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NODAL SOLUTIONS FOR SINGULAR SECOND-ORDER
BOUNDARY-VALUE PROBLEMS

ABDELHAMID BENMEZAI, WASSILA ESSERHANE, JOHNNY HENDERSON

ABSTRACT. We use a global bifurcation theorem to prove the existence of nodal
solutions to the singular second-order two-point boundary-value problem

—(pu)' () = f(t,u(t)) te(&m),
au€) — b lim p(0)u' (1) =0,
cu(n) + dtlim p(t)u'(t) =0,
—n
where &,7, a,b,c,d are real numbers with £ < 7, a,b,c,d >0, p: (§,1n) —

[0, +00) is a measurable function with fg’ 1/p(s)ds < oo and f : [§,n] X
[0, +00) — [0, +00) is a Carathéodory function.

1. INTRODUCTION

Many articles concerning the existence of nodal solutions for second-order differ-
ential equations subject to various boundary conditions, have appeared during the
previous five decades; see for example [4}, 5], 8 10} 1], 12} 6], 17, 18] 19, 20, 21, 22,
24, 25|, [26], 27, 28], 29, [30, [31] and references therein.

Ma and Thompson [19] 20, 21] considered the boundary-value problem (bvp for
short),

—u" = a(t)f(u), te€(0,1),

u(0) =u(l) =0 (1)

where a : [0,1] — [0,+00) is continuous and does not vanish identically, and f :
R — R is continuous with f(s)s > 0 for s # 0. They proved also, that bvp
admits 2k nodal solutions when the interval whose extremities are lim, .o f(u)/u
and limj,,|— o0 f(u)/u contains k eigenvalues of the linear bvp associated with (L.1)),

—u" = Xa(t)u, te€(0,1),
u(0) = u(1) = 0.
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Articles [I7] and [29] were devoted to the multipoint bvp,
—u" = f(u), te(0,1),

m—2 1.2
u(0) =0, u(l) = ZE: aiu(n;) (12)
=1

where f : R — R is C! with f(0) = 0, m > 3, ; € (0,1) and a; > 0 for
i=1,...,m—2 with 2752 a; < 1, by which Rynne [29] extended the result and
filled some gaps in [17].

Roughly speaking, Rynne proved that bvp admits 2k nodal solutions when
the interval whose extremities are lim,, o f(u)/u and lim|,|— 4o f(u)/u contains k
eigenvalues of the linear bvp associated with (1.2)),

—u" =X, te(0,1),
m—2
u(0) =0, u(l)=>_ aum).
1=1

This result was extended by Genoud and Rynne in [I2] to the case with variable
coefficients.

Existence and multiplicity of positive solutions for second order bvps having
singular dependence on the independent variable, have been considered in many
papers; see, for example, [TI, 3] [7, @ T3] T4, 15 B2 33], 34] and references therein.
In particular, it is proved in [9] [I5] [32] that, if the function a in bvp is just
continuous on (0,1) and satisfies

/Zu—wamﬁ<m, (1.3)
0

then (1.1)) admits one or more positive solutions under some additional conditions
on the behavior of the ratio f(u)/u at 0 and +o0o. A natural question becomes,

Is it possible to obtain existence results for nodal solutions to bvp
(1.1) under Hypothesis (1.3])?

So, the main goal of this paper is to give an answer to this question.

In fact, we will give an answer for a more general bvp having a nonlinearity
more general than , under a hypothesis looking like (|1.3). This answer will be
based on the knowledge of the spectrum of the linear problem associated with the
nonlinear bvp. This was the case also for all the works in [4] [Tl 12| 16, 17, I8, 19,
20, 211, 27, 29, [30, 31].

We need also in this work to introduce the concept of half-eigenvalue which
generalizes the notion of eigenvalue. The definition of half-eigenvalue here is not
the same given by Berysticki (see Remark , and for the role that will be played
by this notion, we refer the reader to [4l, [6l [1T], 28|, 29] B0].

A typical example of a weight function satisfying Hypothesis is a(t) =
t=3/2(1 — t)=3/2. Note that such a weight a is not integrable near 0 and 1. We
have a similar situation in this work and this causes many difficulties in proving
existence of half-eigenvalues as well as in proving the main results of this paper.
The existence of half-eigenvalues will be obtained by sequential arguments. We will
use in this work, the global bifurcation theorem of Rabinowitz to obtain our main
results.
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2. MAIN RESULTS

This article concerns the existence of nodal solutions for the bvp,

—(pu) (t) = f(t,u(t)), ae t e (&n)

aua—bEEMWMﬂ=0» (2.1)
cu(n) + dtlij%p(ﬂu/(t) =0

where £, € R with £ <7, a,b,¢,d € RT = [0,400), p: (§,7) — RT is a measurable
function and f : (§,1) x R — R is a Carathéodory function (f(-,u) is measurable
for u fixed and f(t,) is continuous for ¢ € (§,7n) a.e.).

Throughout this article, we assume that

T dr
— < 00, 2.2
/g p(7) 22
n
A:ad—I—ac/ d—T—l—bc>O. (2.3)
13 p(7)

Let

Lé[@n] = {q : (&,1m) — R measurable, /77 G(t,t)|q(t)|dt < oo}
3

and let K¢ be the cone of all functions g € L [€, n] such that ¢(t) > 0 a.e. t € [¢,7)]
and ¢ > 0 in a subset of a positive measure of [£, 7] where

_ 1 Pap(5)Wealt), <s<t<n,
G(t,s) = 3 {@ab(t)\llcd(s), E<t<s<n.

is the Green’s function associated with the bvp

—(pu') (t) =0, ae. t € (&),
au(€) — b Y p(0p (1) = 0

cu(n) + d lim p(t)u/ (1) = 0,
t—n

and the functions ®.;(t) = b+ afg 1/p(r)dr and Weq(t) = d + ¢ [" 1/p(7) dr are
well defined on [, 7).

Note that the space L{; [€,7] depends on the parameters b and d. In fact, we
have that L5[¢,n] = LY[¢, ] if bd # 0 and LE[€,n]\L[¢, 7] is nonempty if bd = 0.
More precisely, we have that ¢ € Lé [€,7] is not integrable at £ if and only if
b = 0 and ¢ is not integrable at 7 if and only if d = 0. For example, if p = 1 and
b = d = 0 the function ¢(s) = (s(1—s))"%2 € LL[¢,n]\L'[¢,n]. Moreover, we have
that LL[E, 7] € Lie(€,1).

The main result of this article (Theorem [2.9) will be obtained under the following
additional conditions on the nonlinearity f:

There exist functions aes, Boo, Yoo, 0so and qg in K¢ such that the set

{t € (&m) : oo (t) B (t) > 0}
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is of a positive measure,

iii% @ =qo(t) forte ¢, ] ae.,
uEIPoo @ = Ooo(t) fort e[, ] ae., (2.4)
UEEIrloo f(i;u) = ax(t) fortelf,n] ae.
and
0oo(t) < @ < Yeo(t) forallu € Rand ¢t € [£, 7] ae. (2.5)

From all the above hypotheses, we understand that a solution to bvp (2.1) is
a function u € C[¢,n] N CH (&, n) with (pu') € LE[E, 7], satisfying all equations in

21).

Remark 2.1. Note that Hypothesis (2.5) implies that the nonlinearity f satisfies
the following sign condition:

ft,u)u>0 foralueRandte[(n)] ae.

Example 2.2. A typical example of a nonlinearity satisfying Hypotheses (2.4))-
(2.5), when p=1and b=d =0, is

3
o) = At=32(1 — )=+ BT/O(1 — )AL
st w) (1= 1) BT )T
4 Ct‘11/7(1 _ t)—13/10 u?
14 u2+evw’

where A, B, C are positive constants.

Throughout this article, we denote by F the Banach space of all continuous
functions defined on [£, 7], equipped with the sup-norm denoted || - || and by YV
the Banach space defined as

Y = {v € AC[¢,n] : pv' € Cl¢,n] and

av(€) — blim p(t)o/(1) = ev(n) + d fim p(1)e' (1) = 0}

equipped with the norm ||v]|ly = ||v||eo + ||[pV']|co for v € Y. In all this paper, £ is
the differential operator given by

Lu(z) = —(pu') (z)

with domain

D(£) = {v e AC[¢,n] : pv' € C(&,n) and (pv')’ € L€ n)}-
Set
Vi = {v € D(£) : av(e) ~ blmp(t)e/(t) = co(n) +d Jim p()0'(1) =0},

We have that £ : Yy — LL[€, 7] is one to one, with
n
L7 (t) = / G(t,s)v(s)ds for all v € L[, 7).
3

For u € AC[¢,n], ul!l is the quasiderivative of u, for t € [£,n]; that is, ulll(t) =
lim,_; p(7)u'(7) when it exists.



EJDE-2014/156 NODAL SOLUTIONS 5

For k > 1, let S denote the set of all functions v € AC[¢, 7] with pv’ € C(€,n),
having exactly (k — 1) simple zeros in (£,7) (if v(7) = 0 then v!)(7) # 0) and v is
positive in a right neighborhood of £, and denote S, = fS,': and Sy = S,‘: usy,.

Let
po = (/;pc(lz))_l(né),

Cylém = {ve & n] :av(€) —bpov'(€) = 0 and cv(n) + d pov’(n) = 0}

equipped with the C'-norm and, for all & > 1 let G)',,CF be the set of all functions
v E C# [€,7n] having exactly (k — 1) simple zeros in (§,n) and v is positive in a
right neighborhood of £,0, = f@;: and O = @: U©,. It is well known that
©;,0, and Oy are open sets in C’#[g,n}. Since for all k > 1 and v = + or —,
®(SyNY) = 0Of where ® : Y — CL[¢,7)] is the homeomorphism between Banach
spaces defined by

ds
p(s)’
we have that SY NY is an open set in Y. Moreover, since if u € 90} then there
exists 7 € [£,n] such that u(r) = v/(7) = 0, we have that for all v € 9(Sy NY)
there exists 7 € [¢,7] such that u(r) = ul(7) = 0.

For v = 4+ or —, let I : E — E be defined by I"u(z) = max(vu(z),0), for
u € FE. For all u € F, we have

t
O(u) = uop! whhmw=5+p¢é

u=I"u—I"u and |u|=TIT" u+TI u.
This implies that, for all u,v € F,

u—v| Jul = |
2 2
S () |l el
ITu—TIv|< <l|lu—wv
| < My,
and the operators I, I~ are continuous.
For sake of simplicity, throughout this paper, we will use u™ and u~ instead of
I'Yu and I u, respectivley. Now we focus our attention on the eigenvalue bvp

—(pu')'(t) = Ma(t)u™ (t) = B(t)u™ (1)), a.e. t € (§n),
au(€) — blim p(ty (1) = 0
cu(n) + d}iir}]p(t)u/(t) =0,

|I+u—I+v|§‘ <|u—v|,

(2.6)

(2.7)

where « and g are functions in K such that the set {t € (£,n) : «(t)3(t) > 0} is
of a positive measure, and A is a real parameter.

Definition 2.3. We say that \ is a half-eigenvalue of if there exists a non-
trivial solution (A, uy) of (2.7). In this situation, {(\, tuy), ¢ > 0} is a half-line
of nontrivial solutions of and A is said to be simple if all solutions (\,v) of
(2.7) with v and v having the same sign on a right neighborhood of £ are on this
half-line. There may exist another half-line of solutions {(A, tvy), ¢t > 0}, but then
we say that A is simple if u) and vy have different signs on a right neighborhood
of ¢ and all solutions (A, v) of lie on these two half lines.
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Theorem 2.4. Assume that and hold, and o, 3 € Kg N LY[¢,n]. Then
the set of half-eigenvalues to bup consists of two increasing sequences ()\z)kzl
and (A, )k>1 such that for allk > 1 and v = + or —,
(1) XY is simple and is the unique half-eigenvalue having a half-line of solutions
in {A\{} x SY.
(2) A} is a nondecreasing function with the respect of each of the weights o and
B lying in L'[¢, 7).
Theorem 2.5. Assume that and hold. Then the set of half-eigenvalues
to bup consists of two nmondecreasing sequences (A} )k>1 and (A} )k>1 such
that for all k > 1 and v = 4 or —, A[ is the unique half eigenvalue having a half-
line of solutions in {\;} x S}. Moreover, for all k > 1 and v = + or —, X} is
a nmondecreasing function with the respect of each of the weights o and B lying in
Lgl€,m)-

Remark 2.6. It is clear that for all k > 1 and v = 4 or —, A} depends on the
weights p, o, 8 and on (&,1,a,b,c,d). When there is no confusion, we just denote
A7, and when we need to be more precise, we write A} (c, §).

