fallre SAT7°, AL
Direct calculation shows that
1Fsllee = " piellze S o lowellmn S A72072A7H20, A 1.
Estimates of ||Fy||z2. It follows from (3.1) that

15 ¢ _ls_ g
[uf(B)lloe S AT ok (B)]lo0 AT A1 (3.8)
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By using Lemma 3.1, we have
15— T
[u (@) gx = A~2° 16(55) cos(Aa — wt)|
stk _ls_ T
R o quﬁ(F)cos(Ax—wt)HHk (3.9)
SATSHE L N> 1.

The above inequality also holds for p"(t). Combining (3.8) and (3.9), we obtain
that, for A > 1,

[Fallze = llu”phlze S u®floo "l S A7Z07SATSF2 € AT2072042,
Estimate of ||F5||2. It follows from (3.8) and (3.9) that
1Es N2 = || (p"uia + prug + pup) | 12
< (" oo el 2 + llugllsslloullzre + 10" ool 22)
Sl lsolluallzrz + N lsolloll e + Nl ool g L e

—15—sy—1+15 —16—s+1y—1+15 —15—s+1y—s+1
SAT2078) T20 p Ao stz TR0 4 \madmstl \mshl

which gives ||Fs| g < A72072572 X\ > 1
Collecting all error estimates together, we have the following theorem.

Theorem 3.3. Let s >5/2 and 1 < § < 2. When w is in a bounded set of R and
A > 1, we have that

1Bl <A, |Flle SA™, forA>1,0<t<T, (3.10)

where 1y = 5 — %(5 > 0.

4. DIFFERENCE BETWEEN APPROXIMATE AND ACTUAL SOLUTIONS

In this section, we estimate the difference between the approximate and ac-
tual solutions. Let (uw a(f, %), pw,a(t,x)) be the solution to (2.1) with initial data
the value of the approximate solution (u®*(t,z), p**(t,z)) at time zero, that is,
(U A(t, ), pua(t, z)) satisfies
1
2
OtPwn — U A0z Pwx — (Oztw APuw s + Ozpurtivr) =0, t>0, z €R,

Uy 2 (0,2) = u0,2) = w/\_lgg(%) + A—%5—5¢(%) cos(Az), x€R,

1
Oy, \ — Uw AOg Uiy ) — &EA_Q(UE,’)\ + 5(815%,7)\)2 + pi,)\) =0, t>0, z€R,

w —17(% —15—s T
P (0,2) = p0,2) = wA 1¢(F) +A72° +1w(ﬁ) cos(Az), x€R.
(4.1)
Note that (u, (0,), pu(0,2)) € H® x HS"1 s > 2, it follows from Lemma 3.2
and (3.9) that
oA, ) e < () e + [ O)l] e S AR 41, A>T,
oo (0,1 < MOl + 1" (O) ][ o1 SATFE 41, A> 1

Therefore, if s > 5/2, by using Theorem 2.1 and 2.3, we have that for any w in a
bounded set and A > 1, problem (4.1) has a unique solution 2, x € C([0,T]; H*) x

3.10
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C([0,T]; H*~1) with
T2 ! > 1 — > 1. (4.2)
| 2 A (O)[| £ x £rs—1 14 A"1+39

To estimate the difference between the approximate and actual solutions, we let

WA W, A

v=1u —Uw\, O0=Pp — Pw, -
Then (v, o) satisfies
1
Vg — VUp + U v, + vu‘;”\ — 9, A2 [vz + 51@
1 .
+ 502 — u¥y — u;j’)‘vm - pw”\a] =FE, t>0, 2R, (4.3)

op — V0, + U o, + vp;j’)‘ — ((m}x —u¥ o — p‘”’AvI) = 13', t>0, x€R,
v(0,2) =0(0,z) =0, x€R,

where

r- w — 1 w 1 w
B =+ uus? + 0,072 ()2 4 () + 5 (0°)?),
F _ p;))\ + uw,)\pg,)\ + +pw,)\u:,)\’

Similar to the prove of Theorem 3.3, E and F satisfy the H'-norm estimation
(3.10). Now we prove that the H'-norm of difference decays.
Theorem 4.1. Let 1 < § < 2 and s > 5/2, then
[v@llar S AT llo@llze AT, 0<t<T, A>1,
where rg = 5 — %5 > 0.

