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STABILITY OF SOLITARY WAVES FOR A THREE-WAVE
INTERACTION MODEL

ORLANDO LOPES

Abstract. In this article we consider the normalized one-dimensional three-
wave interaction model

i
∂z1

∂t
= −

d2z1

dx2
− z3z̄2

i
∂z2

∂t
= −

d2z2

dx2
− z3z̄1

i
∂z3

∂t
= −

d2z3

dx2
− z1z2.

Solitary waves for this model are solutions of the form

z1(t, x) = eiω1tu1(x) z2(t, x) = eiω2tu2(x) z3(t, x) = ei(ω1+ω2)tu3(x),

where ω1 and ω2 are positive frequencies, and ui(x), i = 1, 2, 3 are real-valued
functions that satisfy the ODE system

−
d2u1

dx2
− u2u3 + ω1u1 = 0

−
d2u2

dx2
− u1u3 + ω2u2 = 0

−
d2u3

dx2
− u1u2 + (ω1 + ω2)u3 = 0.

For the case ω1 = ω2 = ω, we prove existence, uniqueness and stability of

solitary waves corresponding to positive solutions ui(x) that tend to zero as x

tends to infinity.
The full model has more parameters, and the case we consider corresponds

to the exact phase matching. However, as we will see, even in the simpler
case, a formal proof of stability depends on a nontrivial spectral analysis of the

linearized operator. This is so because the spectral analysis depends on some

calculations on a full neighborhood of the parameter (ω, ω) and the solution
is not known explicitly.

1. Introduction and statement of results

In this article we consider the normalized one-dimensional three-wave interaction
model presented in [1]:
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i
∂z1
∂t

= −d
2z1
dx2

− z3z̄2

i
∂z2
∂t

= −d
2z2
dx2

− z3z̄1

i
∂z3
∂t

= −d
2z3
dx2

− z1z2.

(1.1)

Here, x ∈ R, zi(t, x), i = 1, 2, 3 are complex values and z̄i denotes the conjugate of
zi.

In [2] a model with more nonlinear terms and more space variables is analyzed.
In that case, the authors are able to study the stability/instability of solitary waves
with only one nonzero component. In [3], the stability of a semitrivial standing wave
for a system of two Schrodinger equations in several space variables is discussed.
The model considered here is this paper is one dimensional in the space variable
and the components of the solitary waves are nonzero.

System (1.1) has the following conserved quantities:

E0(z1, z2, z3) =
1
2

i=3∑
i=1

∫ +∞

−∞
|dzi(x)
dx
|2 dx− Re

(∫ +∞

−∞
z1(x)z2(x)z̄3(x) dx

)
(1.2)

Q0
1(z1, z3) =

1
2

∫ +∞

−∞
(|z1(x)|2 + |z3(x)|2) dx (1.3)

Q0
2(z2, z3) =

1
2

∫ +∞

−∞
(|z2(x)|2 + |z3(x)|2) dx (1.4)

Solitary waves of (1.1) are solutions of the form

z1(t, x) = eiω1tu1(x) z2(t, x) = eiω2tu2(x) z3(t, x) = ei(ω1+ω2)tu3(x) , (1.5)

where the frequencies ωI are positive values, and ui(x) are real-value functions for
i = 1, 2, 3. Therefore, the ui(x)s have to satisfy the ODE system

−d
2u1

dx2
− u2u3 + ω1u1 = 0

−d
2u2

dx2
− u1u3 + ω2u2 = 0

−d
2u3

dx2
− u1u2 + (ω1 + ω2)u3 = 0 .

