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EXISTENCE OF SOLUTIONS TO p-LAPLACIAN EQUATIONS
INVOLVING GENERAL SUBCRITICAL GROWTH

YONG-YI LAN

Abstract. In this article, we consider the quasilinear elliptic equation−∆pu =

µf(x, u) with the Dirichlet boundary coditions, and under suitable growth con-

dition on the nonlinear term f . Existence of solutions is given for all µ > 0
via the variational method and some analysis techniques.

1. Introduction and main results

In this article, we consider the Dirichlet boundary-value problem

−∆pu = µf(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.1)

where Ω is an open bounded domain in RN with smooth boundary ∂Ω, p >1,
−∆pu = div(|∇u|p−2∇u) is the p-Laplacian of u, f(x, t) is continuous on Ω× R.

We look for the weak solutions of (1.1) which are the same as the critical points
of the functional Iµ : W 1,p

0 (Ω)→ R defined by

Iµ(u) =
1
p

∫
Ω

|∇u|p dx− µ
∫

Ω

F (x, u) dx, (1.2)

where F (x, t) =
∫ t

0
f(x, s) ds, and W 1,p

0 (Ω) is the Sobolev space with the usual
norm:

‖u‖p =
∫

Ω

|∇u|p dx.

In this article, the hypotheses on the nonlinearity f(x, t) are the following:
(F1) There exist constants θ ≥ 1, α > 0 such that

θG(x, t) + α ≥ G(x, st) for all t ∈ R, x ∈ Ω, s ∈ [0, 1],

where G(x, t) := tf(x, t)− pF (x, t).
(F2)

lim
|t|→∞

f(x, t)
t|t|p∗−2

= 0 uniformly a.e. x ∈ Ω,
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where p∗ = Np
N−p if 1 < p < N and p∗ = +∞ if p ≥ N is the Sobolev critical

exponent.
(F3)

lim
t→0

f(x, t)
t|t|p−2

= 0 uniformly a.e. x ∈ Ω.

(F4)

lim
|t|→+∞

F (x, t)
|t|p

= +∞ uniformly a.e. x ∈ Ω.

Problem (1.1) is one of the main quasilinear elliptic problems which have been
studied extensively for many years, see, for example [1]–[19], [22]. Since Ambrosetti
and Rabinowitz proposed the mountain-pass theorem in 1973 (see [1]), critical point
theory has become one of the main tools for finding solutions to elliptic equations
of variational type. A standard existence result for (1.1) is that for any µ > 0, (1.1)
possesses at least a nontrivial solution if f(x, t) satisfies the following conditions:

(1) p-superlinear at t = 0: limt→0
f(x,t)
t|t|p−2 = 0 uniformly a.e. x ∈ Ω.

(2) subcritical at t =∞: there are positive constants a and b such that

|f(x, t)| ≤ a+ b|t|q−1, ∀t ∈ R, x ∈ Ω.

where 1 ≤ q < p∗.
(3) the Ambrosetti–Rabinowitz condition (AR for short): for some θ > p,

C > 0,
0 < θF (x, t) ≤ f(x, t)t, ∀|t| ≥ C, x ∈ Ω. (1.3)

The (AR) condition has appeared in most of the studies for quasilinear problems
and plays an important role in studying the existence of nontrivial solutions of many
quasilinear elliptic boundary value problems. It is quite natural and important not
only to ensure that the Euler-Lagrange functional associated to problem (1.1) has
a mountain pass geometry, but also to guarantee that Palais-Smale sequence of the
Euler-Lagrange functional is bounded. Since then, the (AR) condition has been
used extensively in many literature sources (see [2, 5, 7]). But this condition is
very restrictive eliminating many nonlinearities. There are always many functions
that do not satisfy the (AR) condition. For example, for the sake of simplicity, we
consider the case p = 2,

f(x, t) = 2t ln(1 + |t|).
Many efforts have been made to extend the range of the nonlinearity. For example,
Miyagaki and Souto [15] studied (1.1) for when p = 2 and replaced the (AR)
condition by some monotonicity arguments. They assumed that there is t0 > 0
such that

f(x, t)
t

is increasing for t ≥ t0 and decreasing for t ≤ −t0, for all x ∈ Ω; (1.4)

or a weaker condition is that there exist C > 0 such that

tf(x, t)− 2F (x, t) ≤ sf(x, s)− 2F (x, s) + C, (1.5)

for all 0 < t < s or s < t < 0, for all x ∈ Ω.
There are some other well known solvability conditions (see [4, 8, 10, 19, 22]).

