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NODAL SOLUTIONS FOR SINGULAR SECOND-ORDER
BOUNDARY-VALUE PROBLEMS

ABDELHAMID BENMEZAÏ, WASSILA ESSERHANE, JOHNNY HENDERSON

Abstract. We use a global bifurcation theorem to prove the existence of nodal

solutions to the singular second-order two-point boundary-value problem

−(pu′)′(t) = f(t, u(t)) t ∈ (ξ, η),

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0,

cu(η) + d lim
t→η

p(t)u′(t) = 0,

where ξ, η, a, b, c, d are real numbers with ξ < η, a, b, c, d ≥ 0 , p : (ξ, η) →
[0,+∞) is a measurable function with

R η
ξ 1/p(s) ds < ∞ and f : [ξ, η] ×

[0,+∞)→ [0,+∞) is a Carathéodory function.

1. Introduction

Many articles concerning the existence of nodal solutions for second-order differ-
ential equations subject to various boundary conditions, have appeared during the
previous five decades; see for example [4, 5, 8, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22,
24, 25, 26, 27, 28, 29, 30, 31] and references therein.

Ma and Thompson [19, 20, 21] considered the boundary-value problem (bvp for
short),

−u′′ = a(t)f(u), t ∈ (0, 1),

u(0) = u(1) = 0
(1.1)

where a : [0, 1] → [0,+∞) is continuous and does not vanish identically, and f :
R → R is continuous with f(s)s > 0 for s 6= 0. They proved also, that bvp (1.1)
admits 2k nodal solutions when the interval whose extremities are limu→0 f(u)/u
and lim|u|→+∞ f(u)/u contains k eigenvalues of the linear bvp associated with (1.1),

−u′′ = λa(t)u, t ∈ (0, 1),

u(0) = u(1) = 0.
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Articles [17] and [29] were devoted to the multipoint bvp,

−u′′ = f(u), t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi)
(1.2)

where f : R → R is C1 with f(0) = 0, m ≥ 3, ηi ∈ (0, 1) and αi > 0 for
i = 1, . . . ,m − 2 with

∑m−2
i=1 αi < 1, by which Rynne [29] extended the result and

filled some gaps in [17].
Roughly speaking, Rynne proved that bvp (1.2) admits 2k nodal solutions when

the interval whose extremities are limu→0 f(u)/u and lim|u|→+∞ f(u)/u contains k
eigenvalues of the linear bvp associated with (1.2),

−u′′ = λu, t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi).

This result was extended by Genoud and Rynne in [12] to the case with variable
coefficients.

Existence and multiplicity of positive solutions for second order bvps having
singular dependence on the independent variable, have been considered in many
papers; see, for example, [1, 3, 7, 9, 13, 14, 15, 32, 33, 34] and references therein.
In particular, it is proved in [9, 15, 32] that, if the function a in bvp (1.1) is just
continuous on (0, 1) and satisfies∫ 1

0

t(1− t)a(t)dt <∞, (1.3)

then (1.1) admits one or more positive solutions under some additional conditions
on the behavior of the ratio f(u)/u at 0 and +∞. A natural question becomes,

Is it possible to obtain existence results for nodal solutions to bvp
(1.1) under Hypothesis (1.3)?

So, the main goal of this paper is to give an answer to this question.
In fact, we will give an answer for a more general bvp having a nonlinearity

more general than (1.1), under a hypothesis looking like (1.3). This answer will be
based on the knowledge of the spectrum of the linear problem associated with the
nonlinear bvp. This was the case also for all the works in [4, 11, 12, 16, 17, 18, 19,
20, 21, 27, 29, 30, 31].

We need also in this work to introduce the concept of half-eigenvalue which
generalizes the notion of eigenvalue. The definition of half-eigenvalue here is not
the same given by Berysticki (see Remark 3.8), and for the role that will be played
by this notion, we refer the reader to [4, 6, 11, 28, 29, 30].

A typical example of a weight function satisfying Hypothesis (1.3) is a(t) =
t−3/2(1 − t)−3/2. Note that such a weight a is not integrable near 0 and 1. We
have a similar situation in this work and this causes many difficulties in proving
existence of half-eigenvalues as well as in proving the main results of this paper.
The existence of half-eigenvalues will be obtained by sequential arguments. We will
use in this work, the global bifurcation theorem of Rabinowitz to obtain our main
results.
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2. Main results

This article concerns the existence of nodal solutions for the bvp,

−(pu′)′(t) = f(t, u(t)), a.e. t ∈ (ξ, η)

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0,

cu(η) + d lim
t→η

p(t)u′(t) = 0,

(2.1)

where ξ, η ∈ R with ξ < η, a, b, c, d ∈ R+ = [0,+∞), p : (ξ, η)→ R+ is a measurable
function and f : (ξ, η) × R → R is a Carathéodory function (f(·, u) is measurable
for u fixed and f(t, ·) is continuous for t ∈ (ξ, η) a.e.).

Throughout this article, we assume that∫ η

ξ

dτ

p(τ)
<∞, (2.2)

∆ = ad+ ac

∫ η

ξ

dτ

p(τ)
+ bc > 0. (2.3)

Let

L1
G[ξ, η] =

{
q : (ξ, η)→ R measurable,

∫ η

ξ

G(t, t)|q(t)|dt <∞
}

and let KG be the cone of all functions q ∈ L1
G[ξ, η] such that q(t) ≥ 0 a.e. t ∈ [ξ, η]

and q > 0 in a subset of a positive measure of [ξ, η] where

G(t, s) =
1
∆

{
Φab(s)Ψcd(t), ξ ≤ s ≤ t ≤ η,
Φab(t)Ψcd(s), ξ ≤ t ≤ s ≤ η.

is the Green’s function associated with the bvp

−(pu′)′(t) = 0, a.e. t ∈ (ξ, η),

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0,

cu(η) + d lim
t→η

p(t)u′(t) = 0,

and the functions Φab(t) = b + a
∫ t
ξ

1/p(τ) dτ and Ψcd(t) = d + c
∫ η
t

1/p(τ) dτ are
well defined on [ξ, η].