(1.6)

Defining

E(u1, u2, u3) =
1
2

i=3∑
i=1

∫ +∞

−∞

(dui(x)
dx

)2
dx−

∫ +∞

−∞
u1(x)u2(x)u3(x) dx (1.7)

Q1(u1, u3) =
1
2

∫ +∞

−∞
(u2

1(x) + u2
3(x)) dx (1.8)

Q2(u2, u3) =
1
2

∫ +∞

−∞
(u2

2(x) + u2
3(x)) dx (1.9)

we see that solutions of (1.6) are critical points of

E(u1, u2, u3) + ω1Q1(u1, u3) + ω2Q2(u2, u3).
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By a positive solution of system (1.6) we mean a solution (u1(x), u2(x), u3(x))
defined for all x ∈ R such that ui(x) > 0 for all x, and ui(x) tends to zero expo-
nentially as |x| approaches infinity, i = 1, 2, 3 (this implies that the derivatives also
tend to zero).

Let H = H1(R,C) ×H1(R,C) ×H1(R,C) be the space of the complex valued
functions z(x) = (z1(x), z2(x), z3(x)) defined for x ∈ R with norm

‖z‖2 =
3∑
i=1

∫ +∞

−∞
|dzi(x)
dx
|2 dx+

3∑
i=1

∫ +∞

−∞
|zi(x)|2 dx.

We denote by u(x) = (u1(x), u2(x), u3(x)) a solution of (1.6) in the space H.

Definition 1.1. The solitary wave (1.5) is orbitally stable with respect to system
(1.1) if for each ε > 0 there is a δ > 0 such that if z0 ∈ H and ‖z0 − u‖ < δ then
the solution z(t) of (1.1) with z(0) = z0 satisfies

sup
−∞<t<+∞

inf{‖z(t)−(eiθ1u1(·+c), eiθ2u2(·+c), ei(θ1+θ2)u3(·+c)‖, θ1, θ2, c ∈ R}) < ε.

In the definition of orbital stability, the supremum is taken over −∞ < t < +∞
because we are dealing with conservative systems and the Cauchy problem is well
posed for all values of t. Next we state our main results.

Theorem 1.2. The following assertions hold:
(1) For any ω1, ω2 > 0 system (1.6) has a positive solution that tends to zero

exponentially.
(2) Except for a translation in the x variable (the same translation for all com-

ponents), any positive solution of (1.6) is symmetric and decreasing.
(3) If ω1 = ω2 then the solution (u1, u2, u3) given in part one satisfies u1 = u2,

it is unique and the linearized operator L = (L1, L2, L3) where

L1(h1, h2, h3) = −d
2h1

dx2
− u3h2 − u2h3 + ω1h1

L2(h1, h2, h3) = −d
2h2

dx2
− u3h1 − u1h3 + ω2h2

L3(h1, h2, h3) = −d
2h3

dx2
− u2h1 − u1h2 + ω3h3

(1.10)

has zero as a simple eigenvalue corresponding to (u′1(x), u′2(x), u′3(x)), as eigenfunc-
tion, and it has exactly one negative eigenvalue. Moreover, such a solution gives
rise to an orbitally stable solitary wave of the evolution system (1.1).

Remark 1.3. In the case ω1 = ω2 = ω, u1 = u2 = u, u3 = v system (1.6) becomes

−d
2u

dx2
− uv + ωu = 0

−d
2v

dx2
− u2 + 2ωv = 0.

(1.11)

System (1.11) possesses no explicit solutions (u, v) of the form (sech2, sech2),
(sech2, sech), (sech, sech2), (sech, sech). In [5] a model with more parameters is
considered. In that case, explicit solutions are given. However, in the case we are
considering here, those solutions become that trivial one.
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2. Proof of main results

The proof of Throem 1.2 will be broken in several lemmas the first of which deals
with the existence of positive solution.

Lemma 2.1. System (1.6) has a C∞ positive solution that tends to zero exponen-
tially as x tends to infinity.

Proof. For ui ∈ H1(R), i = 1, 2, 3, we minimize E(u1, u2, u3) under

ω1Q1(u1, u2, u3) + ω2Q2(u1, u2, u3) = 1,

where E(u1, u2, u3), Q1(u1, u2, u3) and Q2(u1, u2, u3) are defined by (1.7), (1.8)
and (1.9). The existence of a minimizer follows from the method of concentration
compactness ([7]). The corresponding Euler-Lagrange equation has a multiplier
that can be absorbed by a scaling argument. Since E(u1, u2, u3) does not increase
if we replace (u1, u2, u3) by (|u1|, |u2|, |u3|) we can assume that the components
are nonnegative. The maximum principle implies that each component is actually
strictly positive. The exponential decay follows from linearization at (0, 0, 0).