Consider the bvp,
(2.8)

where p is a real parameter, and g € K¢.

It is clear that if p is an eigenvalue for then 1 depends on the weights p, g
and on (§,n,a,b,c,d). When there is no confusion, we just denote p(q), and when
we need to be more precise, we write u(q, [£,7]).

Theorem 2.7. Assume that and hold. Then bup admits a sequence
of eigenvalues (pr(q))k>1 such that:
(1) For all k >3, ux(q) is simple and the associated eigenfunction ¢y € Sk.
(2) For allk >3, pu(q) < pw+1(q)-

(3) If bd # 0, or bd = 0 and q € L*[¢,n), then ui(q,[&,m]) < p2(q, [€,1]) and
11(q), u2(q) are simple having eigenvectors respectively in Sy and So. If

bd = 0 and q ¢ L'[¢,n], then pi(q) = p2(q) and pi(q) = pa(q) is double
having two eigenvectors ¢11 € S1 and ¢1.2 € Sa.

(4) For allk>1 and 6 > 0, ux(fq) = ”’”’T@.

(5) Let ¢1 € Kg. We have pg(q1) > ux(q) for all k > 1 whenever ¢ < gq.

(6> If [517 772} C [57 77} then :U/k(qa [g? 77}) < /’(‘k(Q7 [517 771D

(7) For allk > 1, pr(-,[&,n]) : Kg — R is continuous.
Remark 2.8. Since the weight ¢ in Theorem is not necessarily in L[¢, 7],
Theorem is not covered by [36, Theorems 4.3.1, 4.3.2, 4.3.3, 4.3.4].

For the statement of the main results of this paper we introduce the following
notation:

O (t) = max(aos (t), Boc (1), Voo(t) = min(aee (t), foo (1)),

and let (pr(0oo))r>1, (k(Po0))k>1 and (ur(go))k>1 be respectively the sequences
of eigenvalues given by Theorem for ¢ = 0o, ¢ = Voo and q = qo.
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Theorem 2.9. Assume that — hold and that there exist two integers k,l
with 2 < k <l such that one of the following situations holds:
ti(q0) <1 < pu(bc)
or
t(Vso) <1 < pi(qo) -
Then for all i € {k,...,l1} and v =+ or —, has a solution in SY.

Consider the separated variables case
Lu(t) = qoo(t)h(u(t)), ae. t e (§n)
— 1 / —
() = bl p(t)' (1) =0 29
cu(n) + d lim p(t)u'(t) =0
=1

where g, is a nonnegative function in L{[€,n] which does not vanish identically in
[€,n] and h: R — R is a continuous function such that

h(z)z >0 for all z #0

limz_)o@ = hy, lim M = hyoo, (2.10)

r— 400 €T
h
Zim%,mﬂ =h_oo  with Ao, hyos, h—os € (0,400).
T

The following corollary provides an answer to a more general situation than those
studied in [20] and [2T] and also covers [22] Theorems 2 and 3].

Corollary 2.10. Assume that holds and there exist two integers k,l with
2 < k <1, such that one of the following situations holds:
Pyoos heoo < pk(gsv) < pu(gsw) < ho
or
ho < pu(@sv) < p(gsv) < Moo, Moo -
Then for alli € {k,...,l1} and v =+ or —, has a solution in SY.

Proof. Set f(t,u) = qsp(t)h(u). It is easy to check that f satisfies Hypotheses
—, with
Qoo (t) = hyoolsu(t),  Boo(t) = heoo@su(t),  qo(t) = hogsu(),
Yoo = hsupsv(t),  boo = hintqsu(t),
hing = inf{h(u)/u : u # 0},
heup = sup{h(u) /u s u 7 0}.
Also, we have
oo (t) = max(hyoo, hooo)qsu(t), Voo(t) = min(hioo, heoo)gsu(t).
Since Property 2 of Theorem [2.7] implies that for all n > 1,

in(0s0) = fin (qsv) fin (4sv) fin (4sv)
T max(hyoo, hooo)’ min(h 4o, h_oo) ho
we obtain that 1u(go) <1 < p(boc) if hyoo, hooe < pk(gsv) < tu(gsv) < ho and
() < 1 < pg(qo) if ho < pr(gsy) < 1i(gsy) < Pgoos h—oo- Thus, the conclusion
of Corollary follows from Theorem O

pin (Vo) = , Hn(qo) =
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3. BACKGROUND
3.1. A comparison result.

Theorem 3.1. Let u and v be two functions in S. Then, there exist two intervals
[€1,m] and [£2,m2] such that wvv > 0 in [&,m;] ¢ = 1,2. Moreover if pu',pv’ €
AC[&,m) i =1,2 then

1 12
/ vfu —ufv >0, / vfu —ufv <O0.
1

2
The proof of this theorem is based on the following lemma.
Lemma 3.2 ([4]). Let j and k be two integers such that j > k > 2. Suppose that
there exist two families of real numbers
So=E8<& <& <. ... &1 <&=n
Mo =8&<m <m2<..nj-1<n;=71.
Then, if &1 <y there exist two integers jo and ko having the same parity, 1 < jo <
j—1,1<ky<k—1 such that
ko < Mjo < Mjot+1 < Eko+1-
Proof of Theorem[3.1. The case k =1 is obvious. Let
To=E6< T <2< - < xp1 < T =1,
20 =¢6E< <2< < 21 <z =1
be the sequences of zeros of u and v, respectively.
Suppose z1 < z1. Then we deduce from Lemma the existence of integers kg
and jo having the same parity such that zx, < 2, < 2041 < Tro41-

Therefore, we choose &1 = o, m = x1, {2 = 2j0 and 12 = 2,41, and since kg and
Jjo have the same parity, u and v have the same sign in both the intervals [£1, 7]

and (€2, 72].

Now if u,v € S¥ NY, then for i = 1,2, ul'l(&), v(&), ull(n;) and vl (;) exist
and are finite. Moreover if v > 0 and v > 0 in [§;,7;] ¢ = 1,2 (the other cases can
be checked similarly) then we have since u and v satisfy the boundary condition at

517
v(&)ull (&) — u&)o!(&) =0, ull(n) <o,
and

o) >0, oMy <o,
0 ifT]QZ'I]
[ (1] =<7 ’
—v(n2)ut>(n2) +u(ng)v-(n2) = ;
(n)ul) (12) + u(n2 ) (12) {u(nz)v[l](n2)<07 if 7, < 1.

Thus, we obtain

1
/ vEu —ufv = fv(m)u[l] (m) >0,
1

/772 vlu —ufv = 71)(?72)11,[1] (n2) + u(772)vm (m2) — U(&)’U[” (&) <0.

This completes the proof. ([
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3.2. Spectral radius of a positive operator. Let Z be a real Banach space and
L(Z) the Banach space of linear continuous operators from Z into Z. For L € L(Z),
r(L) = lim ||L™||* denotes the spectral radius of L.

A nonempty closed convex subset K of Z is said to be an ordered cone if (tK) C
K for all t > 0 and K N (—K) = {0}. Moreover if Z = K — K, the cone K is said
to be total. It well known that an ordered cone K induces a partial order on the
Banach space Z (z <y if and only if y —x € K for all z,y € Z).

Let K be an ordered cone of Z and L € L(Z). L issaid to be positiveif L(K) C K
and p € R is said to be a positive eigenvalue of L if there exists u € K \ {0} such
that Lu = pu.

Let L1, Lo € L(Z) be two positive operators. We write Ly < Ly if Liu < Lou
for all u € K.

We will use in this work the following result known as the Krein-Rutman Theo-
rem.

Theorem 3.3 (|35, Proposition 7.26]). Assume that the cone K is total and L €
L(Z) is compact and positive with (L) > 0. Then r(L) is a positive eigenvalue of
L.

We will use also the following lemma.

Lemma 3.4 ([35, Corollary 7.28]). Assume that the cone K is total and let Ly, Lo
in L(Z) be two compact and positive operators. If L1 < Lo, then r(L1) < r(Ls).

Next we recall a fundamental result proved by Nussbaum in [23] and used in [3].

Lemma 3.5. Let (L) be a sequence of compact linear operators on a Banach space
Z and suppose that L, — L in operator norm as n — oco. Then r(Ly) — r(L).

3.3. The linear eigenvalue bvp in the integrable case.

Theorem 3.6. Assume that Hypotheses (2.2)) and ([2.3)) hold and ¢ € KgNL[¢, 7).
Then the set of eigenvalues to bup (2.8) consists of an increasing sequence of simple
eigenvalues (1x(q))k>1 tending to +oo, such that for all k > 1,
(1) The eigenfunction ¢y, associated with py(q) belongs to Sk.
(2) If 0 > 0 then pk(0q) = ‘““T(q).
(3) Let q1 be a nonnegative function in L*[¢, n] which does not vanish identically
in [€,n]. We have pg(q1) > pr(q) for all k > 1 whenever ¢ < q. Moreover,
if 1 < q in a subset of a positive measure then pg(q1) > pr(q).

(4) If [&,m] S (& n] then pr(q, €, 1]) < pr(g, [§1,m])-
(5) ux is a continuous function with respect to the variable q lying in L[¢,n).

Proof. From Theorem 4.3.2 in [36], the bvp (2.8)) has only real and simple eigen-
values and they are ordered to satisfy

—00 < g < po < --- < lim py = +00.
k—o0

Moreover if ¢, is an eigenfunction of uy, and ng denotes the number of zeros of ¢y
in (§,7m), then ¢ € AC[E, 1], po}, € AC[E, 1] and ng41 = ny + 1. Now, we have

n n n
0 < —dumol ) + o(©)dl(€) + / P(6)? = / L = it / o6
3 13 £

leading to py > 0 for all & > 1.
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Let L, : E — E be defined by

Lutt) = | " G(t, shals)uls)ds = £ (qu)(t).

It is easy to see that L, is a positive operator with respect to the total cone of
nonnegative functions in E and X is an eigenvalue of L, if and only if A7 is an
eigenvalue of bvp . Also, the presence of eigenvalues implies that r(L,) > 0.
Thus, we deduce from T heorem that (L) is the largest and positive eigenvalue
of L, and so, we have u; = 1/r(L;) and nqy = 0 and for all & > 2, n, = k — 1.
That is ¢ € Sk and Assertion 1, is proved.

Assertion 2 is obvious and since p > 0 for all £ > 1. Assertion 3 follows directly
from [36 Theorem 4.9.1].

To prove Property 4, let [¢/, 7] C [, 7], and ¢ and ) be such that
£¢ = px(q)qd, ae te(&n),
() ~ blim plt)u () = 0,
cu(n) +d lim p(t)u'(t) = 0,
and
LY = (g, [&,m]aqy, ae te (&),
au(&y) — b lim p(t)u'(t) = 0,
cu(m) +d lim p(t)u'(t) = 0.
Denote by (z;)1<i<x and (y;)i1<j<k, respectively, the two sequences of zeros of

¢ and . There exist two integers 1 < g, jo < k such that one of the following two
situations holds:

E< i1 < Yjo—1 < Yjo < Tiy <1,
§ < Tig—1 < Yjo—1 < Yjo < Tig < 1)

Without loss of generality, suppose ¢ and ¢ are positive, respectively, in (2,1, Z;,)
and (Yj,—1,Y,,) and (3.3) holds. Then we have

Y(Wi) =0, (i) >0, PM(y;) <0, vM(y;,_1) >0, é(yjo—1) >0,
and
— M (yj0-1)8Wjo—1) + 6 (Yjo—1) (Yjo-1)
_J0 if yjo—1=¢
_w[l] (yjf)*l)d)(yjo*l) <0 if Yjo—1 > 5
From which we obtain
Yio
(a6 — o lerm)) [ au
Yjp—1
Yio
- / BEG— GEY
Yjo—1

= oM (y50)6(W)0) = Y (Wjo—1)D(Ys0-1) + 6N (1018 (ys0-1) < 0
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leading to
p (g [§;m) < p(g, (€1, m)-
Finally, Property 5 is obtained from [36, Theorem 3.5.2]. |

3.4. Berestycki’s half-eigenvalue bvp. Let m, «a and 3 be three continuous func-
tions on [£, 1] with m > 0 in [, n] and consider the bvp,

Lu=dmu+aut —Bu”  in (£,n),
au(€) — bl (1) (1) =0 1)
cu(n) +d tliggp(t)w(n) =0,

where X is a real parameter.
Bvp (3.1) is called half-linear since it is linear and positively homogeneous in the
cones u > 0 and v < 0.