Moreover, in the study of critical points of real-valued functionals, with or with-
out constraints, the Palais-Smale condition(the (P.S.) condition for short) and its
variants play a essential role.



EJDE-2014/151 EXISTENCE OF SOLUTIONS TO p-LAPLACIAN EQUATIONS 3

To ensure the global compactness, one needs to impose the subcritical growth
condition on the nonlinearity f(x, t): there exists a constant C0 > 0 such that

|f(x, t)| ≤ C0(1 + |t|p−1), ∀t ∈ R, x ∈ Ω,

where 1 < p < p∗. However, in the present paper, we consider a class of elliptic
partial differential equations with more general growth condition, that is (F2).

Based on variational methods, Miyagaki and Souto in [15] obtained the following
theorem:

Theorem 1.1 ([15, Theorem 1.1]). Under hypotheses (1.4), (1.2), (F3) and (F4),
problem (1.1) for when p = 2 has a nontrivial weak solution, for all λ > 0.

Many efforts have been made to extend these results (see [11, 13, 14] and the
references therein). Li and Yang extend the results from p = 2 to p > 1 in [11],
they obtained the following theorem:

Theorem 1.2 ([11, Theorem 1.1]). Under hypotheses (1.4), (1.2), (F3) and (F4),
problem (1.1) has a nontrivial weak solution, for all λ > 0.

The aim of the article is to consider the problem in a different case: based on
a variant version of mountain pass theorem, we can prove the same result under
more generic conditions, which generalizes Theorems 1.1 and 1.2.

Our main results reads as follows:

Theorem 1.3. Suppose that (F1)–(F4) hold. Then (1.1) has a weak nontrivial
solution, for all λ > 0.

Note that (F3) implies that problem (1.1) has a trivial solution u = 0 and we
are interested in the existence of nontrivial solutions.

Remark 1.4. Theorem 1.3 improves Theorem 1.2 in two aspects. To show this, it
suffices to compare condition (F1) with (1.4) and (1.5), and to compare condition
(F2) with (1.2).

At first, we can easily prove that (F1) is equivalent to (1.5) when θ = 1, and (F1)
gives some general sense of monotony when θ > 1. There are functions satisfying
our condition (F1) and not satisfying the condition (1.5). For example, for the sake
of simplicity, we consider the case p = 2, let

F (x, t) = t2 ln(1 + t2) + t sin t,

then
f(x, t) = 2t ln(1 + t2) + t2 · 2t

1 + t2
+ sin t+ t cos t,

it follows that

G(x, t) = tf(x, t)− 2F (x, t) = 2(t2 − 1) +
2

1 + t2
+ (t2 cos t− t sin t).

Let θ = 1000, we can prove by some simple computation that G satisfies (F1) but
does not satisfy the condition (1.5) any more.

Secondly, it is obvious that (1.2) implies (F2). There are functions satisfying our
growth condition (F2) and not satisfying the subcritical growth condition (1.2). For
example, for the sake of simplicity, we consider the case p = 2, let

F (t) =
t2
∗

ln(e+ t2)
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then

f(t) =
2∗t2

∗−1(e+ t2) ln(e+ t2)− 2t2
∗+1

(e+ t2)(ln(e+ t2))2
.

The proof of Theorem 1.3 is much easier than that of the main results in [11, 15].

Remark 1.5. In assumption (F2), we are dealing with functionals satisfying the
so-called non-standard growth conditions. Due to the lack of compactness of the
embeddings in W 1,p

0 (Ω) ↪→ Lp
∗
(Ω), we cannot use the standard variational argu-

ment directly. We overcome the difficulty by Vitali convergence theorem and some
analysis techniques.

This paper is organized as follows. In section 2, we give the proof of the Theorem
1.3. In the following discussion, we denote various positive constants as c or ci
(i = 0, 1, 2, . . . ) for convenience.

2. Proof of Theorem 1.3

The proof consists of three steps. We prove Theorem 1.3 only when µ = 1. The
case of a general µ > 0 will follow immediately. In fact, if µ > 0 and µ 6= 1, we
only let g(x, t) = µf(x, t). Then (1.1) becomes

−∆pu = g(x, u), x ∈ Ω,
u = 0 x ∈ ∂Ω.