Note that the space L1
G [ξ, η] depends on the parameters b and d. In fact, we

have that L1
G[ξ, η] = L1[ξ, η] if bd 6= 0 and L1

G[ξ, η]\L1[ξ, η] is nonempty if bd = 0.
More precisely, we have that q ∈ L1

G [ξ, η] is not integrable at ξ if and only if
b = 0 and q is not integrable at η if and only if d = 0. For example, if p = 1 and
b = d = 0 the function q(s) = (s(1− s))−3/2 ∈ L1

G[ξ, η]\L1[ξ, η]. Moreover, we have
that L1

G[ξ, η] ⊂ L1
loc(ξ, η).

The main result of this article (Theorem 2.9) will be obtained under the following
additional conditions on the nonlinearity f :

There exist functions α∞, β∞, γ∞, δ∞ and q0 in KG such that the set

{t ∈ (ξ, η) : α∞(t)β∞(t) > 0}
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is of a positive measure,

lim
u→0

f(t, u)
u

= q0(t) for t ∈ [ξ, η] a.e.,

lim
u→−∞

f(t, u)
u

= β∞(t) for t ∈ [ξ, η] a.e.,

lim
u→+∞

f(t, u)
u

= α∞(t) for t ∈ [ξ, η] a.e.

(2.4)

and

δ∞(t) ≤ f(t, u)
u

≤ γ∞(t) for all u ∈ R and t ∈ [ξ, η] a.e. (2.5)

From all the above hypotheses, we understand that a solution to bvp (2.1) is
a function u ∈ C[ξ, η] ∩ C1(ξ, η) with (pu′)′ ∈ L1

G[ξ, η], satisfying all equations in
(2.1).

Remark 2.1. Note that Hypothesis (2.5) implies that the nonlinearity f satisfies
the following sign condition:

f(t, u)u ≥ 0 for all u ∈ R and t ∈ [ξ, η] a.e.

Example 2.2. A typical example of a nonlinearity satisfying Hypotheses (2.4))-
(2.5), when p = 1 and b = d = 0, is

f(t, u) = At−3/2(1− t)−5/4u+Bt−7/6(1− t)−7/4 u3

1 + u2 + e−u

+ Ct−11/7(1− t)−13/10 u3

1 + u2 + eu
,

where A,B,C are positive constants.

Throughout this article, we denote by E the Banach space of all continuous
functions defined on [ξ, η], equipped with the sup-norm denoted ‖ · ‖∞ and by Y
the Banach space defined as

Y =
{
v ∈ AC[ξ, η] : pv′ ∈ C[ξ, η] and

av(ξ)− b lim
t→ξ

p(t)v′(t) = cv(η) + d lim
t→η

p(t)v′(t) = 0
}

equipped with the norm ‖v‖Y = ‖v‖∞ + ‖pv′‖∞ for v ∈ Y . In all this paper, £ is
the differential operator given by

£u(x) = −(pu′)′(x)

with domain

D(£) =
{
v ∈ AC[ξ, η] : pv′ ∈ C(ξ, η) and (pv′)′ ∈ L1

G[ξ, η]
}
.

Set

Y# =
{
v ∈ D(£) : av(ξ)− b lim

t→ξ
p(t)v′(t) = cv(η) + d lim

t→η
p(t)v′(t) = 0

}
.

We have that £ : Y# → L1
G[ξ, η] is one to one, with

£−1v(t) =
∫ η

ξ

G(t, s)v(s)ds for all v ∈ L1
G[ξ, η].

For u ∈ AC[ξ, η], u[1] is the quasiderivative of u, for t ∈ [ξ, η]; that is, u[1](t) =
limτ→t p(τ)u′(τ) when it exists.
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For k ≥ 1, let S+
k denote the set of all functions v ∈ AC[ξ, η] with pv′ ∈ C(ξ, η),

having exactly (k − 1) simple zeros in (ξ, η) (if v(τ) = 0 then v[1](τ) 6= 0) and v is
positive in a right neighborhood of ξ, and denote S−k = −S+

k and Sk = S+
k ∪ S

−
k .

Let

ρ0 =
(∫ η

ξ

ds

p(s)

)−1

(η − ξ),

C1
#[ξ, η] =

{
v ∈ C1[ξ, η] : av(ξ)− bρ0 v

′(ξ) = 0 and cv(η) + d ρ0v
′(η) = 0

}
equipped with the C1-norm and, for all k ≥ 1 let Θ+

k be the set of all functions
v ∈ C1

#[ξ, η] having exactly (k − 1) simple zeros in (ξ, η) and v is positive in a
right neighborhood of ξ,Θ−k = −Θ+

k and Θk = Θ+
k ∪ Θ−k . It is well known that

Θ+
k ,Θ

−
k and Θk are open sets in C1

#[ξ, η]. Since for all k ≥ 1 and ν = + or −,
Φ(Sνk ∩ Y ) = Θν

k where Φ : Y → C1
#[ξ, η] is the homeomorphism between Banach

spaces defined by

Φ(u) = u ◦ ϕ−1 with ϕ(t) = ξ + ρ0

∫ t

ξ

ds

p(s)
,

we have that Sνk ∩ Y is an open set in Y . Moreover, since if u ∈ ∂Θν
k then there

exists τ ∈ [ξ, η] such that u(τ) = u′(τ) = 0, we have that for all v ∈ ∂(Sνk ∩ Y )
there exists τ ∈ [ξ, η] such that u(τ) = u[1](τ) = 0.