Definition 3.7. We say that A is a half-eigenvalue of if there exists a non-
trivial solution (A,uy) of (3.1). In this situation, {(A,tuy), t > 0} is a half-line
of nontrivial solutions of and A is said to be simple if all solutions (A, v) of
with v and u having the same sign on a deleted neighborhood of ¢ are on this
half-line. There may exist another half-line of solutions {(A,tvy), ¢t > 0}, but then
we say that A is simple if u) and vy have different signs on a deleted neighborhood
of £ and all solutions (A, v) of lie on these two half lines.

Remark 3.8. Note that the position of the real parameter in the differential equa-
tion in is not same as in Problem . Moreover, we have Problem
coincides with the linear eigenvalue problem when o = 8 = 0, even though Prob-
lem coincides with the linear eigenvalue problem when o = (.

Berestycki proved in [4] the following theorem.

Theorem 3.9. Assume that p € C'[¢,n] and p > 0 in [¢£,n]. Then the set of
half eigenvalues of bup (3.1)) consists of two increasing sequences of simple half-
eigenvalues for bup (B.1)) (A )k>1 and (A )k>1, such that for all k > 1 and v = +

or —, the corresponding half-lines of solutions are in {\;} x SY.

Proposition 3.10. Let aq,as, 81,02 € C([€,n]). We have
o If a; < ag, then N/ (a1) > AN{(a2), for allk > 1 and v =+ or —.
o If B1 < [Ba, then X (B1) > A (B2), for allk > 1 and v =+ or —.

Proof. We present the proof of the first assertion. The second one can be proved
in a similar way. Let ¢1, ¢2 be such that

L1 = N (a1)me1 + a1 — Boy  in (€,7),
061 (6) — blim (14 (1) = 0
cor(n) + d Jim 1)} (n) =0
and
Lo = N (ao)meo + a1dy — By, in (&,n),
062(€) ~ blim p(1)d4(6) = 0

c6a) + d im p(t)d) () = 0.
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Note that ¢q,¢e € Sk N C?[¢, 1] and let [€1,m1] be the interval given by Theorem
for the functions ¢; and ¢. Since ¢; and ¢ have the same sign in (£1,71),
after simple computations we obtain

m m it
(Ar(a1) — /\Z(OQ))/ meo1 gz = —/ (a1 — az)p1¢2 + G2Lpr — p1L£Pa >0
1 1 &1
leading to
Ak(ar) = Af(az).
This completes the proof. Il

Remark 3.11. Naturally one can ask, is it possible to extend Berestyki’s theorem
to the case where the weight m, as well as o and 3 all belong to L§[€, n]?

This is technically difficult since a half-eigenvalue of (3.1)) is decreasing with
respect to the weight m only if it is positive.

3.5. Fucik spectrum. Consider now the bvp,
—u(t) = au" (t) = Bu(t), t€(&n),
au(§) — bu'(§) = 0, (3.2)
cu(n) + du’(n) =0,
where «, 3 are positive real parameters and a, b, c,d € RT with ac 4+ ad + be > 0.

The statement of the next result requires introducing the functions Aq . c 4, Aap
(0,400) — (0,+00) defined, for o > 0, by

Aapealo) = % <7r — arcsin (1/ %) — arcsin (\/ %)),
Aop(o) = \/15 (71' — arcsin (\/ %)).

Note that Agp = Agp,1,0 = A1,0,4,- The sets S,j, S, and Sy are those introduced
in Section 2 for p = 1. The main goal of this subsection is to describe the set

Fs = {(a,8) e R x R: (3.2)) has a solution }

known as the Fucik spectrum.

Theorem 3.12. Let S be the set of solutions to buvp . Then S C Uk>1Sk.
Moreover bup admits a solution

(1) in S§ if and only if Aapcale) =n—§,

(2) in Sy if and only if Agp.ca(B) =n—§,

(3) in Sy with 1 > 1 if and only if

and

Raafe) + Acal) + (1 = D=+ ) =n =&
(4) in Sy; with 1 > 1 if and only if
RaalB) + Acale) + 71 = D=+ ) =n =&
(5) in Sy, with 1 > 1 if and only if
Aap(@) + Aeala) + T T

va B
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(6) in Sy, with 1 > 1 if and only if
m(l—1) =zl
Py e
VB Va
Proof. First, note that u is a solution to (3.2)) if and only if v(t) = u((n — &)t + &)
is a solution to the bvp

_U//(t) = (77 - 5)20”}4_ (t) - (7] - g)zﬁv_ (t)> te (0’ 1)7
b
(n—¢)

d__,
g’ H="
Then, Assertions 1 and 2 of Theorem follow from Proposition 3.1 in [2].
Now, for the sake of brevity, we prove only Assertion 3 (the others can be proved

similarly). Note that u € 5%, is a solution to (3.2) if and only if there exists a finite
sequence (z;)!=3! such that

Aa,b(ﬂ) + Ac,d(/g) +

av(0) —

v'(0) =0,

cv(l) +

E=mwo <oy < <@gy < T =1
and
>0 in (xg;,x941) fori=0,...,(I—1),
u<0 in (zgi_1,xe) fori=1,...,1L
Moreover, u satisfies
—u(t) = au(t), te (&),
au(§) — bu'(§) = u(z1) =0,

and for i =1,...,(I—1):
—u"(t) = au(t), te (v2,241),u(w2) = u(r241) =0,
and
—u(t) = Bu(t), t e (rai—1,%2),
u(xgi—1) = u(xe;) =0,
and

—(t) = aut(t) = Bum (), € (w21,
w(wai—1) = cu(n) + de! (n) = 0.

Hence, from Assertions 1 and 2, we obtain

i(71'— arcsin (\/%)) =z — &,

= (T2i41 — @) fori=1,... (I-1),

= (.Igi—.’lﬁgi,l) for i = 1,...,(1—1),

T — arcsin (1 / &fiﬂ)) =(n—xz9-1).

SERERS

-
-
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Summing the above equalities, we obtain
Aa,b(a) + Ac,d(ﬁ) + 7T(l - 1)(
Conversely, let a;, 5 > 0 be such that

Auafe) + Aeal®) +70 = 1) (= + ) =0 (3.3)

)

and let (z;)i=2 be the sequence defined by

1 . b2
v =6 =€+ (m—aresin (/20 )).
xzi_1+% fori=1,...,(1—1), (3.4)

71— .
$2i+1:$2i+ﬁ fori=1,...,(1—1), x9y =n.

T2j =

Observe that from (3.4)) and ( . we have
Aa,b,l,o( )=x1—¢& and Ay gca,(8) =n— -1,
that is, 1 is the smallest eigenvalue of each of the bvps
—u" = auin (& 21),
au(§) — bu'(§) = u(z1) = 0,

and
—u" = Buin (z9_1,7),
w(@—1) = cu(n) + du'(n) = 0.
Thus, we consider the function
o1(t) for t € [¢, x1],

b(t) = P2 (t) for t € [woi—1,22:], i=1,...,(l=1),
P2i41(t) fort € [xo;,@oi41], i=1,...,(I—1),
d2(t) for t € [x9—1,7)],
where ¢, is the positive eigenfunction associated with the eigenvalue 1 of

satisfying ¢} (z1) = —1,

P2 (t) = — ! sin (\/B(t —9-1)) fori=1,...,(1-1),

NG
1
b2i+1(t) = ﬁsin (Va(t —z)) fori=1,....(1—-1),
and ¢9; is the negative eigenfunction associated with the eigenvalue 1 of (3.6)

satisfying @b, (xe—1) = —1.
Thus, by simple computations we find that

i1 (T2i—1) = Ph;(wai—1) = —1 fori=1,...,1,
G5 (w2i) = Py () =1 fori=1,...,(1—1),
Ohi(2i—1) = ¢h;(r2) =0 fori=1,...,(I—1),
Gip1 (T2:) = Ppq (22i11) =0 fori=1,...,(1—1),
1(z1) = ¢y (w2-1) = 0.
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All the above equalities make ¢ a function in S;? N C?[¢,n] satisfying bvp (3.2)).
This completes the proof. ([

4. PROOFS OF MAIN RESULTS

4.1. Auxiliary results. Let ¢ € L§[€,n]. For s € (§,m) we define the operators
Lgseq : C[€, 7 — C[€, 7] and Lg e : Clae,n] — Cls¢,7] by

Lo sult /‘Gmts s)u(s)ds,
Ly rult /(LTts s)u(s)ds,

where
% dr -1 | (0+afS ) T, E<s<t<s
Gty = (v [ ) IO
¢ p(7) (b+af 45) J7 A5, €<t<s<s
and

> _ S dr d 7] dr < <<
G%,T(tvs): (d+C/ dT)) l{f%PT)( tc p(T) )’ SSsSsSsts,
€

p(T fip‘fi)(d+c j;g:)), w<t<s<n.

Lemma 4.1. Assume that (2.2)) and ( . ) hold. Then, for every function q € Kg,
lim, ¢ 7(Lg ) =0 and lim,,,,, 7(Lg ) = 0.

Proof. We will prove that lim,,_,¢7(Lg ;) = 0. The other limit can be obtained
similarly. We distinguish two cases:
o b # 0: In this case ¢ € L'[¢, *31] and we have

(Lyet) < /5 " G5, S)a(s)ds
< (b+a/§%pc(l:))_1/: (b+a/€%pc(l;)(/s%;(lz)>q(s)ds
S/g pc(lg)/g q(s)ds,

from which we obtain that lim,,_,¢ r(Lq,% 1) = 0.
e b =0: In this case a # 0 and ¢(s fE 1/p(e) de € L€, (€ +n)/2] and we have

T(Lq,uJ) < / G%,l(sas)Q(S)d‘s
¢

< [ )= (L e (L ) et

<2f “lats) / s

leading to lim,,_¢ 7(Lg ;) = 0. This completes the proof. O

Lemma 4.2. Assume that (2.2) and (2.3)) hold and let o, 5 be two functions in
Kg. If u is a nontrivial solution of

—(pu)'(t) = Ma(®)u" (t) — B(t)u” (1)),
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with to € {&,n}, then to is an isolated zero of u (i.e. there exists a neighborhood Vy
of to such that u(t) # 0 for all t € Vi). Moreover, we have that lim_¢, p(t)u'(t)
exists.

Proof. We present the proof for ¢y = £ the other case is similar. Let t. > & be such
that u does not vanish identically in (£, ¢.) and suppose that a+3 > 0 a.e. in (£, ¢.)
(the case a + 3 = 0 a.e. in (&,t,) is obvious). For the purpose of contradiction,
suppose that there is a sequence (7,) C (§,t.) such that u(r,) = 0 for all n € N
and lim 7,, = £. In this case, u satisfies for all n € N,

—(pu) (1) = Ma®u™ () = BH)u” (1), a. e t € (§Tnr1),
u(€) = u(Tny1) = 0.

Without loss of generality, assume that u is positive in (7,,, Tn+1) and let py, 1(@)
be the first eigenvalue given by Theorem associated with a positive eigenvector

wn,l of

(4.1)

— (") (t) = pa()P(t),  t € (Tn, Tns1),
U(1) = Y(Tn41) = 0.
Multiplying the differential equation in (4.1)) by 1, 1, we obtain after two integra-

tions

0 S u[l] (Tn)d}n,l(Tn) = / o (/\ - ,Ufn,l(a))awn,lu

n

leading to
A > /J/n,l(a)- (42)
Now, let 1, y = 1/7(La,r,,,,1) and let ¥ | be the associated positive eigenvector.
fy,1 and 4y, 4 satisfy
=Yy ) () = pnaa®vn 1 (1), € (& Tns)
w:,l(f) = ¢;,1(Tn+1) =0.

Again, multiplying the differential equation in (4.1)) by 1y, ;, we obtain after two
integrations

T‘n.+1
0> ol (r)s 1 (ra) = / (r — 1 (@)t 0

leading to
H7l,1(a) > H:L,l' (4.3)
Thus, from (4.2)), (4.3) and Lemma 4.1 we obtain the contradiction

A > lm p 1 (@) > lim gy, = 1/1limr(La,r, 1) = +00.