The nonlinear term g also satisfies condition (F1)–(F4), Then the same conclusion
as in the case µ = 1 holds.
First step: The (C) condition. Let {un} be any sequence in W 1,p

0 (Ω) such that
I(un) is bounded and ‖I ′(un)‖(1 + ‖un‖) converges to zero; that is,

I(un)→ c, ‖I ′(un)‖(1 + ‖un‖)→ 0

which shows that
c = I(un) + o(1), 〈I ′(un), un〉 = o(1) (2.1)

where o(1)→ 0 as n→∞.
We now prove that {un} is bounded in W 1,p

0 (Ω). By contradiction, we assume
‖un‖ → ∞ as n → ∞. Let wn = un

‖un‖ , then wn ∈ W 1,p
0 (Ω) with ‖wn‖ = 1. Then

there exists a w ∈W 1,p
0 (Ω) such that

wn ⇀ w in W 1,p
0 (Ω),

wn → w a.e. in Ω,

wn → w in Lr(Ω), with 1 ≤ r < p∗,

‖wn‖2
∗

2∗ ≤ C1 <∞.

(2.2)

Let Ω 6= = {x ∈ Ω, w(x) 6= 0}; then one has

lim
n→∞

wn(x) = lim
n→∞

un(x)
‖un‖

= w(x) 6= 0 in Ω 6=.

So we have
|un(x)| → +∞ a.e. in Ω6=. (2.3)

Using (F4), we have

lim
n→∞

F (x, un(x))
|un(x)|p

= +∞, a.e. in Ω6=. (2.4)
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This means that

lim
n→∞

F (x, un(x))
|un(x)|p

|wn(x)|p = +∞, a.e. in Ω6=. (2.5)

By (F4) again, there is an C0 > 0 such that

F (x, t)
|t|p

> 1, (2.6)

for any x ∈ Ω and |t| ≥ C0. Since F (x, t) is continuous on Ω × [−C0, C0], there is
an M > 0 such that

|F (x, t)| ≤M, for all (x, t) ∈ Ω× [−C0, C0]. (2.7)

From (2.6), (2.7), we see that there is a constant C such that for any (x, t) ∈ Ω×R,
we have

F (x, t) ≥ C (2.8)

which shows that
F (x, un(x))− C

‖un‖p
≥ 0.

This implies that
F (x, un(x))
|un(x)|p

|wn(x)|p − C

‖un‖p
≥ 0. (2.9)

Using (2.1) we have

c = I(un) + o(1) =
1
p
‖un‖p −

∫
Ω

F (x, un) dx+ o(1).

So we see that

‖un‖p = pc+ p

∫
Ω

F (x, un) dx+ o(1). (2.10)

By (2.1) and (2.10), we obtain∫
Ω

F (x, un) dx→ +∞. (2.11)

We claim that |Ω 6=| = 0. In fact, if |Ω 6=| 6= 0, then combining (2.5) and (2.9) with
Fatou’s lemma, one has

+∞ =
∫

Ω6=

lim inf
n→+∞

F (x, un(x))
|un(x)|p

|wn(x)|p dx−
∫

Ω6=

lim sup
n→+∞

C

‖un‖p
dx

≤
∫

Ω6=

lim inf
n→+∞

(F (x, un(x))
|un(x)|p

|wn(x)|p − C

‖un‖p
)

dx

≤ lim inf
n→+∞

∫
Ω6=

(F (x, un(x))
|un(x)|p

|wn(x)|p − C

‖un‖p
)

dx

≤ lim inf
n→+∞

∫
Ω

(F (x, un(x))
|un(x)|p

|wn(x)|p − C

‖un‖p
)

dx

= lim inf
n→+∞

∫
Ω

F (x, un(x))
‖un‖p

dx

≤ lim inf
n→+∞

∫
Ω
F (x, un(x)) dx

pc+ p
∫

Ω
F (x, un) dx+ o(1)

.

(2.12)
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So by (2.11) and (2.12) we deduce a contradiction. This shows that |Ω 6=| = 0.
Hence w(x) = 0 a.e. in Ω.

Since I(tun) is continuous in t ∈ [0, 1], there exists tn ∈ [0, 1] such that

I(tnun) = max
t∈[0,1]

I(tun).