Proof. Note that

1d

310 = [ ot o), (1.9
1d 9 /
——|lo)|l72 = [ oord. (4.5)
thH ()HL R t

Applying the operator 1 — 92 = A? to both sides of the first equations of (4.3), we
have

vy = A2E — A2 (u v, — ou?) — (2u€ M0 + u o, 4 p9 20,
(4.6)

2
+ (J )a: + B'UUI - QUzUzz — VVgaa + Vet

N =

or = F — (u¥o, +vp2) — (o + p P ,) 4 (v0).,. (4.7
Substituting (4.6) and (4.7) into (4.4) and (4.5), respectively, we obtain
1d ~
——|v(@®)||%: :/vA2de—/vA2(uw’/\vz + vu ) da

1
- / v(2u® M + u v, + p o) pda + 3 / v(0?)dx (4.8)
R R

+ /(v(?wvz — 20Uz — Vg + Vgat) + UpUge)de,
R
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1d -
5%”0@)”%2:/017(1%—/0( Ao, +vpe ) de
R R

—/U(pw”\vac—&—au;”)‘)dx—i—/a(va)wdac.
R

R

(4.9)

A direct calculation yields

/(1}(31}1}qc 204 Vpe — Vsra + VUgat) + UgUgt)dx
R

= /[(v?’)x — (V*020) + (V0t)z]dz = 0.
R

Substituting the above equalities in (4.8), and adding the resulting equations, we
obtain

- (le@17n + llo(®)II7:)
Z/UAzde-l—/aﬁ'dx—/vA2(u”’)‘vm+vu§’)‘)dm
R R R

- / o(u o, +vpe)de — / v(2u M 4 U o, + P o) pda
R R

DO =
&‘g‘

1
- / o(p® v, + ou)de + / [511(02)1 + 0 (vo),|da
R R
=h+L+-+1I7
We first look at the last term I7. Integrating by parts gives

I; = /R [%U(GQ)QC + 0 (vo),|dz = 0.

Estimates of integrals I; and I,. Integrating by parts and applying the
Cauchy-Schwarz inequality, we have

)/UAQde‘ _ ‘/(’UEN'—UIEN‘I)dx‘ < Bl [o(®) |1,
R R
| [ oFds| < |Fl1aloto)]e
R
Estimates of integrals I3-Is. Similar to that in [28], we obtain
Z ([u A Olloe + lug () lloo + ugi @)oo + 16 (E)loc)

< (@l + lo@®IZ2).
Combining the estimations for I;-I7, we have

5 O + o 0l)
< (Bl + 1B ) () + o6 22) (4.10)

+ (lu @)oo + 4 B)lloo + ugi @)oo + 167 @)oo + 1652 (E) 0
< (@17 + llo@)l7m)-
It follows from (3.1) that

= _\T30sy ( ) cos(Ax — wt) — A2ty (%) sin(Az — wt),
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X

= \30 é(;5”( <) cos(Ax — wt) — 2)\_%6_s+1¢'()\5

) sin(Az — wt)

— 2\ 20 26 (=) cos(Az — wt).

)
Hence

" (#)lloo + 02 () oo + lJuliy (oo S A2 A1,
By using Lemma 3.2, we have

() lloo + 1ttt (8) oo + [tiza (D)oo S A™E72, A1
Therefore,

[u 2 ()lloo + 45 ) lloo + llugi* Bloe S AT, A>1, (4.11)
where ps = min{%é +s5s—2,1-— %6} > 0 for any s > 1 if ¢ is chosen appropriately
in the interval (1,2). Similarly, we can prove that

P Bl SAT% M5 )]l SAT A> 1. (4.12)

Let 5(t,a) = (u(t,), o(t,2) and [E(0) 3y = [0 + [o(®)[E2, then by
(4.10)-(4.12), we obtain that

1d ~ ~ - —pall =

5 3t FOlin <z S (IBlas + 1FIL) 2@ e + A7 128 17

SATNEO I mrxre + A NEO 72, A> 1,

where we have used Theorem 3.3. Consequently,

d ~ - ™ -
TIEOlxze S AP IO mrxze +A7, A1, (4.13)

Since [|Z(0)||zrixze = ([v(0)]|%: + [lo(0)]|22)1/2 = 0 and for s > 1, we can choose
d € (1,2) such that ps > 0, by (4.13) and Gronwall’s inequality, we obtain
2O mrixre SA™™, 0<t<T, A>1
Note that
lo@) e, llo®)llze < 12252,
we see that
o, le@lle SA™™, 0<t<T, A> 1.
This completes the proof. ([l

5. NON-UNIFORM DEPENDENCE

In this section, we prove non-uniform dependence for (2.1) by taking advantage
of the information provided by Theorem 2.1-2.3, Theorem 3.3 and Theorem 4.1.
Our main result is the following.