Now, suppose that u > 0 on (&,t4) for some ¢t > . We have by simple integration
over (t,tx) C (§,t4)
ty

Pt () — pltg)ud (b4) = A / o(s)u(s)ds

t
leading to

lim )0 (0) = p(t o (1) + i [ (o))

This completes the proof. ([
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Let o, 3 be two functions in L] (£,7) such that a(t) > 0, 3(t) > 0 for t € [¢,n)]
a.e. and each of o and [ is positive in a subset of a positive measure; and consider
the initial-value problem

—(pu')'(t) = Ma(t)u™ (t) = Bt)u” (1)),
ulto) = lim p(t)u’(t) = 0.

By a solution to (4.4) we mean a function v € C(I)NC*(I) with (pu')’ € Li, (I)
where I C (£,7n) is an open interval such that ¢y € I and u satisfies all equations in

[@4).

Lemma 4.3. Assume that (2.2)) holds and let o, 3 be two functions in K¢g. Then,
for all to € [§,m], u = 0 is the unique solution of the initial value problem (4.4)).

Proof. The case A = 0 is obvious. Let A # 0 and u be a solution of defined on
some interval [to,t.] with ¢. € (to,n) (the case u defined on [t.,to] with t. € (£, o)
can be checked similarly). Since L[€,n] C Li.(€,n) and u is continuous on [to, .],
(pu')" € Li . (to, tx). We dlstmgulsh two cases:

o tg € (&,1). Let (2;)=y be such that

to =20 <21 << 2p =1y,

Zitl I Zig1
ki = |A| /Zl m /Zl (a(r) + B(1))dr < 1.

Set for i € {0,1,...,(n— 1)}, J; = [z, 2i41], Xi = C(J;) equipped with the sup-
norm || - ||l;,c0 and T; : X; — X; with

Tv(t) = — t A s(a(T)U+(T) — B(T)v™(7))dr )ds.
/z,i (p(S)

(4.4)

Let v,w € X;, we have

Tio(t) — Trw(t)] < /t (W) /sa(7)|v+(7) - w+(7)|d7)ds
/ ()\/ (T)|d7'>d$
then from

Zi41 d
T — Towllioo < | / ’ / )drlv — wlls o

< kiflv— wl\z,w

So, T; is a k;—contraction.

For i € {0,1,...,(n — 1)}, let u; be the restriction of u to the interval J;. We
have that ug is a fixed point of Tp. Indeed, since L[, n] € L (£,7n) and u is
continuous on [tg,t.], (pu’)’ € L[to,t.]. So integrating the differential equation in
(4.4) over [zg,s] C [z0, 21] we obtain from the initial value condition

p(s)ug(s) = — /S(a(T)USr(T) = B(r)ug (1))dr

from which for all ¢ € [20, 21] we have

wolt) = — /: (L /:(a(T)usr(T) — B(T)ugy (T))dT) ds = Touo(t).

p(s)



18 A. BENMEZA'I'7 W. ESSERHANE, J. HENDERSON EJDE-2014/156

Thus, the fact that T is a contraction and the trivial function is a fixed point
of Ty lead to ug = 0, and in particular, we have

uo(z1) = ) (21) = ua(21) = ui)(z1) = 0. (4.5)
From this equality, u; is a fixed of T7. Then for the same reasons u; = 0, and in
particular,
ur(z2) = ul! (22) = ua(22) = uy)(20) = 0.
Repeating the above process, we obtain that u; = 0 for all ¢ € {0,1,...,(n — 1)};
that is, u = 0 on [to, t.].
e tg = &: In this case by Lemma we can suppose that v > 0 in (£,t*). We

distinguish two cases:
(a) o € L'[¢,t7]. Let t4 € (&,t*) be such that

|)\|/ dr /t+ a(r)dr < 1.

Set Jy = [€,t4], Xy =C(Jy) equ1pped with the sup-norm |- ||+ 0 and T : X4 —

X4 with
Tio(t) = _/5 (p(/\s)/E a(T)U(T)dT)dS.

It is easy to see that T is a ky-contraction and uy the restriction of u to [£,¢4]
is a fixed point of Ty, so uy = 0 in [£,¢,], and in particular, u(ty) = ul(t,) = 0.
Thus, we conclude from the above step that v = 0 on its interval of definition
contradicting the beginning of this step.

b) a ¢ L'[¢,t*]: In this case b = 0 and t* t ds )dt < oo. Thus, let
3 p(s
€ (&, t*) be such that

|/\|/ /t C(iz))dt<1

too
Li& too) = {v: ( — R measuable and / a(s)v(s)lds < oo}
13

Set

equipped with the norm

too
ol ey = /5 a(s)|u(s)| ds.

Let us be the restriction of u to the interval [€,t]. We claim that u., belongs to
L[, to]. Indeed, integrating the differential equation in (4.4)) over [€, to] C (&, too],
we obtain

too
ull(€) —ulll(t0) = )\/ a(8)uno(s)ds. (4.6)
Letting ¢ — £ in (4.6)), we obtain
[ ot (s = i)

and then
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Now, let To, @ LL[E, too] — LL[€, to] be defined by

Tou(t) = /; (7 p()\s) /: a(T)v('r)d'r)ds.

It is easy to see that T is a ko,—contraction and u, is a fixed point of T, so
Uso = 0 in [€, o], and in particular, u(ts) = ul(ts) = 0. Thus, we conclude from
the above step that v = 0 on its interval of definition contradicting the beginning
of this step. This completes the proof. O

Lemma 4.4. Assume that (2.2) and (2.3) hold. If X\ is a half-eigenvalue of bup
(2.7) associated with an eigenvector u then u € Sy for some k > 1.

Proof. Tf u(ty) = ull(tg) = 0 for some to € [¢,7] then we have from Lemma
that « = 0, contradicting (A, u) is a nontrivial solution of . This shows that u
has only simple zeros.

Now, to the contrary, assume that u has an infinite sequence of consecutive zeros
(t,) converging to some t* € [¢,n]. We have from the continuity of u, u(¢t*) = 0 and
so from Lemma t* € (&,m). Because of the simplicity of zeros of u, we have that
(tn) = (tL) U (¢2) with uM(¢}) > 0 and u!"(#2) < 0. Since u € C[t* —&,t* — €] for
some € > 0 small enough, we obtain that

0 < limul(t2) = uM(#*) = lim ! (£2) < 0.

n

Again by Lemmal[4.3] v = 0, contradicting (A, u) is a nontrivial solution of (2.7). O

Lemma 4.5. Assume that [2.2) and (2.3) hold and o, 3 € Kg N LY[¢,n]. Then,
for each integer k > 1 and v = + or —, bup (2.7) admits at most one simple
half-eigenvalue having an eigenvector in Sj,.

Proof. To the contrary, suppose that (\;, ¢;) € Rx S} satisfy fori =1,2. Then
the integrability of 1/p, o and § implies that ¢; € S} NACE, ] and p¢; € AC[E, ).
Let [£1,m1] and [£2, 7] be the intervals given by Theorem [3.2] Since ¢1 and ¢, have
the same sign in each of [&1,m1] and [2,72], we have

m mn
o< [ ¢2£¢1—¢1£¢2:(A1—A2>/€ bt ot + BorT o,

12 2
02 [ oator—grton = - A2>/E adt 6 + BoT 67,
leading to A\ = As.

Now, suppose that A is a half-eigenvalue of having two eigenvectors ¢, and
@2 with ¢1¢2 > 0 in a right neighborhood of &, ¢1,pa € AC[E,n] and pd), peh €
ACI[E, n]. Because of the positive homogeneity of bvp , there exists two eigen-
vectors 11 and 1y associated with A such that 1112 > 0 in a right neighborhood

of £, Y1, € AC[E, 1], py¥1, p¥sy € AC[E,n] and

vi(€) = va(€) = b, ¥i(€) =€) = a.

Indeed; Without loss of generality, suppose that ¢; > 0 and ¢o > 0 in a right
neighborhood of £. Then we distinguish the following three cases.
e $1(¢) = 0. In this case we have b = 0 and from (2.3) that ¢ > 0 (otherwise

if b # 0 we obtain from the boundary condition at £ that ¢[11] (¢) = 0 and Lemma
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leads to ¢1 = 0). The positivity of ¢; near £ leads to (;5[11] (&) > 0. Since a > 0,
b =0 and ¢5 > 0 near &, we have ¢2(¢) =0 and ¢[21] (&) > 0. Thus,
a a
V1= [1?1 Y2 = [1?2
1 (6) ¢3 ' (§)
are eigenvectors associated with A satisfying
(€)= () = b and p{l(Q) = vl =

. ¢[11] (&) = 0. In this case we have a = 0 and from (2.3)) that b > 0 (otherwise if
a # 0 we obtain from the boundary condition at & that ¢1(£) = 0 and Lemma
leads to ¢; = 0). The positivity of ¢; near ¢ leads to ¢1(£) > 0. Since b > 0, a =0

and ¢o > 0 near £, we have (/>[21] (&) =0 and ¢2(&) > 0. Thus,
_ by = bepo
$1(£) $2(§)
are eigenvectors associated with A satisfying
G1(€) =w2(6) =b and w[l(e) = vll(©) = a.
e $1(£) >0 and gb[ll] (&) > 0. This happens only in the case a > 0 and b > 0 and
we have the boundary condition at &, ¢1(£) > 0 and qb[ll] (&) > 0. Thus,
apr _ bh by = agy by
ooy () oble) 928
are eigenvectors associated with A satisfying
(€)= 2(¢) = b and ¥{(6) = v (6) = a.
At this stage, ¥ = 11 — 19 satisfies
—(pY')'(t) = Ma()v ™ (t) = Bt~ (1))
w(e) =vl(E) =0,
and we have from Lemma 1 = 0. That is, ¥1 = 12, and then ¢; = wes with

w > 0. This shows that the half-eigenvalue X is simple and completes the proof of
Lemma, [4.5] O

Y1

Y1 =

For ¢ € K¢ we define the linear compact operator L, : E — E by

Lyu(t) = /; G(t, s)q(s)u(s)ds.

Since, we will use the global bifurcation theorem of Rabinowitz to prove the main
result of this paper, we need to discuss the geometric and algebraic multiplicities
of characteristic values of L, (which are also eingenvalues of bvp ) Let pg be
a characteristic value of L, and note that N(uoL, — I) C N(uoLy — I)?. Thus,
if po is not simple then pg is of algebraic multiplicity greater than 1. We know
from Theoremw that if ¢ € KN LY[¢, n] then all characteristic values of L, have
the geometric multiplicity equal to one, so let us see what can happens with the
algebraic mutiplicity.

Lemma 4.6. Assume that (2.2) and (2.3) hold and q € K N L*[¢,n]. Then, all

characteristic values of Lq are of algebraic multiplicity one.
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Proof. Let (1x(q)) be the sequence of characteristic values of L, given by Theorem
m Thus the eigenvector ¢y, associated with py(q) satisfies

—(p9)) (1) = pe(@)a(t)Pr(t), ae. te (&n),
agr(§) — b}igép(t)%(t) =0,
con(n) + dtlgr}?p(t)fzﬁ%(t) =0.

Multiplying by ¢y and integrating over [, n] we obtain

7 n
| w6 =@ [ aot (47)
3 3
leading to
n
ur(q) >0, and / q¢* > 0. (4.8)
13

Now, let u € N((ur(q)Lg — I)?) and set v = (ui(q)Lqy — I)(v) = pi(q)Lqu — u.
We have p(q)Lqv — v = 0 leading to v = z¢ and
te(q) Lqu — w = .. (4.9)
On the other hand we have that u satisfies the bvp
—(pu)'(t) = pr(@)at)u(t) — zpi(@)a(t)or(t), ae. te (&n),
. / o
au(&) - b}LI}%p(t)u (t) =0, (410)
cu(n) + d lim p(t)u'(t) = 0.
=7

Multiplying the differential equation in (4.10) by ¢ and integrating on (&,7n) we
obtain

n
1, (q) /g q¢7 = 0.

Because of (4.7)), the above equality leads to x = 0. Therefore, we obtain from
(4.9) that v = w¢y € N(ur(q)Ly — I) with w € R. This completes the proof. O

It remains to discuss the geometric and algebraic multiplicities of characteristic
values of L, when ¢ € (K¢ \ L'[¢,n]). We need the following lemma which is a
version of L’Hopital’s rule.