For ν = + or −, let Iν : E → E be defined by Iνu(x) = max(νu(x), 0), for
u ∈ E. For all u ∈ E, we have

u = I+u− I−u and |u| = I+u+ I−u.

This implies that, for all u, v ∈ E,

|I+u− I+v| ≤ |u− v|
2

+
||u| − |v||

2
≤ |u− v| ,

|I−u− I−v| ≤ |u− v|
2

+
||u| − |v||

2
≤ |u− v|,

(2.6)

and the operators I+, I− are continuous.
For sake of simplicity, throughout this paper, we will use u+ and u− instead of

I+u and I−u, respectivley. Now we focus our attention on the eigenvalue bvp

−(pu′)′(t) = λ(α(t)u+(t)− β(t)u−(t)), a.e. t ∈ (ξ, η),

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0,

cu(η) + d lim
t→η

p(t)u′(t) = 0,

(2.7)

where α and β are functions in KG such that the set {t ∈ (ξ, η) : α(t)β(t) > 0} is
of a positive measure, and λ is a real parameter.

Definition 2.3. We say that λ is a half-eigenvalue of (2.7) if there exists a non-
trivial solution (λ, uλ) of (2.7). In this situation, {(λ, tuλ), t > 0} is a half-line
of nontrivial solutions of (2.7) and λ is said to be simple if all solutions (λ, v) of
(2.7) with v and u having the same sign on a right neighborhood of ξ are on this
half-line. There may exist another half-line of solutions {(λ, tvλ), t > 0}, but then
we say that λ is simple if uλ and vλ have different signs on a right neighborhood
of ξ and all solutions (λ, v) of (2.7) lie on these two half lines.
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Theorem 2.4. Assume that (2.2) and (2.3) hold, and α, β ∈ KG ∩ L1[ξ, η]. Then
the set of half-eigenvalues to bvp (2.7) consists of two increasing sequences (λ+

k )k≥1

and (λ−k )k≥1 such that for all k ≥ 1 and ν = + or −,
(1) λνk is simple and is the unique half-eigenvalue having a half-line of solutions

in {λνk} × Sνk .
(2) λνk is a nondecreasing function with the respect of each of the weights α and

β lying in L1[ξ, η].

Theorem 2.5. Assume that (2.2) and (2.3) hold. Then the set of half-eigenvalues
to bvp (2.7) consists of two nondecreasing sequences (λ+

k )k≥1 and (λ−k )k≥1 such
that for all k ≥ 1 and ν = + or −, λνk is the unique half eigenvalue having a half-
line of solutions in {λνk} × Sνk . Moreover, for all k ≥ 1 and ν = + or −, λνk is
a nondecreasing function with the respect of each of the weights α and β lying in
L1
G[ξ, η].

Remark 2.6. It is clear that for all k ≥ 1 and ν = + or −, λνk depends on the
weights p, α, β and on (ξ, η, a, b, c, d). When there is no confusion, we just denote
λνk, and when we need to be more precise, we write λνk(α, β).

Consider the bvp,
£u(t) = µq(t)u(t), a.e. t ∈ (ξ, η),

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0,

cu(η) + d lim
t→η

p(t)u′(t) = 0,

(2.8)

where µ is a real parameter, and q ∈ KG.
It is clear that if µ is an eigenvalue for (2.8) then µ depends on the weights p, q

and on (ξ, η, a, b, c, d). When there is no confusion, we just denote µ(q), and when
we need to be more precise, we write µ(q, [ξ, η]).

Theorem 2.7. Assume that (2.2) and (2.3) hold. Then bvp (2.8) admits a sequence
of eigenvalues (µk(q))k≥1 such that:

(1) For all k ≥ 3, µk(q) is simple and the associated eigenfunction φk ∈ Sk.
(2) For all k ≥ 3, µk(q) < µk+1(q).
(3) If bd 6= 0, or bd = 0 and q ∈ L1[ξ, η], then µ1(q, [ξ, η]) < µ2(q, [ξ, η]) and

µ1(q), µ2(q) are simple having eigenvectors respectively in S1 and S2. If
bd = 0 and q /∈ L1[ξ, η], then µ1(q) = µ2(q) and µ1(q) = µ2(q) is double
having two eigenvectors φ1,1 ∈ S1 and φ1,2 ∈ S2.

(4) For all k ≥ 1 and θ > 0, µk(θq) = µk(q)
θ .

(5) Let q1 ∈ KG. We have µk(q1) ≥ µk(q) for all k ≥ 1 whenever q1 ≤ q.
(6) If [ξ1, η2] ⊂ [ξ, η] then µk(q, [ξ, η]) ≤ µk(q, [ξ1, η1]).
(7) For all k ≥ 1, µk(·, [ξ, η]) : KG → R is continuous.

Remark 2.8. Since the weight q in Theorem 2.7 is not necessarily in L1[ξ, η],
Theorem 2.7 is not covered by [36, Theorems 4.3.1, 4.3.2, 4.3.3, 4.3.4].

For the statement of the main results of this paper we introduce the following
notation:

θ∞(t) = max(α∞(t), β∞(t)), ϑ∞(t) = min(α∞(t), β∞(t)),

and let (µk(θ∞))k≥1, (µk(ϑ∞))k≥1 and (µk(q0))k≥1 be respectively the sequences
of eigenvalues given by Theorem 2.7 for q = θ∞, q = ϑ∞ and q = q0.