The assertion concerning the symmetry is a Gidas-Ni-Nirenberg-Troy-type result
and its proof in the one dimensional case has been given in [6]. This completes the
proof. �

Lemma 2.2. If ω1 = ω2 = ω then the solution (u1, u2, u3) given by the previ-
ous lemma satisfies u1 = u2 and it is unique. Moreover the linearized operator
L = (L1, L2, L3) given by (1.10) at that solution has zero as a simple eigenvalue
corresponding to the eigenfunction (u′1(x), u′2(x), u′3(x)) and it has exactly one neg-
ative eigenvalue.

Proof. If ω1 = ω2 = ω, systems (1.6) becomes

−d
2u1

dx2
− u2u3 + ωu1 = 0

−d
2u2

dx2
− u1u3 + ωu2 = 0

−d
2u3

dx2
− u1u2 + 2ωu3 = 0

(2.1)

and then

−d
2(u1 − u2)
dx2

+ u3(u1 − u2) + ω(u1 − u2) = 0.

If we multiply this last equality by (u1 − u2) and integrate we see that we must
have u1 = u2. Setting u1 = u2 = u and u3 = v, we get the system

−d
2u

dx2
− uv + ωu = 0

−d
2v

dx2
− u2 + 2ωv = 0.

(2.2)

Notice that system (1.6) is variational but (2.2) is not. We fix that defining
U =

√
2u, V = v. Then (2.2) takes the variational form

−d
2U

dx2
− UV + ωU = 0

−d
2V

dx2
− U2

2
+ 2ωV = 0.

(2.3)
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Next we define the linearized operator M(h, k) = (M1(h, k),M2(h, k) of (2.3) where

M1(h, k) = −d
2h

dx2
− Uk − V h+ ωh

M2(h, k) = −d
2k

dx2
− Uh+ 2ωk.

(2.4)

According to [8] and [9], the positive solution of (2.3) is unique, the linearized op-
erator M = (M1,M2) has zero as a simple eigenvalue corresponding to the eigen-
function (U ′, V ′) and it has exactly one negative eigenvalue.

Now let λ ≤ 0 be an eigenvalue of L = (L1, L2, L3) defined by (1.10), with
eigenfunction (h1, h2, h3). Then

−d
2h1

dx2
− vh2 − uh3 + ωh1 − λh1 = 0

−d
2h2

dx2
− vh1 − uh3 + ωh2 − λh2 = 0.

−d
2h3

dx2
− uh1 − uh2 + 2ωh3 − λh3 = 0.

(2.5)

Defining p = h1 − h2 and using the first two equations of (2.5) we get

−d
2p

dx2
+ vp+ ωp− λp = 0.

Multiplying this last equation by p and integrating we get p = 0 (because λ ≤ 0).
In other words, if λ ≤ 0 is an eigenvalue of L with eigenfunction (h1, h2, h3) then
we must have h1 = h2. Setting h1 = h2 = h and h3 = k, system (2.5) becomes

−d
2h

dx2
− vh− uk + ωh− λh = 0

−d
2k

dx2
− 2uh+ 2ωk − λk = 0.

(2.6)

As before, (2.6) is not selfadjoint and then we define H =
√

2h and K = k, and
(2.6) becomes

−d
2H

dx2
− UK − V H + ωH − λH = 0

−d
2K

dx2
− UH + 2ωK − λK = 0.