Lemma 4.7. Let f and g be two differentiables functions on (£,€ + €) with € > 0

such that limy_¢ f(t) = limy_.¢ g(t) = +o0. If lim;_¢ ﬁ:—gg =1 then lim;_¢ % =1

Lemma 4.8. Assume that (2.2)) and (2.3) hold and g € Kg \ L'[¢,n]. Let p be a
characteristic value of L, associated with an eigenvector ¢. We have

(1) If ¢ does not change sign then p is double
(2) If ¢ has more than one zero in (§,1n) then u is simple.

Proof. Suppose that v is another eigenvector associated with the caracteristic value
w and let W = W(¢,v) be the Wronksian of ¢ and 1. By simple computations
follows (pW)’ = 0, from which we obtain

¢W*W¢:§,B€R. (4.11)
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Considering (4.11]) as a linear first order differential equation where the unknown
is 1, we obtain that i takes the form

() = Ag(t) + Bue(t) with A, BER, ¢ € (£,n),

e(t) = (1) / ds

p(s)¢*(s)

Thus, we have to examine for ¢ € (£,n) the ability of the function 1. to be an
eigenvector associated with p or not. Without loss of generality, suppose that ¢ is
not integrable at £ and 7 (the other cases can be checked similarly). This occurs
if b = d = 0 and in this case the boundary conditions in bvp become the
Dirichlet conditions

u(€) = u(n) = 0. (4.12)
1. Suppose that ¢ is positive in (£,7n) and let € € (£,n) be fixed. We have by
simple computations

() = ! tids or a
POV = S+ 0000 [ B rallte(en)  (413)
then
(L) (1) = ML), ae. L€ (Em) (414)

Moreover, since ¢ is not integrable at ¢ and 7, from Lemma [4.2] and [36, Theorem
2.3.1] we have

lim p(£)¢'(¢) = oo, lim p(t)¢'(t) = co.

t—¢
. t s s s
Thus, from Lemma when lim;_,¢ fs m = oo (the case f; m < 00 is
obvious), we have
(: siem)” OL0) 1
lim 1. (t) = lim ——22202 0 = lim 2 = —= =0
— — —_— — ¢/ t
1t = (5) =g — 0 lim;—¢ p(t)#'(t)
and also )
li ) . —
i ve(t) =~ e

That is, 1), satisfies the boundary conditions and all the above shows that 1,
is an eigenvector of the characteristic value p of L,. Moreover, since the function
ve(t)=A+B f; WO vanishes at most once in (§,n), the eigenvector ¢ lies in
S1 U Ss and this shows that p is double.

2. Note that if ¢(t1) = 0 for some ¢; € (£,1), we obtain from following
t; > € and ¢; < ¢ that at least one of the limits

m  p(t)yL(t), lim  p(t)yL(t)

t>t1,t—1t t<t1,t—t1

are infinite and this means that ¢. ¢ Yx. So, the function 1. can not be an
eigenvector associated with the characteristic value p of L.

By the contrary suppose that the characteristic value p is not simple and there
exists another eigenvector of u, ¢1 € Y. In this case, arguing as in the discussion
in the beginning of this proof we obtain

6(t) = Ad (1) + Bon(t) / s

p(s)¢1(s)
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and

B + p(t) ) (1) /t _ds for all t € (&,n)
P1(t) B p(s)ai(s) ’
where A,B € R and ¢ € (&, 7).
Thus, arguing as in the beginning of part 2 of this proof we obtain that the
eigenvector ¢ must be positive. Therefore, from

p(t)¢'(t) = Aga (t) +

s =n(a+n [ )

p(s)¢3 (s)
yields that ¢ has at most one zero in (£, 7). Contradicting ¢ has more than one
zero. This completes the proof. O

Lemma 4.9. Assume that [2.2) and [2.3) hold and q € Kg \ L*[&,n]. If u is a
characteristic value of L, associated with an eigenvector ¢ vanishing more than one
time in (§,7n) then u is of algebraic multiplicity one.

Proof. In the same way as in the proof of Lemma [{.6] let us show that if u is a
solution to
—(pu')'(t) = pq(t)u(t) — zpq(t)(t), ae. t € (& n),
p— ] ! P
au(§) b}inép(t)“ (t)=0, (4.15)
cu(n) + d lim p(t)u'(t) = 0.
—7

then u = w¢ with w € R. Let u be a solution to (4.15) and W = W (¢, u) be the
Wronksian of ¢ and u. We have that W satisfies
(W) = (pu'¢p — pug')' = xpqd®
leading to
B S

Wo—ug =+ ‘%" g(7)(¢(r))%dr, BER. (4.16)
Considering (4.16]) as a linear first order differential equation where the unknown
is u, we obtain that u takes the form

u(t) = A0(0) + Boo) | p()fm

+ao(t) [ t (e [ qlr) (0()) 2 ) ds,

(4.17)

for A,Be€Rand ¢ € (&,n).

Arguing as in 2 of the proof of Lemma [{.8 we see that the expression for u
given in (4.17)) is a solution of (4.10)) if and only if B = # = 0. This completes the
proof. O

Lemma 4.10. Assume that ([2.2)) and [2.3)) hold and let (g,) be a sequence in L

converging to q € L,. Then Ly, — Ly as n — oo in operator norm. Moreover, for

all [507770] C (fﬂ?)
p(Lg,u) — p(Lgu) in Cl&y,mo] for all u € E.
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Proof. Tt is easy to check that for all [£9,70] C (&,7), ¢ — q in L[, m0], Papgn —
(pabq in Ll[g,fo}, and \chdQn - \I/cdq in L1[770777]- ThUS, we havea for all [5077]0} -
(&,n) and u € E with |lue =1,

n
sup |Lg,u(t) — Lqu(t)| < / G(s,9)gn(s) — a(s)lds = |lgn — dllc:
te[€,n] 13

leading to L,, — L, as n — oo.
Also, for all [£y, 0] C (§,n) and u € FE with ||ul|s = 1,, we have

[P(t)(Lq, u)'(£) — p(t) (Lqu)'()]

M0 c®p(s) +a¥oq(s

< [ Rl Z el () — (s

£o

o 7 a
| K Pab(8)lan(s) —a(s)lds + | = Pea(s)lan(s) — als)lds
3 o

c a

= A M®ab(gn = DllLrig o). + FI1¥ealan = DllLrpme,n). + 190 = allrigo nol
leading to p(Lg, u)" — p(Lqu)" in C[&o,no]. The proof is complete. O

Lemma 4.11. Assume that (2.2) and (2.3) hold and let (o) and (5,) be two
sequences in Kg converging, respectively, to o and (8 in Lé [&,7n]. Assume also that

for all integers n > 1, there exist A, > 0 and ¢, € E \ {0} satisfying
—(p9,) (1) = Anlan(t)dy (t) = Bu(t)ey, (1)), t € (&),
a6 (€) — Dl p1)6} (1) = 0
con(n) +d Jm p(1)6), (1) = 0
We have ¢ = Ay Ay where Ay = Lo, It — L 17

If (\n) converges to X > 0, then there exists ¢ € E \ {0} such that ¢ = XA
where A = LIt — LgI~ (i.e. X is a half-eigenvalue to bup (2.7) ).

Proof. First, note that Lemma [£.10] guarantee that L,, — Lo and Lg, — Lg in
operator norm. Let ¢, be the eigenvector corresponding to A, with ||¢,|lcc = 1
and set ¢, = A, A¢, and ¢ = lim ), (up to a subsequence). We have

[6n = Ylloo = AnAn(dn) = Pl
< [AnlllAn(dn) = A(n)lloo + [AnA(Pn) — Pl
< [AnlllLay, = Lall + [Aalll Ls, = Loll + [AnA(dn) = ¢l
leading to lim ¢, = ¢ and |[¢||cc = 1. Also we have
A An(@n) = MA@ oo < [IAnAn($n) = AnAn () oo + [AnAn () = A Ao
+ A AW) = M@)o
< PalllAnlllén = lloo + PalllAn = All + X = Al A

leading to lim A, A, (¢,) = XA(w). At the end, letting n — oo in the equation
On = A An(dn) we obtain ¥ = AA. O

Remark 4.12. Arguing as in the proof of Lemma one can prove that pg,, —
pY’ in C[&y, o] for all [&y, o] C (€, n) where ¢, and v are those of the above proof.
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Let Agpcq and Agp be the functions defined in Subsection [3.5} We deduce from
Theorem a first result for existence of half-eigenvalues in the case where p = 1
and the functions « and § are constants.

Corollary 4.13. Assume that p =1 and o and 3 are positive constants. Then buvp
27) admits two sequences of half eigenvalues (A\f) and (X, ) such that
o )\ is the unique solution of Agpca(ao) =n—&,
A7 is the unique solution of Agpca(Bo) =n—¢,
)\;l with [ > 1 is the unique solution of

Aap(ao) + Aea(Bo) +m(l — 1)(

1 1
Vao e

o )\, with I > 1 is the unique solution of

Aas(B0) + Aca(ac) +m(l — 1)(

)=77—£,

1 1y
et e

)\;rH_l with [ > 1 is the unique solution of

Aap(ao) + A alac) + =

)‘2_l+1 with [ > 1 is the unique solution of

w(l—1) il
+ —=n-¢.
JBo | Vao

Proposition 4.14. Assume that p = 1 and o and (8 are positive and continuous
on [&,n]. Then the set of half-eigenvalues of bup consists of two increasing
sequences of simple half-eigenvalues (A;)kzl and (A, )k>1, such that for all k > 1
and v = + or —, the corresponding half-lines of solutions are in {\}}xSy. Moreover
forallk > 1 andv =+ or —, X[ is a decreasing function with respect to the weights
a and B lying in C[E, 7).

Aa,b(ﬁa) + Ac,d(ﬁa) +

Proof. Consider the bvp
—u"(t) = 0(a(t) + Bt))u™ () + Aa(t)u” (t) — ABH)u (1), t € (&),
— ] / f—
au(§) therép(t)u (t)=0, (4.18)
cu(n) + d lim p(t)u'(t) = 0.
=7
From Theorem [3.9 We have that for each integer k > 1, v = + or — and all A > 0,
there exists a unique 67 (\) such that (4.18)) has a solution in S}.
Note that 0}(0) = pr(a+ ) > 0. Now we claim that there exists Ao > 0 such

that 6} (Xo) < Xo. To the contrary, assume that for all A > 0, 67 (X) > A. Thus we
have from Proposition that

X< B0 < B\ ap, By) = 05 (V)
where for k > 1 and v = + or —, 6} (X, a, f1) is the unique real number for which
—u"(t) = 0(ay + B)ut () + Aaju™ (t) = NBrut (1), t € (§n),
au(§) — blim p(t)u’(t)
tu'(

=0
cu(n) + dtlin}7p( Yu'(t) = 0.
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has a solution in S} .
Assume that k = 2] with [ > 1 and v = + or — (the other cases can be checked
similarly). We have from Corollary that
Aap((07(N) = A)By + 0" (Nay) + Aea((07(X) = Moy +607(A)54)
m(l—1) m(l—1)
+ + =
VO N) = 0B+ +0*(Nag /(0 (V) = Nas + 0% (V)54

Taking into consideration the fact that A, and A, 4 are decreasing functions, we

obtain from (4.19) that

N—& < Aap(0"(Nay) + Aca(0°(N)B+) +

(4.19)

n—=_.

w(l—1) n w(l—1)
NN N

( 1 + 1
VI Ny /0 (V)6

<l

)

leading to

* 22, o2y L 1
0" (\) <7 I°(n §>(x/@+\/f7+

which contradicts limy_, o 0% (A) = 400.

Thus there exists A} such that 6(\y) = A¥ and A} is a half-eigenvalue of (2.7).
Uniqueness and simplicity of A} follow from Lemma Finally, the monotonicity
of A} with respect of the weights o and (3 follows directly from Proposition[3.10} [

Proposition 4.15. Assume that p = 1, a, are nonnegative and continuous on
[€,m] and the set {t € [§,n] : a(t)B(t) > 0} has positive measure. Then the set
of half-eigenvalues of bup consists of two increasing sequences of simple half-
eigenvalues (A )k>1 and (A} Jk>1, such that for all k > 1 and v = + or —, the
corresponding half-lines of solutions are in {\[} x Sy. Moreover for all k > 1 and
v=+ or —, A/ is a decreasing function with respect to the weights a and 3 lying

in C[¢,n].