Theorem 5.1. If s > 5/2, then the data-to-solution z(0) — z(t) for (2.1) is not
uniformly continuous from any bounded subset of H® x H*~1 into C([ T,T); H®) x

C([-T,T); H*~Y), where 2(0) = (uo(z), po(z)) and 2(t) = (u(t,z),p (t,x)) More
precisely, there exist two sequences of solutions (ux(t), px(t)) and ( A(t) A1) to

the differential equations of (2.1) in C([-T,T); H*) x C([=T,T); H*~') such that

lux@lzrs + llax(@llers + lox@ -2 + oA o1 S 1, (5.1)

T s (0) —~ 83(0) - = lim [02(0) = ps@ls =0, (5:2)

timint (Jus(t) — ()l + |oa(®) ~ ia(Olles) Zsint, f<T<L (53

4.10

4.11

)
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Proof. Let (ux(t), pa(t)) = (w1, (¢, ), p1 A (¢, x)) and let (G (1), pa(t)) =

(u—l,)\(ta x)vp—l)\(tvx))a where (ul,)\(tvx)vpl,h(tax)) and (u 1 A( ) P—1 )\(t l’)) be
the unique solution to problem (4.1) with initial data (u'*(0,z), pb ’\(O x)) and
(u=1(0, ), p~1*(0,2)), respectively. From Theorem 2.1 these solutions belong to
C([0,T); H®) x C([0,T]; H*~'). By (4.2) and the assumptions after Theorem 2.1,
we see that T is independent of A > 1. Letting k = [s] + 2 and using estimate
(2.10), we have

lusr a8l [l x| es S 12552 O0) e (5.4)
where 2512 (0) = (u13(0), #1(0)) and 75 O0) 2, s = [0 (0) 2 +
[pE1A(0)[|%4—1 . If A is large enough, then from Lemma 3.1 we have

w2 @) v < JJusa A (@) e + ATF0 Sllaﬁ( <) cos(Az — wit) || g
SATIEES L S| g,

which gives

[ 82 (@) | e S A* (5.5)
Combining (5.4) with (5.5), we obtain
[uscr a@)le SA5 A> L (5.6)
Estimates (5.5) and (5.6) yield
=2 () — ui ()l ae SN AL (5.7)
Theorem 4.1 implies
[uFEA () — usr () ||gr SAT™, A> 1. (5.8)

Now, applying the interpolation inequality

”‘P”H* < ||@|| 82 s)/(s2—s1) H‘p” s— 51)/(52 s1)

with s; =1 and s9 = [s] + 2 = k, and using estimates (5.7) and (5.8), we obtain
[t () = a2 (8) ]| 1o

< A @) = w7 A @) = wa @l
< )\ rs(k=s)/(k=1) N (k=s)(s=1)/(k—1)

< A= D=9/ (k=) )5,

Hence
A ) = e a@Ollas SAT A>T (5:9)

where e, = (1 — 36)/(s +2).
Next, we prove (5.2) and (5.3). Note that 0 < § < 2, we have

[ur,A(0) = w1 A (0) [ s = 2A7 1||¢( e < 22726l s — 0,

1p1,3(0) = p—1, 3 (0) | =2 = 2A7 1||¢( 5) e <272 e — 0

as A — oo, which implies that (5.2) holds. Now, we prove (5.3). It is easy to see
that

tin inf (ux (8) = a(8) 7= + () = 7 (8) lre—2) 2 Tin inf [ (8) = i (8) 12

5.4

(¢)] (9]
(o)) (4]

(9] [é)]
oo ~

5.9
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Thus we only prove that
lg\rrlgf lua(t) — ax(t)||gs 2 sint, [|t| <T <1
Obviously,
l[ur, A () = w1 2 (8) | 12
> [Jut 2 (t) = u A Ol — a8 = wi A @)l = [lu™" () = w12 (0|
It follows from (5.9) that
lur () = ui A @)lme > w2 () = u™ A ()]s =A™, A> 1,

which implies that

liminf Juy x(t) — u_1 2 (8) || gs > lIminf [|[ub*(t) — u= 82 (0)]| g (5.10)
A—o00 A—00
The identity cosa — cos f = —2sin QTHB sin anﬁ gives

z. . .
ut M) —uT ) = wp g a(t) — w1 A (1) + 2/\7%6*%)(?) sin Az sint.
Thus,
lut () = u™ A0 e

_ls5_s TN .
> o)\~ 20 *||¢(F)sm)\x||Hs

sint| = [lug i A (0l e = llur,—12(0) ||

2N g(55) s Aa g sint] — AT A1

Letting A\ — oo in the above inequality, we have

li)\minf lub () — w22 ()| s = | sint]. (5.11)
—00

Summing inequalities (5.10) and (5.11) up, it yields inequality (5.3). This completes
the proof. O
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