EJDE-2014/156 NODAL SOLUTIONS 7

Theorem 2.9. Assume that (2.2)-(2.5) hold and that there exist two integers k, l
with 2 < k < l such that one of the following situations holds:

µl(q0) < 1 < µk(θ∞)

or
µl(ϑ∞) < 1 < µk(q0) .

Then for all i ∈ {k, . . . , l} and ν = + or −, (2.1) has a solution in Sνi .

Consider the separated variables case
£u(t) = qsv(t)h(u(t)), a.e. t ∈ (ξ, η)

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0

cu(η) + d lim
t→η

p(t)u′(t) = 0

(2.9)

where qsv is a nonnegative function in L1
G[ξ, η] which does not vanish identically in

[ξ, η] and h : R→ R is a continuous function such that

h(x)x > 0 for all x 6= 0

limx→0
h(x)
x

= h0, lim
x→+∞

h(x)
x

= h+∞,

limx→−∞
h(x)
x

= h−∞ with h0, h+∞, h−∞ ∈ (0,+∞).

(2.10)

The following corollary provides an answer to a more general situation than those
studied in [20] and [21] and also covers [22, Theorems 2 and 3].

Corollary 2.10. Assume that (2.10) holds and there exist two integers k, l with
2 < k < l, such that one of the following situations holds:

h+∞, h−∞ < µk(qsv) < µl(qsv) < h0

or
h0 < µk(qsv) < µl(qsv) < h+∞, h−∞ .

Then for all i ∈ {k, . . . , l} and ν = + or −, (2.9) has a solution in Sνi .

Proof. Set f(t, u) = qsv(t)h(u). It is easy to check that f satisfies Hypotheses
(2.4)-(2.5), with

α∞(t) = h+∞qsv(t), β∞(t) = h−∞qsv(t), q0(t) = h0qsv(t),

γ∞ = hsupqsv(t), δ∞ = hinfqsv(t),

hinf = inf{h(u)/u : u 6= 0},
hsup = sup{h(u)/u : u 6= 0}.

Also, we have

θ∞(t) = max(h+∞, h−∞)qsv(t), ϑ∞(t) = min(h+∞, h−∞)qsv(t).

Since Property 2 of Theorem 2.7 implies that for all n ≥ 1,

µn(θ∞) =
µn(qsv)

max(h+∞, h−∞)
, µn(ϑ∞) =

µn(qsv)
min(h+∞, h−∞)

, µn(q0) =
µn(qsv)
h0

,

we obtain that µl(q0) < 1 < µk(θ∞) if h+∞, h−∞ < µk(qsv) < µl(qsv) < h0 and
µl(ϑ∞) < 1 < µk(q0) if h0 < µk(qsv) < µl(qsv) < h+∞, h−∞. Thus, the conclusion
of Corollary 2.10 follows from Theorem 2.9. �



8 A. BENMEZAÏ, W. ESSERHANE, J. HENDERSON EJDE-2014/156

3. Background

3.1. A comparison result.

Theorem 3.1. Let u and v be two functions in Sνk . Then, there exist two intervals
[ξ1, η1] and [ξ2, η2] such that uv ≥ 0 in [ξi, ηi] i = 1, 2. Moreover if pu′, pv′ ∈
AC[ξi, ηi] i = 1, 2 then∫ η1

ξ1

v£u− u£v ≥ 0,
∫ η2

ξ2

v£u− u£v ≤ 0.

The proof of this theorem is based on the following lemma.

Lemma 3.2 ([4]). Let j and k be two integers such that j ≥ k ≥ 2. Suppose that
there exist two families of real numbers

ξ0 = ξ < ξ1 < ξ2 < . . . ξk−1 < ξk = η

η0 = ξ < η1 < η2 < . . . ηj−1 < ηj = η.

Then, if ξ1 ≤ η1 there exist two integers j0 and k0 having the same parity, 1 ≤ j0 ≤
j − 1, 1 ≤ k0 ≤ k − 1 such that

ξk0 ≤ ηj0 ≤ ηj0+1 ≤ ξk0+1.

Proof of Theorem 3.1. The case k = 1 is obvious. Let

x0 = ξ < x1 < x2 < · · · < xk−1 < xk = η,

z0 = ξ < z1 < z2 < · · · < zk−1 < zk = η

be the sequences of zeros of u and v, respectively.
Suppose x1 ≤ z1. Then we deduce from Lemma 3.2 the existence of integers k0

and j0 having the same parity such that xk0 ≤ zj0 ≤ zj0+1 ≤ xk0+1.
Therefore, we choose ξ1 = x0, η1 = x1, ξ2 = zj0 and η2 = zj0+1, and since k0 and

j0 have the same parity, u and v have the same sign in both the intervals [ξ1, η1]
and [ξ2, η2].

Now if u, v ∈ Sνk ∩Y , then for i = 1, 2, u[1](ξi), v[1](ξi), u[1](ηi) and v[1](ηi) exist
and are finite. Moreover if u ≥ 0 and v ≥ 0 in [ξi, ηi] i = 1, 2 (the other cases can
be checked similarly) then we have since u and v satisfy the boundary condition at
ξ1,

v(ξ1)u[1](ξ1)− u(ξ1)v[1](ξ1) = 0, u[1](η1) ≤ 0,

and

v[1](ξ2) ≥ 0, v[1](η2) ≤ 0,

−v(η2)u[1](η2) + u(η2)v[1](η2) =

{
0, if η2 = η,

u(η2)v[1](η2) ≤ 0, if η2 < η.