Proof. Forn > 1, o, = « —I—% and 3, = B+ %, let A}, = A{(an,B,) be the
half-eigenvalue given by Proposition associated with the eigenvector ¢,, € ©7.
Because (ay,) and (3,) are decreasing sequences, we have from Proposition
that (A} ,,)n is nondecreasing. Now let Iy = [§o,70] C (&, ) be such that af > 0 in
Iy and set ¥ = min(a, 8). Hence, we have 9, = min(ay, 8,) =9 + 1 > 9 and we
deduce, from the montonicity property in Proposition and Properties 5 and 6
in Theorem that

Z,n = Ao, Bn) < A (OnyIn) = pu(Ins [€,1]) < pi(Un, Lo) < (9, Lo),

and the sequence (A{, ), converges to some Ay > 0, which is by Lemma
and Lemma a simple half-eigenvalue of bvp having an eigenvector ¢ =
lim ¢, € O (up to a subsequence). Because the functions u € 0% have a double
zero, Lemma [£.4] guarantees that ¢ € ©7.

Let a; be a nonnegative continuous function such that the set {t € [¢, 7] :
a1 (t)B(t) > 0} has a positive measure and o < ;. We have from Proposition [£.14]
that

11 11
M(at— 8+ ) <ap(a+ -8+ ),
n n n n
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Letting n — oo we obtain A/ («a, 8) < A/(a1,3). Similarly we prove that A} is
nonincreasing with respect to the weight 3. The proof is complete. ([

4.2. Proof of Theorem Let ¢ and pg be as in Section 2 and note that A is a
half-eigenvalue with an eigenvector u of (2.7) if and only if A/py is a half-eigenvalue
with the eigenvector v = u o ¢! of the bvp

A (0 (1) - By (), te &),

)
av(§) — bpov'(§) =
cv(n) +dpov’(n) =

—v"(t)
(4.20)

)

)

where B
a(t) =ple™ M)ale™ (1), Bt) =ple™ (1)BP (1))

are integrable functions. So, it suffices to prove Theorem [2.4] with p = 1. To
this aim, let (ay,) and (8,) be two sequences in C.(§,n) such that lima,, = «
and lim 3, = 3 in L'(&,7n), and let Ak = Ap(am, Bn) be the half-eigenvalue given
by Proposition associated with an eigenvector ¢,. Let 9, = inf(an, fn),
0., = sup(an, Bn), and 6 = sup(a, 8) > ¥ = inf(a, §) > 0 on some interval Iy =
[€0,m0] C (&,m). We have that limd,, = ¢ in L'(&,n). Then, we deduce from the
monotonicity property in Proposition and Property 5 in Theorem [3.6] that

0 < pi(V) — € = pw(Vn)
= Ap (0, 0n) < )‘Z,n
= )\Z(anaﬂn) < )\Z(ﬁnﬂgn)
= pk(Vn) < pr(9) +C

where the constant € and C' are respectively small enough and large enough. Let
Ags = limsup A}, and A} ; = liminf A} . We have from Lemma that Ay
and Ay ; are half-eigenvalues of (2.7). Then we deduce from Lemma [£.5[ that A}, =
Ak.s = Ak,; 1s the unique and simple half-eigenvalue of ([2-7). The same arguments
as those used in the proof of Proposition show that the eigenvector associated
with A} belongs to S} NY.

4.3. Proof of Theorem [2.5]
4.3.1. Proof of uniqueness of \Y.

Lemma 4.16. Assume that Hypotheses (2.2) and (2.3)) hold and o, 3 € Kg. Then
forv =+ or —, bup (2.7) admits at most one half-eigenvalue having an eigenvector
in SY.

Proof. Suppose that A\] is a half-eigenvalue having an eigenvector ¢; € S; (unique-
ness of \] can be proved in the same way), then 1/\] is a positive eigenvalue of
the positive operator L, : E — E defined by

Lou(t) = /J G(t, s)a(s)u(s)ds.

So, we have that 7(Ls) > 0 and since the cone of nonnegative functions is total in
E, r(L,) is a positive eigenvalue of L, and

A > 1/r(Ly). (4.21)
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Let (&,) and (n,) be two sequences in (£,n) such that lim¢&, = &, limn, = 7,
(&) is decreasing, (1) is increasing, and set

inf(a(t), a(&n)), ift <&,
an(t) = a(t)7 ift € (Snynn)a
inf(a(t),a(n,)), ift>n,,
and let L, : E — E be the linear operator defined by

Lou(t) = /5 " Gt $)aun (3)u(s)ds. (4.22)

We see that for all n € N, L,, < L,. Then from Lemma[3.4]we have r(L,) < r(Lg).
We have that for all n € N, AT = 1/r(L,,) > 0 is the unique positive eigenvalue
associated with a positive eigenvector ¢f to the linear bvp

—(pu')' (t) = A (B)u(t), ae. te(&n),
au(€) — blim p(t)u' () = 0,
cu(n) + d lim p(t)u'(t) = 0.
-1
Moreover, a,, — « in L§[€,n]. So, we have from Lemmas and [3.5| that
lim A} = 1/r(Ly) < M. (4.23)

Before proving uniqueness, note that, if A is a positive eigenvalue of bvp
associated with an eigenvector ¢, then there exists a subinterval [y, ] C (£,7) such
that a(t)p(t) > 0 for almost all ¢ € [y, d]. Indeed if this does not occur, we obtain
the contradiction

o(t) = )\/TI G(t,s)a(s)p(s)ds =0 for all t € (&, n).
3
This means also that
o(t) = )\/n G(t,s)a(s)p(s)ds > 0 for all t € (&, 7).
3

Set
wn = Ln¢1 < La¢1 = ()\f)_l(ﬁr
Observe that 1, satisfies

—(p'Yn) (t) = an()d1(t) > A an(®)vn(t) ae. t € (&n),
athn (€) = b lim p(t)¢n () =0, (4.24)

) + dlim p(t)0, (1) = 0.

Multiplying the differential inequality in (4.24]) by ¢7 (the eigenvector of AT) and
integrating over [£, 7] we obtain

n 7
| =woyer=at [ anar.
3 13
We find, after two integration by parts of the left hand side,

n n
A7 / Cntbnd? > A\ / ntbnd?,
3 3
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leading to /\ir < AT for all n > 1, from which we have

A < lim AT (4.25)
At the end, combining (4.25)) with ([4.23), we obtain A\ = 1/r(L,), that is 1/7(L,)
is the unique half eigenvalue of (2.7) having an eigenvector in S;". d

4.3.2. Proof of uniqueness of A\, k > 2.

Lemma 4.17. Assume that Hypotheses (2.2) and (2.3)) hold and o, 5 € Kg. Then
for each integer k > 1 and v = + or —, bup (2.7)) admits at most one half-eigenvalue
having an eigenvector in Sy.

Proof. To the contrary, assume that A\; and Ao are two half-eigenvalues having, re-
spectively, the eigenvectors ¢1, ¢2 € Sy with the sequences of simple zeros (z;)1<i<k
and (y;)1<i<k. In the spirit of Theorem assume that 21 < y; and let ig, jo €
{1,...,k} such that z;;, < zj, < zjo+1 < Tip+1, and without loss of generality,
suppose that ¢; > 0 and ¢, > 0 in each of the intervals [§, z1] and [zj,, 2j,+1]. Let
(&) and (7)) be the sequences given in the proof of Lemma and set

L) = inf(a(t),a(&)), ift<&,
) alt), if t € (¢n,21).
From Lemma [4.16] we have A; = lim iy (o), [€, 21]) and Ao = lim iy (o, [€, 21]), and
from Property 4 of Theorem that for all n > 1, py(alk, [€,21]) > pi(al, [€, 21]).
Letting n — oo we obtain A\ > Ao

Now we will discuss the cases zj,+1 < 1 and zj,11 = n. If zj,41 < 7, then
integrating on [zj,, 2j,+1], we obtain

0> / (08 b + () b1 = (A1 — M) / " s,

30 Jo

«

leading to A\ = As.
If zj,+1 =7, then considering

a2 t) _ a(t)7 ifte (xio,nn),
inf(a(t), a(vpn)), ift>n,,

we have that A\; = lim p; (a2, [2;,,7]) and Ag = lim p1 (a2, [2j,,7]), and from Prop-
erty 3 of Theorem 2.5, that for all n > 1, pi(a2,[z,n]) > pa(a?,[xiy,n]). So,

n’ n’
letting n — oo we obtain also in this case A\; = Ay. This completes the proof. [

4.3.3. Proof of existence of (A])k>1. Let (§,) and (n,) be the sequences introduced
in the proof of Lemma and consider
t ft nytin)s
PR CONE TEACRON
0, if t ¢ (Ensmn),
ﬁ t I lft € ny'injs
5.0 = [P0 iTEE G
0, ift ¢ (&nymn)-

For all n,k > 1 and v = + or —, let A}, be the unique half-eigenvalue of

—(pu)'(t) = Man(t)u" (t) = Ba(t)u™(t)) ae. t€ (& n),
au(§) — blim p(t)u’(t) = 0,
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cu(n) + d lim p(t)u'(t) = 0,
-1

having eigenvector ¢,, € Sy with ||¢,| = 1, 6, = sup(aw, 8,) and 6 = sup(«, 8) > 0
in some closed interval Iy C (&, 7). Since (ay,) and (3,) are nondecreasing sequences,
we have from Property 2 in Theorem [2.4] that, for all n > 1,

kn —)‘kn+17

and
= X (an, Bn) = N (0n,0n) = pr(0n) > p1(0n). (4.26)

Because p1(6,) = 1/7’(L9 ), p1(0) = 1/r(Lg) and Ly, — Ly in operator norm, it
follows from Lemma [3.5] that, for € > 0 small enough,

Zn > )‘Z,n—i-l 2 lLLl(a) —e>0.

Thus, from Lemma we have that A\ = lim,_. )\Z’n is a half-eigenvalue of
(2.7)) having an eigenvector ¢ (as it it shown in proof of Lemma Y =lim ¢y,).

In view of Lemma @, it remains to show that ¢ € S}/. To the contrary, assume
that ¢ € S+ with I # k and let (z])j =1 be the sequence of interior zeros of ¥ and
[€&1,m] C (f n) such that

€1<21<2’2<"'<Zl_1<’l71.

Choose § > 0 small enough and set I; = (z; —0,2;+0) for j € {1,...,1—1}. There
exists n, € N such that for all n > n., ¢,1 > 0 in all the intervals [£1, 21 — ¢,
[Zk—1+0,m), [2; + 0,241 — 0], g € {1,...,1 —2}.

Fix j € {1,...,1—1}. There exists n; > n, such that the function ¢,, has exactly
one zero in I;. Otherwise if there is a subsequence (¢,) such that for all i > 1, ¢y,
has at least two zeros, then we can choose xl, and x2v in I such that

¢il(a)) <0< gll(al).
Let

1 T . 1 1 T 1
Tipe = liminfz, , g, =limsupz,,

2 s 1 2 R T 1
Tine = liminfa, , x5, =liminfz, .

Hence, since ¢ = lim ¢,,/||¢n| we have

'(/J(xilnf) = ’(/}(xlznf) = w(x;up) = w(xgup> =0

leading to

ol
limz,,

Moreover, from Remark it follows that
YW (zg) = lim ¢ (a7,,) = lim 9] (a7,) = 0,

contradicting the simplicity of z;.

Now, we claim that there exists n* € N such that for all n > n*, ¢, does
not vanish in the intervals (£,&;) and (n1,n). Again, to the contrary, assume that
there is a subsequence (¢,,) such that for all ¢ > 1, ¢,,, has at least one zero. Let

€ (&,&1) be the first zero of ¢,,. In this case, we have that

lima,, =§, () = ¢n,(§) =0.

_ 1 2 _ .
= lim Ty, = Zj-
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Moreover, for all i > 1, ¢,,, satisfies
—(p03,) (1) = pn (), (1) ace. t € (§2n,),
Pn; (&) = On(wn;) =0 (4.27)
Gn; > 0in (& 2p,).
Clearly, Equation implies that p,, = pi(an,,[§, zs,]). Taking into con-

sideration lima,, = a in L§[E,n] and pn, = pi(an,, (€ ©y,]) = 1/r(L2) where
L% 2 ClE, xp,] — C[€, xp,] is defined by

LYu(t) = /;ﬂ G, (t, s)a(s)u(s)ds,

from Lemma we obtain

T 2 g mlelen). (429)

Thus, combining Lemma with (4.28))), we obtain the contradiction

T . . 1
A = lm py,, > lim pq (o, [€, 2,]) = lim R = 4o0.