Clearly, tn > 0 and I(tnun) ≥ 0 = I(0). If tn < 1 we have that d
dtI(tun)|t=tn = 0,

which gives 〈I ′(tnun), tnun〉 = 0. If tn = 1, then (2.1) gives that 〈I ′(un), un〉 = o(1).
So we always have

〈I ′(tnun), tnun〉 = o(1).
From (F1), for t ∈ [0, 1] we have

pI(tun) ≤ pI(tnun)

= pI(tnun)− 〈I ′(tnun), tnun〉+ o(1)

=
∫

Ω

[tnunf(x, tnun)− pF (x, tnun)] dx+ o(1)

≤
∫

Ω

[θ(unf(x, un)− pF (x, un)) + α] dx+ o(1)

≤ θ(‖un‖p + pc− ‖un‖p + o(1)) + α|Ω|+ o(1)

≤ pθc+ α|Ω|+ o(1).

(2.13)

where we used (2.1) and (2.10), θ and α as in (F1).
Furthermore, by (F2), for every ε > 0, there exists a(ε) > 0, such that

|F (x, t)| ≤ 1
2C1

ε|t|p
∗

+ a(ε), for t ∈ R a.e. x ∈ Ω.

Let δ = ε/(2a(ε)) > 0, E ⊆ Ω, measE < δ, we have∣∣ ∫
E

F (x,wn) dx
∣∣ ≤ ∫

E

|F (x,wn)|dx

≤
∫
E

a(ε) dx+
1

2C1
ε

∫
E

|wn|p
∗

dx

≤ ε

2
+
ε

2
= ε,

hence {
∫

Ω
F (x,wn) dx, n ∈ N} is equi-absolutely-continuous. It follows easily from

Vitali Convergence Theorem that∫
Ω

F (x,wn) dx→
∫

Ω

F (x, 0) dx = 0;

So, for any R0 > 0,

pI(R0wn) = ‖R0wn‖p − p
∫

Ω

F (x,R0wn) dx = Rp0 + o(1). (2.14)

From (2.13), we obtain

pI(tun) ≤ pθc+ α|Ω|+ o(1), (2.15)

for t ∈ [0, 1]. So combining (2.14) with (2.15),

Rp0 + o(1) = pI(R0wn) ≤ pθc+ α|Ω|+ o(1).

Letting n→∞ we obtain

Rp0 ≤ pθc+ α|Ω|+ o(1).
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Letting R0 →∞, we obtain a contradiction. Hence ‖un‖ is bounded.
By the continuity of the embedding, we have ‖un‖2

∗

2∗ ≤ C2 < ∞ for all n. If
necessary going to a subsequence, one obtains

un ⇀ u in W 1,p
0 (Ω), and un → u in Lr(Ω), where 1 ≤ r < p∗.

Using (F2), for every ε > 0, there exists a(ε) > 0, such that

|f(x, t)t| ≤ 1
2C2

ε|t|p
∗

+ a(ε), for t ∈ R, a.e. x ∈ Ω.

Let δ = ε/(2a(ε)) > 0, E ⊆ Ω, measE < δ, we have∣∣ ∫
E

f(x, un)un dx
∣∣ ≤ ∫

E

|f(x, un)un|dx

≤
∫
E

a(ε) dx+
1

2C2
ε

∫
E

|un|p
∗

dx

≤ ε

2
+
ε

2
= ε,

hence {
∫

Ω
f(x, un)un dx, n ∈ N} is equi-absolutely-continuous. It follows easily

from Vitali Convergence Theorem that∫
Ω

f(x, un)un dx→
∫

Ω

f(x, u)udx. (2.16)

From (F2), for any ε > 0 there exists a(ε) > 0 such that

|f(x, t)| ≤ 1
2c1c2

ε|t|p
∗−1 + a(ε) for t ∈ R, x ∈ Ω.

where

c1 ≥
(∫

Ω

|un|p
∗

dx
) p∗−1

p∗ ∀n; c2 :=
(∫

Ω

|u|p
∗

dx
) 1

p∗
.