Thus, we obtain ∫ η1

ξ1

v£u− u£v = −v(η1)u[1](η1) ≥ 0,∫ η2

ξ2

v£u− u£v = −v(η2)u[1](η2) + u(η2)v[1](η2)− u(ξ2)v[1](ξ2) ≤ 0.

This completes the proof. �
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3.2. Spectral radius of a positive operator. Let Z be a real Banach space and
L(Z) the Banach space of linear continuous operators from Z into Z. For L ∈ L(Z),
r(L) = lim ‖Ln‖ 1

n denotes the spectral radius of L.
A nonempty closed convex subset K of Z is said to be an ordered cone if (tK) ⊂

K for all t ≥ 0 and K ∩ (−K) = {0}. Moreover if Z = K −K, the cone K is said
to be total. It well known that an ordered cone K induces a partial order on the
Banach space Z (x ≤ y if and only if y − x ∈ K for all x, y ∈ Z).

LetK be an ordered cone of Z and L ∈ L(Z). L is said to be positive if L(K) ⊂ K
and µ ∈ R is said to be a positive eigenvalue of L if there exists u ∈ K \ {0} such
that Lu = µu.

Let L1, L2 ∈ L(Z) be two positive operators. We write L1 ≤ L2 if L1u ≤ L2u
for all u ∈ K.

We will use in this work the following result known as the Krein-Rutman Theo-
rem.

Theorem 3.3 ([35, Proposition 7.26]). Assume that the cone K is total and L ∈
L(Z) is compact and positive with r(L) > 0. Then r(L) is a positive eigenvalue of
L.

We will use also the following lemma.

Lemma 3.4 ([35, Corollary 7.28]). Assume that the cone K is total and let L1, L2

in L(Z) be two compact and positive operators. If L1 ≤ L2, then r(L1) ≤ r(L2).

Next we recall a fundamental result proved by Nussbaum in [23] and used in [3].

Lemma 3.5. Let (Ln) be a sequence of compact linear operators on a Banach space
Z and suppose that Ln → L in operator norm as n→∞. Then r(Ln)→ r(L).

3.3. The linear eigenvalue bvp in the integrable case.

Theorem 3.6. Assume that Hypotheses (2.2) and (2.3) hold and q ∈ KG∩L1[ξ, η].
Then the set of eigenvalues to bvp (2.8) consists of an increasing sequence of simple
eigenvalues (µk(q))k≥1 tending to +∞, such that for all k ≥ 1,

(1) The eigenfunction φk associated with µk(q) belongs to Sk.
(2) If θ > 0 then µk(θq) = µk(q)

θ .
(3) Let q1 be a nonnegative function in L1[ξ, η] which does not vanish identically

in [ξ, η]. We have µk(q1) ≥ µk(q) for all k ≥ 1 whenever q1 ≤ q. Moreover,
if q1 < q in a subset of a positive measure then µk(q1) > µk(q).

(4) If [ξ1, η1] ( [ξ, η] then µk(q, [ξ, η]) < µk(q, [ξ1, η1]).
(5) µk is a continuous function with respect to the variable q lying in L1[ξ, η].

Proof. From Theorem 4.3.2 in [36], the bvp (2.8) has only real and simple eigen-
values and they are ordered to satisfy

−∞ < µ1 < µ2 < · · · < lim
k→∞

µk = +∞.

Moreover if φk is an eigenfunction of µk, and nk denotes the number of zeros of φk
in (ξ, η), then φk ∈ AC[ξ, η], pφ′k ∈ AC[ξ, η] and nk+1 = nk + 1. Now, we have

0 < −φk(η)φ[1]
k (η) + φk(ξ)φ[1]

k (ξ) +
∫ η

ξ

p(φ′k)2 =
∫ η

ξ

φk£φk = µk

∫ η

ξ

qφ2
k

leading to µk > 0 for all k ≥ 1.
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Let Lq : E → E be defined by

Lqu(t) =
∫ η

ξ

G(t, s)q(s)u(s)ds = £−1(qu)(t).

It is easy to see that Lq is a positive operator with respect to the total cone of
nonnegative functions in E and λ is an eigenvalue of Lq if and only if λ−1 is an
eigenvalue of bvp (2.8). Also, the presence of eigenvalues implies that r(Lq) > 0.
Thus, we deduce from Theorem 3.3 that r(Lq) is the largest and positive eigenvalue
of Lq, and so, we have µ1 = 1/r(Lq) and n1 = 0 and for all k ≥ 2, nk = k − 1.
That is φk ∈ Sk and Assertion 1, is proved.

Assertion 2 is obvious and since µk > 0 for all k ≥ 1. Assertion 3 follows directly
from [36, Theorem 4.9.1].

To prove Property 4, let [ξ′, η′] ( [ξ, η], and φ and ψ be such that

£φ = µk(q)qφ, a.e. t ∈ (ξ, η),

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0,

cu(η) + d lim
t→η

p(t)u′(t) = 0,

and

£ψ = µk(q, [ξ1, η1])qψ, a.e. t ∈ (ξ, η),

au(ξ1)− b lim
t→ξ1

p(t)u′(t) = 0,

cu(η1) + d lim
t→η1

p(t)u′(t) = 0.

Denote by (xi)1≤i≤k and (yj)1≤j≤k, respectively, the two sequences of zeros of
φ and ψ. There exist two integers 1 ≤ i0, j0 ≤ k such that one of the following two
situations holds:

ξ ≤ xi0−1 ≤ yj0−1 < yj0 < xi0 ≤ η,
ξ ≤ xi0−1 < yj0−1 < yj0 ≤ xi0 ≤ η.