Hence, we conclude that for all n > no, = max{n.,n*,n1,...,nk_1}, ¢, has
exactly (I — 1) simple zeros in (&, 7) contradicting ¢, € S}

Finally, letting n — oo in A, < Ap,,,, we obtain Al < A ,.

Hn; = Ml(amv [faxm]) =

4.4. Proof of Theorem The existence of (ui(g))x>1 as a nondecreasing se-
quence follows from Theorem when taking o = 8 = ¢ in bvp and for all
k > 1, ur(q) has an eigenvector ¢, € Si. We have from Lemma and assertion 2
in Lemmathat 1k (q) is simple for all k > 3 and Assertion 1 is proved. Assertion
2 follows from the monotonicity of the sequence (ui(q))r>1 and the simplicity of
ur(q) for k > 3. Assertion 3 follows from Lemma and assertion 1 in Lemma
and Lemma Assertion 4 is obvious.

Assertion 5 follows from the monotonicity property of half-eigenvalues in Theo-
rem and Assertion 6 is obtained when letting n — oo in the relation

1k (qns [§5m)) < pr(ans [§1,m]),

where
- q(t), ift € (&),
i = {o, if £ (€n,m),

and (£n)n>1, (n)n>1 are those in the proof of Lemma [1.16]

It remains to prove Assertion 7. Let (g,) C K¢ be a sequence converging to
q € Kg in L[, ), and [£0,m0) C (€,7m) such that ¢ > 0 in [£y,70]. We have then
from Property 6 and Property 5 in Theorem [3.6

1k (Gns [§51)) < pr(ns [0, m0)) < (s [05m0]) + C.
Set ! = liminf g (gn, [£, 1)) and p? = limsup pk(gn, [€,7]). There exist two sub-
sequences (pk(qn,, [§,1])) and (pk(qn;, [€,7m])) of (1k(gn, €, n])) converging respec-
tively to u!' and p?. Applying Lemmam7 we obtain that ! and p? are eigenvalues
of . Furthermore, arguing as in Subsection 4.3.3, we see that the eigenvectors
associated with p! and p? belongs to Sy. Thus, we deduce from Lemmas and
that
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This completes the proof
4.5. Proof of Theorem Consider the bifurcation bvp associated with bvp

2.3,

—(pu')'(t) = pao(t)u(t) + Mg(t»u(t)), ae. te(&n),
— ] / —
au(§) — blim p(t)u’ (1) (4.29)
cu(n) + d lim p(t)u(6) =
—n
where 1 is a real parameter and g(t,u) = f(t,u) — qo (t)u and in all that follows,

we denote by (ux(go))k>1 the sequence of eigenvalues obtained from Theorem
for the bvp

Lu(t) = pqo(t)u(t), ae. te (&),
au(€) — blim p(t)u'(t) = 0,
cu(n) + d lim p(t)u/(t) = 0,
—n
and by (x%)k>1, with v = + or —, the two sequences of half-eigenvalues of the bvp
—(pu')'(t) = x(aco ()u™ () = Boo(t)u™ (1)), ae. te€ (&),
au(§) — btlirr%p(t)u'(t) =0,
cun) + d lim p(t) () = 0.
-1
given by Theorem
Applying £71, we obtain that bvp (4.29) is equivalent to the equation
u = pLgyu+ pH(u)
where H : E — FE is defined by

n
s) = / G(t,s)g(s,u(s))ds
§
and is completely continuous.

Lemma 4.18. Assume that (2.2)-(2.4) hold. Then from each pg(qo), with k > 3,
bifurcate two unbounded components (in R x E), FZ and Iy such that for all k > 3
andv =+ or —, I'y CRx S{.

Proof. First, note that Hypothesis implies that H(u) = o(||u|loc) near 0.
Indeed, we have for (u,) C E with hm ||un||oo =0

|Hu, ()] e  F(s () ~ ao(s)uns)
Tl / Buls)ds  where fn(s) = Gls,s) Tnllo |
Then, it follows from ) that
Ra(s) < Gl ) 5) () + an(5) )

< G(Sa 5)(700(8) + 600(8) + qO(s)) € Ll[&??]
and from that
|un(s)]

|2 ]| oo
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(s, un(s))

< Gls ) 2o

—qo(s)| — 0
as n — 400, s € [,n] a.e..
So, by the Lebesgue dominated convergence theorem, we have

lim =
l|tn |l o

3

that is, H(u) = o(]|ulls) at 0.

Since for all k > 3, ur(qo) is of algebraic multiplicity one, from [25, Theorem
1.40] we conclude that from each (ur(go),0) with & > 3, bifurcate two components
1",1C and 1"% of nontrivial solutions of bvp such that for i = 1,2, F}; is either
unbounded in R x E or meets (1;(qgo),0) where [ # k.

Now, note that if (\,u) € 'y i = 1,2 then all zeros of u are simple. This is due
to the fact that (A, u) satisfies also the bvp

—(') (1) = Aqu(t)o(t)
av() — blim p(t)o’

cv(n) + d}lm p(t)'
-7

(& m),
0,

 te
(t)
(t)

with

qu(t) =

Since Hypothesis guarantees that ¢, € Lé[f ,m], we deduce from Theorem
that there exists an integer j > 1 such that u € S;.

Also, we claim that for all £ > 3 and i = 1,2, there exists a neighborhood Vki
of (1(go),0) such that Ty NV} € R x Sg. Let (pn,un)n>1 C T'h be a sequence
converging to (ug,0). Thus, v, = Uy /||un| e satisfies

[l oo

Since Lg, is compact and H(u) = o(||u[|o) near 0, there exists a subsequence (v, )
of (v,) converging to v in E satisfying

it

Un = pnlig, (Vn) + pin and  |[vplle = 1.

v =pr(qo)Lev and |v]e =1.

So, from Theorem [2.7] we have v € Sk.
Let (zj);j_l be the sequence of interior zeros of v and [&1,m] C (§,n) such that

61<Z1<2’2<"'<Zk_1<’l71.

Choose ¢ > 0 small enough and set I; = (z; — 9, z; +9) for j € {1,...,k—1}. There
exists n, € N such that for all n; > n., v,,v > 0 in all the intervals [z; +6, zj 41 — 0]
j S {1, . 7]6 — 2}, [£1721 — (5], [Zk,1 + (5,’171].

Fix j € {1,...,k—1}. There exists n; > n, such that the function v, has exactly
one zero in I;. Otherwise if there is a subsequence (vnl) such that for all [ > 1, vy,
has at least two zeros, then we can choose x;, and x7 in I; such that

oll(ah ) <0 <olll(@2).
Hence, we obtain
lim x}” = lim xf” = zj,
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and from Lemma [4.10| that

1

) = lim v (z2) =0,

oll(z;) = limv&] (x i (T,
contradicting the simplicity of z;.

Now, we claim that there exists n* € N such that for all n > n*, v, does not
vanish in the intervals (£,&1) and (n1,7n). To the contrary, assume that there is a
subsequence (v, ) such that, for all I > 1, v,,, has at least one zero. Let x,,, € (£,&1)

be the first zero of v,,. In this case, we have that

limz,, =¢&, v(&) =wv,(&) =0.

Moreover, for all [ > 1, u,, satisfies

—(pulm)/(t) = HMn;qn, (t)um (1), te (&),
Un, (§) = tn, (xn,) =0, (4.30)
Up, >0 in (&, 2y,),

where qp, (t) = (f(¢, un, (t))/un,(t)). Clearly, Equation (4.30) implies that p,, =
11 (qn, s [€, @n,]). Taking into consideration Hypothesis (2.5, from Property 3 in
Theorem 2.7 we obtain that

Hny = Ul(ana [E,mm}) > ﬂl('}/oo; [§7xnz])

So, we obtain as in Subsection [£:3.3] the contradiction

,uk'(QO) = hmp’m > limﬂl(%m [Ea l'mD = +o0.

At this stage we conclude that, for all n > n. = max{n.,n*,ny,...,ng_1}, vy,
has exactly (k — 1) simple zeros in (£,7n) and so the existence of the neighborhood
V.

Using the same arguments as those used above, we see that for all (p0,uo) € '}
with ug € Sg,, there exists a neighborhood Wy of (o, ug) such that Wy N T} C
R x Sy . This shows that the number of zeros of functions u lying in the projection
of I'}, onto the space E is locally constant, so it is constant and it is equal to (k—1).
Thus, I, € R x Sg. Set

IF =T NRxSHU@NRx SHand T, = TENRx S )U(TZNRx S;)

and let ¢ > 0 and » € (0,1). We have from Theorem 1.25 in [25] that, for i = 1,2,
there exists a sequence (uf,, u,),>1 C I't such that |uf, — ur(qo)| <, ul, = ti vy, +
wi,limtl = 0 and ¢} > s|lul]l, 2 < —s|u?|. Moreover, from [25, Lemma 1.24]
we have that w! = o(|t!|). Arguing as above, we see that lim(u?, /||u}||) = v* (up
to a subsequence) where v! and v? are eigenvectors associated with py(qo) with
v! > 0 near £ and v? < 0 near £. So v! € S,:r and v? € S, . Since the limits
are in E = C[¢, 7], arguing as in the proof of existence of neighborhood V}, in the
beginning of the proof, we obtain that u} € S} and u2 € S, for n large enough.
This shows that for all £k > 3 and v = + or —, '}/ # (), and again because of the
topology of E (if v, — v in E and v > 0 near £ then v, > 0 near £ for n large) and
functions u lying in the projection of I'} onto the space E have only simple zeros
and all have the same number of zeros, I'}, does not leave R x S}.

Finally, taking into consideration the claim in the beginning of the proof, and
the fact that I'} does not leave R x S} we understand that for all £ > 3 and v = +
or —, I'/ is unbounded in R x E. g



EJDE-2014/156 NODAL SOLUTIONS 35

Lemma 4.19. Assume that (| . . ) hold. Then for allk >3 and v =+ or —
the component '} rejoins the point (x},00).

Proof. Because u = 0 is the unique solution of bvp for p = 0, we have from
Lemmathat for all k > 1 and v = + or —, ({0} x E) NI} = (. Therefore, if
(u,uw) € TY then p > 0.

Moreover, if (p,u) € TI'Y, then p = ,uk(f(t ) ,[€,m]), and this together with
Hypothesis and Property 3 of Theorem |2 i, leads to

o= (18 f6.0]) < el e,

This shows that for all £ > 1 and v = + or —, the projection of I'}, onto the real
axis is bounded.

Now, let (fn,un) be a sequence in I'} such that lim, 4o ||un| = +o00. For
contradiction purposes, suppose that lim, 4o ttn 7 Xj. Then there exist € > 0
and a subsequence of (u,,), which will be denoted for convenience by (g, )n>1, such
that

|pin — XZ| > €.

Denote by (vn) the sequence defined by v, = 2. Note that lvnlloo = 1 and

(tin, vy) satisfies
Quy,

[[2n ]| oo

Upn = MnAoovn +
where A, K : E — E are defined by

= /: G(t,5) (oo (8)uT(8) — Boo(s)u™(s))ds,
= /; G(t, 8)goo(s,u(s))ds,

with goo (t,2) = f(t, ) — Qoo (t)zT + B (t)z ™. Note that Hypotheses (2.4) and (2.5)
imply that Qun = 0(||tn]|oo) at co. Indeed, we have

|Qun ’/ G(t goo S, un<s>))ds’

< / G(s,s)| F(8,un(8)) — ase(8)u;f (s) + Boo(s)uy, (s) s
13

l|tn oo

From we have |
9| f(s,un(s)) — aso(s)ut (s) + Boo(s)uy (s) |

lltn |l o

< G(5,5) (Voo (8) 4 000 (8) + Qoo (5) + Bao(s)) :r;:(llsjl

< G(5,8) (Yoo (8) + 0o (5) + o (5) + Boo(s)) € L€, n)-

Now, set
| f(s,un(s)) — aso(s)ud (5) + Boo(8)uy (5) |
l[tn lloo

and let us prove that lim P, (s) =0 for s € [£,n] a.e

P,(s) =G(s,s)




36 A. BENMEZA'I'7 W. ESSERHANE, J. HENDERSON EJDE-2014/156

Let s € [£,7] (such s exists a.e.), such that

o [f(s,2) o [f(s,@)
1 = Qo d 1 = Boo(8).
gim T ) i BT )
For such an s we distinguish the following cases:
e limu,(s) = 4oo: in this case we have
f(s,un(s)) un(s)
Po(s) = G(s,8)| = — aco(s)]
Un () [[tn o
f(s,un(s))
< G(s,8)|————F— —ax(s)] =0 asn— +oo.
(5, 9)| e (5)
e limu,(s) = —oo: in this case we have

P,(s) = G(s7s)|w — Boo(5)] un(s)|

Up (8) l|tn oo
< G(575)|Jw — Boo(8)] — 0 asn — +oo.

e limu,(s) # +oo: in this case there may exist subsequences (uy(s)) and
(un2(s)) such that (u,1(s)) is bounded and limwu,z(s) = £o0o. Arguing as in the
above two cases we obtain lim P,z (s) = 0 and we have

P [un1 ()]

1 (5) < G5, ) (Yoo () + 600 () + Qoo (8) + Bool()) — 0 as k — +oo.