From Hölder’s inequality, for every E ⊆ Ω, we have∫
E

a(ε)|u|dx ≤ a(ε)(measE)
p∗−1

p∗
(∫

E

|u|p
∗

dx
) 1

p∗ ≤ a(ε)(measE)
p∗−1

p∗ c1;∫
E

|un|p
∗−1|u|dx ≤

(∫
E

|un|p
∗

dx
) p∗−1

p∗
(∫

E

|u|p
∗

dx
) 1

p∗ ≤ c1c2.

Let δ =
(

ε
2c1a(ε)

) p∗
p∗−1 > 0, E ⊆ Ω, measE < δ, we have∣∣ ∫

E

f(x, un)udx
∣∣ ≤ ∫

E

|f(x, un)u|dx

≤
∫
E

a(ε)|u|dx+
1

2c1c2
ε

∫
E

|un|p
∗−1|u|dx

≤ ε

2
+
ε

2
= ε,

hence {
∫

Ω
f(x, un)udx, n ∈ N} is also equi-absolutely-continuous. It follows from

Vitali Convergence Theorem that∫
Ω

f(x, un)udx→
∫

Ω

f(x, u)udx. (2.17)

Since
〈I ′(un), u〉 =

∫
Ω

(
|∇un|p−2∇un · ∇u− f(x, un)u

)
dx→ 0; (2.18)
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〈I ′(un), un〉 =
∫

Ω

(
|∇un|p−2∇un · ∇un − f(x, un)un

)
dx→ 0. (2.19)

It follows from (2.16)-(2.19) that ‖un‖ → ‖u‖. By Kadec-Klee property, we have

un → u in W 1,p
0 (Ω).

Second step: Mountain-pass geometric structure. I has a mountain pass geom-
etry; i.e., there exist u1 ∈ W 1,p

0 (Ω) and constants r, ρ > 0 such that I(u1) < 0,
‖u1‖ > r and

I(u) ≥ ρ, when ‖u‖ = r. (2.20)
Indeed, By (F3), we have t0 > 0 and λ ∈ (0, λ1) such that

f(x, t)
t|t|p−2

< λ, for |t| < t0,

where

λ1 = inf
u∈W 1,p

0 (Ω), u 6=0

‖u‖p

‖u‖pp
> 0

is the first eigenvalue of the operator −∆p with the Dirichlet boundary value in Ω.
This implies that

F (x, t) ≤ λ

p
|t|p, for |t| ≤ t0.

This inequality with (F2) shows that

F (x, t) ≤ λ

p
|t|p + C|t|p

∗
, for t ∈ R

with some C > 0. Since λ1 > 0 denotes the first eigenvalue of the operator−∆p with
the Dirichlet boundary value in Ω, it follows that ‖u‖p ≥ λ1‖u‖pp for u ∈ W 1,p

0 (Ω).
Then I is estimated as

I(u) ≥ 1
p
‖u‖p − λ

p
‖u‖pp − C‖u‖

p∗

p∗ ≥
λ1 − λ
pλ1

‖u‖p − C ′‖u‖p
∗
.

This shows the existence of r and ρ satisfying:

I(u) ≥ ρ, when ‖u‖ = r.

From (F4) follows that, for all M > 0 there exists CM > 0, such that

F (x, t) ≥M |t|p − CM , ∀x ∈ Ω, t > 0. (2.21)

Let φ be a function such that φ ∈W 1,p
0 (Ω), φ ≥ 0, φ 6≡ 0. From (2.21) we obtain

I(tφ) =
|t|p

p
‖φ‖p −

∫
Ω

F (x, tφ) dx

≤ |t|
p

p
‖φ‖p − tp

∫
Ω

Mφp dx+ c|Ω| → −∞ as t→∞.

We fix t > 0 large so that I(tφ) < 0 and t‖φ‖ > r. Let u1 := tφ ∈ W 1,p
0 (Ω) and

then constants r, ρ > 0 such that I(u1) < 0, ‖u1‖ > r and satisfies (2.20), i.e. I
has a mountain pass geometry.
Third step: Critical value of I. For u1 in second step, we define

Γ := {γ : C[0, 1]→W 1,p
0 (Ω) : γ(0) = 0, γ(1) = u1},

c0 := inf
γ∈Γ

max
0≤t≤1

I(γ(t))
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As shown in [18], a deformation lemma can be proved with the (C) condition,
replacing the usual Palais-Smale condition, and it turns out that the Mountain
Pass Theorem still holds. Then c0 is a critical value of I. For the proof, we refer
the reader to [17, 20, 21].
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