Without loss of generality, suppose φ and ψ are positive, respectively, in (xi0−1, xi0)
and (yj0−1, yj0) and (3.3) holds. Then we have

ψ(yj0) = 0, φ(yj0) > 0, ψ[1](yj0) < 0, ψ[1](yj0−1) ≥ 0, φ(yj0−1) ≥ 0,

and

− ψ[1](yj0−1)φ(yj0−1) + φ[1](yj0−1)ψ(yj0−1)

=

{
0 if yj0−1 = ξ

−ψ[1](yj0−1)φ(yj0−1) ≤ 0 if yj0−1 > ξ.

From which we obtain

(µk(q, [ξ, η])− µk(q, [ξ1, η1]))
∫ yj0

yj0−1

qψφ

=
∫ yj0

yj0−1

ψ£φ− φ£ψ

= ψ[1](yj0)φ(yj0)− ψ[1](yj0−1)φ(yj0−1) + φ[1](yj0−1)ψ(yj0−1) < 0
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leading to
µk(q, [ξ, η]) < µk(q, [ξ1, η1]).

Finally, Property 5 is obtained from [36, Theorem 3.5.2]. �

3.4. Berestycki’s half-eigenvalue bvp. Letm,α and β be three continuous func-
tions on [ξ, η] with m > 0 in [ξ, η] and consider the bvp,

£u = λmu+ αu+ − βu− in (ξ, η),

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0

cu(η) + d lim
t→η

p(t)u′(η) = 0,

(3.1)

where λ is a real parameter.
Bvp (3.1) is called half-linear since it is linear and positively homogeneous in the

cones u ≥ 0 and u ≤ 0.

Definition 3.7. We say that λ is a half-eigenvalue of (3.1) if there exists a non-
trivial solution (λ, uλ) of (3.1). In this situation, {(λ, tuλ), t > 0} is a half-line
of nontrivial solutions of (3.1) and λ is said to be simple if all solutions (λ, v) of
(3.1) with v and u having the same sign on a deleted neighborhood of ξ are on this
half-line. There may exist another half-line of solutions {(λ, tvλ), t > 0}, but then
we say that λ is simple if uλ and vλ have different signs on a deleted neighborhood
of ξ and all solutions (λ, v) of (3.1) lie on these two half lines.

Remark 3.8. Note that the position of the real parameter in the differential equa-
tion in (3.1) is not same as in Problem (2.7). Moreover, we have Problem (3.1)
coincides with the linear eigenvalue problem when α = β = 0, even though Prob-
lem (2.7) coincides with the linear eigenvalue problem when α = β.

Berestycki proved in [4] the following theorem.

Theorem 3.9. Assume that p ∈ C1[ξ, η] and p > 0 in [ξ, η]. Then the set of
half eigenvalues of bvp (3.1) consists of two increasing sequences of simple half-
eigenvalues for bvp (3.1) (λ+

k )k≥1 and (λ−k )k≥1, such that for all k ≥ 1 and ν = +
or −, the corresponding half-lines of solutions are in {λνk} × Sνk .

Proposition 3.10. Let α1, α2, β1, β2 ∈ C([ξ, η]). We have
• If α1 ≤ α2, then λνk(α1) ≥ λνk(α2), for all k ≥ 1 and ν = + or −.
• If β1 ≤ β2, then λνk(β1) ≥ λνk(β2), for all k ≥ 1 and ν = + or −.

Proof. We present the proof of the first assertion. The second one can be proved
in a similar way. Let φ1, φ2 be such that

£φ1 = λνk(α1)mφ1 + α1φ
+
1 − βφ

−
1 in (ξ, η),

aφ1(ξ)− b lim
t→ξ

p(t)φ′1(t) = 0,

cφ1(η) + d lim
t→η

p(t)φ′1(η) = 0,

and

£φ2 = λνk(α2)mφ2 + α1φ
+
2 − βφ

−
2 in (ξ, η),

aφ2(ξ)− b lim
t→ξ

p(t)φ′2(t) = 0,

cφ2(η) + d lim
t→η

p(t)φ′2(η) = 0.
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Note that φ1, φ2 ∈ Sk ∩ C2[ξ, η] and let [ξ1, η1] be the interval given by Theorem
3.1 for the functions φ1 and φ2. Since φ1 and φ2 have the same sign in (ξ1, η1),
after simple computations we obtain

(λνk(α1)− λνk(α2))
∫ η1

ξ1

mφ1φ2 = −
∫ η1

ξ1

(α1 − α2)φ1φ2 +
∫ η1

ξ1

φ2£φ1 − φ1£φ2 ≥ 0

leading to
λνk(α1) ≥ λνk(α2).

This completes the proof. �

Remark 3.11. Naturally one can ask, is it possible to extend Berestyki’s theorem
to the case where the weight m, as well as α and β all belong to L1

G[ξ, η]?
This is technically difficult since a half-eigenvalue of (3.1) is decreasing with

respect to the weight m only if it is positive.

3.5. Fučik spectrum. Consider now the bvp,

−u′′(t) = αu+(t)− βu−(t), t ∈ (ξ, η),

au(ξ)− bu′(ξ) = 0,

cu(η) + du′(η) = 0,

(3.2)

where α, β are positive real parameters and a, b, c, d ∈ R+ with ac+ ad+ bc > 0.
The statement of the next result requires introducing the functions Λa,b,c,d,Λa,b :

(0,+∞)→ (0,+∞) defined, for σ > 0, by

Λa,b,c,d(σ) =
1√
σ

(
π − arcsin

(√ b2σ

a2 + b2σ

)
− arcsin

(√ d2σ

c2 + d2σ

))
,

and

Λa,b(σ) =
1√
σ

(
π − arcsin

(√ b2σ

a2 + b2σ

))
.