(2.7)

Notice that (2.7) is precisely the equation for the eigenvalues of the linearized
operator M = (M1,M2) defined by (2.4). The conclusion is: if ω1 = ω2 and
λ ≤ 0 is an eigenvalue of L = (L1, L2, L3) defined by (1.10) with eigenfunctions
(h1, h2, h3), then h1 = h2 and λ is an eigenvalue of M = (M1,M2) defined by (2.4)
with eigenfunction (h1/

√
2, h3). Therefore, the spectral properties of L claimed

in lemma follow from the spectral properties of M stated above. The proof is
complete. �

Next we discuss the stability of the solitary wave in the sense of Definition 1.1.
If we fix an ω > 0, then according to Lemma 2.2, zero is a simple eigenvalue of the
operator L and the corresponding eigenfuntion is odd. Since the coefficients of L are
even, the set of even functions is invariant under L. Consequently, L is invertible
in the class of even functions because the only eigenfunction of L corresponding to
the zero eigenvalue is odd. Therefore, from the implicit function theorem, there
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is a smooth family ui(ω1, ω2), i = 1, 2, 3 of positive symmetric solution of (1.6) for
(ω1, ω2) in a neighborhood of (ω, ω). We define

Q1(ω1, ω2) = Q1(u1(ω1, ω2), u3(ω1, ω2))

and
Q2(ω1, ω2) = Q2(u2(ω1, ω2), u3(ω1, ω2)),

where Q1(u1, u3) and Q2(u2, u3) are defined by (1.8) and (1.9), respectively. Ac-
cording to [4] and due to the spectral properties of the operator L, the solitary
wave (1.5) is orbitally stable provided the matrix

A(ω1, ω2) =

(
∂Q1(ω1,ω2)

∂ω1

∂Q1(ω1,ω2)
∂ω2

∂Q2(ω1,ω1)
∂ω1

∂Q2(ω1,ω2)
∂ω2

)
(2.8)

has exactly one negative eigenvalue; that is, if

detA(ω1, ω2) < 0. (2.9)

As we have seen, for ω1 = ω2 = ω, the positive symmetric solution of (1.6) is
(u1, u2, u3) with u1 = u2 = u, u3 = v and

−d
2u

dx2
− uv + ωu = 0

−d
2v

dx2
− u2 + 2ωv = 0.

(2.10)

If we denote by (φ, ψ) the solution of (2.10) corresponding to ω = 1, then the
unique positive symmetric solution of (2.10) is

u(x) = ωφ(
√
ωx), , v(x) = ωψ(

√
ωx).

If we set

I =
∫ +∞

−∞
(φ(x)2 + ψ(x)2) dx

then
Q1(ω, ω) = Q2(ω, ω) = ω3/2I. (2.11)

Differentiating (2.11) with respect to ω we get

∂Q1(ω, ω)
∂ω1

+
∂Q1(ω, ω)

∂ω2
=

3
2
ω1/2I

∂Q2(ω, ω)
∂ω1

+
∂Q2(ω, ω)

∂ω2
=

3
2
ω1/2I.

(2.12)

Remark 2.3. Notice that even in the case ω1 = ω2, if the quantities Qi(β1, β2), i =
1, 2 were known explicitly in terms of β1 and β2 in a full neighborhood of (ω, ω),
then the verification of condition (2.9) would be easy. As we will see, the matrix
A(ω1, ω2) is symmetric. Therefore, the scaling invariance gives us two equations
(2.12) involving three quantities. Due to that, the verification of (2.9) requires
further analysis that will be carried out next.

Define

U11(x) =
∂u1(x, ω, ω)

∂ω1
, U12(x) =

∂u1(x, ω, ω)
∂ω2

,

U21(x) =
∂u2(x, ω, ω)

∂ω1
, U22(x) =

∂u2(x, ω, ω)
∂ω2

,
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U31(x) =
∂u3

∂ω1
, U32 =

∂u3

∂ω2
,

and differentiate with respect to ω1 and ω2 in a neighborhood of (ω, ω). We obtain