Thus, we have lim P,(s) = 0 for s € [£,7n] a.e. By the Lebesgue dominated
convergence theorem, we conclude that Qu,, = o(||un|le) at co.

Now, because of the compactness of A, and the boundedness of (v,), there
exists a subsequence (v,,) converging to v € S} (use the same arguments as in the
proof of Lemma[4.18)) with ||v]|s = 1 satisfying v = xooAv, Where X is the limit of
some subsequence of (py,) of (tn). Thus, we have xo = x} and the contradiction

0 = lim |, — x7| > € > 0.
(]

Now, we are able to prove Theorem Note that u € S? is a solution to
if and only if (1,u) € T'Y, and this occurs if AY < 1 < p;(qo) or pi(go) <1 < AY.

Assume that p;(go) < 1 < pp(s) with 2 < k < [, and let i € {k,...,l}. We
have p;(qo) < pu(go) < 1, and from the nondecreasing property of A/ with respect
to the functions o and S,

/\;/ = /\;/(aoovﬂoo) > )\zy(aooaeoo) = Hi(eoo) > Hk(eoo) > 1.
Now, assume that p;(¥e) < 1 < pr(go) with 2 < k < I, and let i € {k,...,l}. We
have p;(go) > p1(go) > 1, and from the nondecreasing property of AY with respect
to the functions « and (3,
Thus, Theorem [2.9]is proved.

Remark 4.20. Note that if ¢qo € Kg N L'[¢, 7], from Lemma [4.6| we have that for
all n > 1, p,(qo) is of algebraic multiplicity one. Thus, Theorem and Corollary
[2:10] can be extended to the case 1 < k < I.
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Remark 4.21. Theorem holds if we replace Hypothesis (2.4) by the following
assumptions:

[f(t,u) — qo(t)ul < Go(t, |u|) for all |u| < <,, t € [£,n] a.e., for some g5 > 0,
F(t0) — e (B + Boo(thu™| < ol fu) for all u € B, t € [£,1] anc.,

lim LQ(t’ u)

=0 in L§[¢,n) for o =0, +oo

where go, §4o0 : [€,1] X RT — RT are such that for o = 0, +00, g,, (-,u) € L§[€, 7]
for u fixed and §,(¢,-) is nondecreasing for ¢t € [£,n] a.e. Indeed, we have for
(un) C E with lim ||un||OO =0

H _

00 ¢ [ g g s8] o,

/ G(s gos ||un”°°)ds—>0 as n — +oo

[[n oo
leading to Hu = o(]|u||s) at 0.
Also, for (un) C E with lim |Juy||cc = +00 we have
Q - + -
0] 7 L0 =0 Dl 0,

/ G(s,s) g+°o Hun||°°)ds—>0 as n — 400
| oo

leading to Qu = o(||u||) at oco.
The function f given in Example 2:2] satisfies the above condition with

qo(t) = At (1 — )=/,
aoo(t) = At_3/2(1 _ 75)—5/4 + Bt_7/6(l _ t)_7/4,
Boo(t) = At—S/Q(l . t)75/4 + Ot711/7(1 . t)713/10,

and
go(t,u) — (Bt77/6(1 _ t)77/4 + Ct711/7(1 _ t)713/10)u3
oo (fot) = MOt 1/7(1 —)=13/10 L B=5(1 — )~ /4, for u >0,
Joc Ct=1/7(1 —¢)=13/10 4 MBt=7/6(1 — )=7/4, for u < 0,
where
x3 0
M = — x>0}
Sup{l—i—x?—i—em x>0}

Acknowledgements. The authors want to thank the anonymous referee for the
comments and suggestions about this article.

A. Benmezal and W. Esserhane, would like to thank their laboratory, Fixed
Point Theory and Applications, for supporting this work.

REFERENCES

[1] N. Benkaci-Ali, A. Benmezai, S. K. Ntouyas; Figenvalue criteria for existence of a positive
solution to singular three point BVP, J. Abstr. Differ. Equ. Appl. 2 (2012), No. 2, 48-55.

[2] A. Benmezai; Positive solutions for a second order two point boundary value problem, Com-
mun. Appl. Anal. 14 (2010), No. 2, 177-190.



38

(3]
(4]
(5]
(6]
7]
(8]
(9
(10]
(11]
(12]
13]
(14]
[15]
[16]
(17]
18]
(19]
[20]
(21]
22]

23]

[24]
[25]

[26]
27)

(28]
29]

(30]

A. BENMEZA'I'7 W. ESSERHANE, J. HENDERSON EJDE-2014/156

A. Benmezal, J. Graef, L. Kong; Positive solutions to a two point singular boundary value
problem, Differ. Equ. Appl. 3 (2011), 347-373.

H. Berestycki; On some non-linear Sturm-Liouville boundary value problems, J. Differential
Equations 26 (1977), 375-390.

H. Berestycki; Le nombre de solution de certains problémes semi-linéaires élliptiques, J.
Functional Anal. 40 (1981), 1-29.

P. A. Binding, B. P. Rynne; Half-eigenvalues of periodic Sturm-Liouville problems, J. Differ-
ential Equations 206 (2004), 280-305.

M. Chhetri, S. Robinson; Multiple positive solutions for singular boundary value problems,
Comm. Appl. Nonlinear Anal. 14 (2007) No. 1, 15-29.

Y. Cui, J. Sun, Y. Zou; Global bifurcation and multiple results for Sturm-Liouville boundary
value problems, J. Comput. Appl. Math. 235 (2011), 2185-2192.

M. Feng, X. Zhang, W. Ge; New existence theorems of positive solutions for a singular
boundary value problem, Electron. J. Qual. Theory Differ. Equ. 2006, No. 13, 9 pp.

F. Genoud; Bifurcation from infinity for an asymptotically linear boundary value problem on
the half line, Nonlinear Anal. 74 (2011), 4533-4543.

F. Genoud, B. P. Rynne; Half eigenvalues and the Fucik spectrum of multipoint boundary
value problems, J. Differential Equations 252, No. 9 (2012), 5076-5095.

F. Genoud, B. P. Rynne; Second order multi-point problems with variable coefficients, Non-
linear Anal. 74, No. 18 (2011), 7269-7284.

K. S. Ha, V. H. Lee; Existence of multiple positive solutions of singular boundary value
problems, Nonlinear Anal. 28, No. 8 (1997), 1429-1438.

E. R. Kaufmann, N. Kosmatov; A second order singular boundary value problem, Comput.
Math. Appl. 47 (2004), 1317-1326.

Y. H. Lee; An existence result of positive solutions for singular superlinear boundary value
problems and its applications, J. Korean Math. Soc. 34 (1997), No. 1, 247-255.

R. Ma, X. Han; Fxistence of nodal solutions of nonlinear eigenvalue problems with indefinite
weight function, Nonlinear Anal. 71 (2009), 2119-2125.

R. Ma, D. O’Regan; Nodal solutions for second order m-point boundary value problems with
nonlinearities across several eigenvalues, Nonlinear Anal. 64 (2006), 1562-1577.

R. Ma, B. Thompson; A note on bifurcation from an interval, Nonlinear Anal. 62 (2005),
743-749.

R. Ma, B. Thompson; Multiplicity results for second-order two point boundary value problems
with superlinear or sublinear nonlinearities, J. Math. Anal. Appl. 303 (2005), 726-735.

R. Ma, B. Thompson; Multiplicity results for second-order two point boundary value problems
with nonlinearities across several eigenvalues, Appl. Math. Lett. 18 (2005), 587-595.

R. Ma, B. Thompson; Nodal solutions for a nonlinear eigenvalue problems, Nonlinear Anal.
59 (2004), 707-718.

Y. Naito, S. Tanaka; On the existence of multiple solutions of the boundary value problem
for nonlinear second order differential equations, Nonlinear Anal. 56 (2004), 919-935.

R. D. Nussbaum; Periodic solutions of some monlinear integral equations, Dynamical Sys-
tems, (Proc. Internat. Sympos., Univ. Florida, Gainesville, Fla. 1976), Academic Press, New
York, (1977), 221-249.

P. H. Rabinowitz; Nonlinear Sturm-Liouville boundary value problems for second order or-
dinary differential equations, Comm. Pure Appl. Math. 23 (1970), 939-962.

P.H. Rabinowitz; Some global results for nonlinear eigenvalue problems, J. Functional Anal.
7 (1971), 487-513.

P. H. Rabinowitz; On bifurcation from infinity, J. Differential Equations 14 (1973), 462-475.
B. P. Rynne; Linear second order problems with Sturm-Liouville-type multipoint boundary
conditions, Electron. J. Differential Equations 2012 (2012), No. 146, 21 pp.

B. P. Rynne; Second order, three point, boundary value problem with jumping nonlinearities,
Nonlinear Anal. 68 (2008), 3294-3306.

B. P. Rynne; Spectral properties and nodal solutions for second-order m-point boundary value
problems, Nonlinear Anal. 67, No. 12 (2007), 3318-3327.

B. P. Rynne; Half-eigenvalues of self adjoint, 2mth order differential operators and semilinear
problems with jumping nonlinearities, Differential Integral Equations 14 (2001), No. 9, 1129-
1152.



EJDE-2014/156 NODAL SOLUTIONS 39

[31] B. P. Rynne; The Fucik spectrum of general Sturm-Liouville problems, J. Differential Equa-
tions 161 (2000), 87-109.

[32] Y. Sun, L. Liu, Y. J. Cho; Positive solutions of singular nonlinear Sturm-Liouville boundary
value problems, ANZIAM J. 45 (2004), 557-571.

[33] S. D. Taliaferro; A nonlinear singular boundary value problem, Nonlinear Anal. 3, No. 6
(1979), 897-904.

[34] L. Xiyu; Some ezistence and nonezxistence principles for a class of singular boundary value
bups, Nonlinear Anal. 27, No. 10 (1996), 1147-1164.

[35] E. Zeidler; Nonlinear Functional Analysis and its Applications, Vol. I, Fized Point Theorems,
Springer-Verlag, New York 1986.

[36] A. Zettl; Sturm-Liouville Theory, American Mathematical Society, Mathematical Surveys
and Monographs, Vol. 121, 2005.

ABDELHAMID BENMEZAT
FacurLty oF MATHEMATICS, USTHB, ALGIERS, ALGERIA
E-mail address: aehbenmezai@gmail.com

WASSILA ESSERHANE
GRADUATE SCHOOL OF STATISTICS AND APPLIED EconoMmics, P.O. Box 11, DOUDOU MOKHTAR,
BEN-AKNOUN ALGIERS, ALGERIA

E-mail address: ewassila@gmail.com

JOHNNY HENDERSON
DEPARTMENT OF MATHEMATICS, BAYLOR UNIVERSITY, WACO, TEXAS 76798-7328, USA
E-mail address: Johnny Henderson@baylor.edu



	1. Introduction
	2. Main results
	3. Background
	3.1. A comparison result
	3.2. Spectral radius of a positive operator
	3.3. The linear eigenvalue bvp in the integrable case
	3.4. Berestycki's half-eigenvalue bvp
	3.5. Fucik spectrum

	4. Proofs of main results
	4.1. Auxiliary results
	4.2. Proof of Theorem 2.4
	4.3. Proof of Theorem 2.5
	4.4. Proof of Theorem 2.7
	4.5. Proof of Theorem 2.9
	Acknowledgements

	References