Note that Λa,b = Λa,b,1,0 = Λ1,0,a,b. The sets S+
k , S−k and Sk are those introduced

in Section 2 for p = 1. The main goal of this subsection is to describe the set

Fs = {(α, β) ∈ R× R : (3.2) has a solution }
known as the Fučik spectrum.

Theorem 3.12. Let S be the set of solutions to bvp (3.2). Then S ⊂ ∪k≥1Sk.
Moreover bvp (3.2) admits a solution

(1) in S+
1 if and only if Λa,b,c,d(α) = η − ξ,

(2) in S−1 if and only if Λa,b,c,d(β) = η − ξ,
(3) in S+

2l with l ≥ 1 if and only if

Λa,b(α) + Λc,d(β) + π(l − 1)(
1√
α

+
1√
β

) = η − ξ,

(4) in S−2l with l ≥ 1 if and only if

Λa,b(β) + Λc,d(α) + π(l − 1)(
1√
α

+
1√
β

) = η − ξ,

(5) in S+
2l+1 with l ≥ 1 if and only if

Λa,b(α) + Λc,d(α) +
π(l − 1)√

α
+

πl√
β

= η − ξ,



EJDE-2014/156 NODAL SOLUTIONS 13

(6) in S−2l+1 with l ≥ 1 if and only if

Λa,b(β) + Λc,d(β) +
π(l − 1)√

β
+

πl√
α

= η − ξ.

Proof. First, note that u is a solution to (3.2) if and only if v(t) = u((η − ξ)t+ ξ)
is a solution to the bvp

−v′′(t) = (η − ξ)2αv+(t)− (η − ξ)2βv−(t), t ∈ (0, 1),

av(0)− b

(η − ξ)
v′(0) = 0,

cv(1) +
d

(η − ξ)
v′(1) = 0.

Then, Assertions 1 and 2 of Theorem 3.12 follow from Proposition 3.1 in [2].
Now, for the sake of brevity, we prove only Assertion 3 (the others can be proved

similarly). Note that u ∈ Sν2l is a solution to (3.2) if and only if there exists a finite
sequence (xi)i=2l

i=0 such that

ξ = x0 < x1 < · · · < x2l−1 < x2l = η

and

u > 0 in (x2i, x2i+1) for i = 0, . . . , (l − 1),

u < 0 in (x2i−1, x2i) for i = 1, . . . , l.

Moreover, u satisfies

−u′′(t) = αu(t), t ∈ (ξ, x1),

au(ξ)− bu′(ξ) = u(x1) = 0,

and for i = 1, . . . , (l − 1):

−u′′(t) = αu(t), t ∈ (x2i, x2i+1), u(x2i) = u(x2i+1) = 0,

and

−u′′(t) = βu(t), t ∈ (x2i−1, x2i),

u(x2i−1) = u(x2i) = 0,

and

−u′′(t) = αu+(t)− βu−(t), t ∈ (x2l−1, η),

u(x2l−1) = cu(η) + du′(η) = 0.

Hence, from Assertions 1 and 2, we obtain

1√
α

(
π − arcsin

(√ b2α

a2 + b2α

))
= x1 − ξ,

π√
α

= (x2i+1 − x2i) for i = 1, . . . , (l − 1),

π√
β

= (x2i − x2i−1) for i = 1, . . . , (l − 1),

1√
β

(
π − arcsin

(√ d2β

c2 + d2β

))
= (η − x2l−1).
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Summing the above equalities, we obtain

Λa,b(α) + Λc,d(β) + π(l − 1)
( 1√

α
+

1√
β

)
= η − ξ.

Conversely, let α, β > 0 be such that

Λa,b(α) + Λc,d(β) + π(l − 1)
( 1√

α
+

1√
β

)
= η − ξ, (3.3)

and let (xi)i=2l
i=0 be the sequence defined by

x0 = ξ, x1 = ξ +
1√
α

(
π − arcsin

(√ b2α

a2 + b2α

))
,

x2i = x2i−1 +
π√
β

for i = 1, . . . , (l − 1),

x2i+1 = x2i +
π√
α

for i = 1, . . . , (l − 1), x2l = η.

(3.4)

Observe that from (3.4) and (3.3) we have

Λa,b,1,0(α) = x1 − ξ and Λ1,0,c,d,(β) = η − x2l−1,

that is, 1 is the smallest eigenvalue of each of the bvps

−u′′ = αu in (ξ, x1),

au(ξ)− bu′(ξ) = u(x1) = 0,
(3.5)

and
−u′′ = βu in (x2l−1, η),

u(x2l−1) = cu(η) + du′(η) = 0.
(3.6)

Thus, we consider the function

φ(t) =


φ1(t) for t ∈ [ξ, x1],
φ2i(t) for t ∈ [x2i−1, x2i], i = 1, . . . , (l − 1),
φ2i+1(t) for t ∈ [x2i, x2i+1], i = 1, . . . , (l − 1),
φ2l(t) for t ∈ [x2l−1, η],

where φ1 is the positive eigenfunction associated with the eigenvalue 1 of (3.5)
satisfying φ′1(x1) = −1,

φ2i(t) = − 1√
β

sin
(√

β(t− x2i−1)
)

for i = 1, . . . , (l − 1),

φ2i+1(t) =
1√
α

sin
(√
α(t− x2i)

)
for i = 1, . . . , (l − 1),

and φ2l is the negative eigenfunction associated with the eigenvalue 1 of (3.6)
satisfying φ′2l(x2l−1) = −1.