−d
2U11

dx2
− u3U21 − u2U31 + ω1U11 = −u1

−d
2U21

dx2
− u3U11 − u1U31 + ω2U21 = 0

−d
2U31

dx2
− u1U21 − u2U11 + (ω1 + ω2)U31 = −u3

(2.13)

and

−d
2U12

dx2
− u3U22 − u2U32 + ω1U12 = 0

−d
2U22

dx2
− u3U12 − u1U32 + ω2U22 = −u2

−d
2U32

dx2
− u1U22 − u2U12 + (ω1 + ω2)U32 = −u3

(2.14)

Setting ω1 = ω2 = ω, u1 = u2 = u and u3 = v, Equations (2.13) and (2.14) become

−d
2U11

dx2
− vU21 − uU31 + ωU11 = −u

−d
2U21

dx2
− vU11 − uU31 + ωU21 = 0

−d
2U31

dx2
− uU21 − uU11 + 2ωU31 = −v

(2.15)

and

−d
2U12

dx2
− vU22 − uU32 + ωU12 = 0

−d
2U22

dx2
− vU12 − uU32 + ωU22 = −u

−d
2U32

dx2
− uU22 − uU12 + 2ωU32 = −v.

(2.16)

Interchanging the first two equations of (2.16) we obtain

−d
2U22

dx2
− vU12 − uU32 + ωU22 = −u

−d
2U12

dx2
− vU22 − uU32 + ωU12 = 0

−d
2U32

dx2
− uU22 − uU12 + 2ωU32 = −v.

(2.17)

Comparing (2.17) and (2.15), we see that we must have

U11 = U22, U21 = U12, U31 = U32, (2.18)

because, as we have seen, the operator L is invertible in the space of even functions.
Furthermore, from (1.8) and (1.9) we have

∂Q1(ω1, ω2)
∂ω1

= 2
∫ ∞
−∞

(u1U11 + u3U31) dx,
∂Q1(ω1, ω2)

∂ω2
= 2

∫ ∞
−∞

(u1U12 + u3U32),
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∂Q2(ω1, ω2)
∂ω1

= 2
∫ ∞
−∞

(u2U21 + u3U31) dx
∂Q2(ω1, ω2)

∂ω2
= 2

∫ ∞
−∞

(u2U22 + u3U32).

Setting ω1 = ω2 = ω, u1 = u2 = u and u3 = v and using (2.18) we have

∂Q1(ω, ω)
∂ω1

= 2
∫ ∞
−∞

(uU11 + vU31) dx,
∂Q1(ω, ω)

∂ω2
= 2

∫ ∞
−∞

(uU12 + vU31),

∂Q2(ω, ω)
∂ω1

= 2
∫ ∞
−∞

(uU12 + vU31) dx,
∂Q2(ω, ω))

∂ω2
= 2

∫ ∞
−∞

(uU11 + vU31).

We conclude that
∂Q1(ω, ω)

∂ω1
=
∂Q2(ω, ω)

∂ω2
,

∂Q1(ω, ω)
∂ω2

=
∂Q2(ω, ω)

∂ω1
.

This second equality we already knew because the matrix A(ω1, ω2) is symmetric.
Then

det(A(ω, ω)) =
(∂Q1(ω, ω)

∂ω1

)2

−
(∂Q1(ω, ω)

∂ω2

)2

=
(∂Q1(ω, ω)

∂ω1
− ∂Q1(ω, ω)

∂ω2

)(∂Q1(ω, ω)
∂ω1

+
∂Q1(ω, ω)

∂ω2

)
.

From (2.12) we conclude that

∂Q1(ω, ω)
∂ω1

+
∂Q1(ω, ω)

∂ω2
> 0.

Therefore, to show that det(A(ω, ω)) < 0 we have to show that∫ ∞
−∞

u(U11 − U12) dx < 0. (2.19)

Defining W = U11 −U12, from the first two equations (2.15) and taking in account
that U21 = U12 we see that

−d
2W

dx2
+ vW + ωW = −u

and this implies W < 0 (because W cannot have a positive maximum). The proof
of Theorem 1.2 is complete.
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