Thus, by simple computations we find that

φ′2i−1(x2i−1) = φ′2i(x2i−1) = −1 for i = 1, . . . , l,

φ′2i(x2i) = φ′2i+1(x2i) = 1 for i = 1, . . . , (l − 1),

φ′′2i(x2i−1) = φ′′2i(x2i) = 0 for i = 1, . . . , (l − 1),

φ′′2i+1(x2i) = φ′′2i+1(x2i+1) = 0 for i = 1, . . . , (l − 1),

φ′′1(x1) = φ′′2l(x2l−1) = 0.
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All the above equalities make φ a function in S+
2l ∩ C2[ξ, η] satisfying bvp (3.2).

This completes the proof. �

4. Proofs of main results

4.1. Auxiliary results. Let q ∈ L1
G[ξ, η]. For κ ∈ (ξ, η) we define the operators

Lq,κ,l : C[ξ,κ]→ C[ξ,κ] and Lq,κ,r : C[κ, η]→ C[κ, η] by

Lq,κ,lu(t) =
∫ κ

ξ

Gκ,l(t, s)q(s)u(s)ds,

Lq,κ,ru(t) =
∫ η

κ
Gκ,r(t, s)q(s)u(s)ds,

where

Gκ,l(t, s) =
(
b+ a

∫ κ

ξ

dτ

p(τ)

)−1


(
b+ a

∫ s
ξ

dτ
p(τ)

) ∫ κ
t

dτ
p(τ) , ξ ≤ s ≤ t ≤ κ,(

b+ a
∫ t
ξ

dτ
p(τ)

) ∫ κ
s

dτ
p(τ) , ξ ≤ t ≤ s ≤ κ,

and

Gκ,r(t, s) =
(
d+ c

∫ κ

ξ

dτ

p(τ)

)−1
{∫ s

κ
dτ
p(τ)

(
d+ c

∫ η
t

dτ
p(τ)

)
, κ ≤ s ≤ t ≤ η,∫ t

κ
dτ
p(τ)

(
d+ c

∫ η
s

dτ
p(τ)

)
, κ ≤ t ≤ s ≤ η.

Lemma 4.1. Assume that (2.2) and (2.3) hold. Then, for every function q ∈ KG,
limκ→ξ r(Lq,κ,l) = 0 and limκ→η r(Lq,κ,r) = 0.

Proof. We will prove that limκ→ξ r(Lq,κ,l) = 0. The other limit can be obtained
similarly. We distinguish two cases:
• b 6= 0: In this case q ∈ L1[ξ, ξ+η2 ] and we have

r(Lq,κ,l) ≤
∫ κ

ξ

Gκ,l(s, s)q(s)ds

≤
(
b+ a

∫ κ

ξ

dτ

p(τ)

)−1
∫ κ

ξ

(
b+ a

∫ κ

ξ

dτ

p(τ)

)(∫ κ

s

dσ

p(σ)

)
q(s)ds

≤
∫ κ

ξ

dσ

p(σ)

∫ κ

ξ

q(s)ds,

from which we obtain that limκ→ξ r(Lq,κ,l) = 0.
• b = 0: In this case a 6= 0 and q(s)

∫ s
ξ

1/p(ε) dε ∈ L1[ξ, (ξ + η)/2] and we have

r(Lq,κ,l) ≤
∫ κ

ξ

Gκ,l(s, s)q(s)ds

≤
∫ κ

ξ

(∫ s

ξ

dσ

p(σ)

)
q(s)ds−

(∫ κ

ξ

dσ

p(σ)

)−1
∫ κ

ξ

(∫ s

ξ

dσ

p(σ)

)2

q(s)ds

≤ 2
∫ κ

ξ

(q(s)
∫ s

ξ

dσ

p(σ)
)ds

leading to limκ→ξ r(Lq,κ,l) = 0. This completes the proof. �

Lemma 4.2. Assume that (2.2) and (2.3) hold and let α, β be two functions in
KG. If u is a nontrivial solution of

−(pu′)′(t) = λ(α(t)u+(t)− β(t)u−(t)),

u(t0) = 0
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with t0 ∈ {ξ, η}, then t0 is an isolated zero of u (i.e. there exists a neighborhood V0

of t0 such that u(t) 6= 0 for all t ∈ V0). Moreover, we have that limt→t0 p(t)u
′(t)

exists.

Proof. We present the proof for t0 = ξ the other case is similar. Let t∗ > ξ be such
that u does not vanish identically in (ξ, t∗) and suppose that α+β > 0 a.e. in (ξ, t∗)
(the case α + β = 0 a.e. in (ξ, t∗) is obvious). For the purpose of contradiction,
suppose that there is a sequence (τn) ⊂ (ξ, t∗) such that u(τn) = 0 for all n ∈ N
and lim τn = ξ. In this case, u satisfies for all n ∈ N,

−(pu′)′(t) = λ(α(t)u+(t)− β(t)u−(t)), a. e. t ∈ (ξ, τn+1),

u(ξ) = u(τn+1) = 0.
(4.1)

Without loss of generality, assume that u is positive in (τn, τn+1) and let µn,1(α)
be the first eigenvalue given by Theorem 3.6 associated with a positive eigenvector
ψn,1 of

−(pψ′)′(t) = µα(t)ψ(t), t ∈ (τn, τn+1),

ψ(τn) = ψ(τn+1) = 0.

Multiplying the differential equation in (4.1) by ψn,1, we obtain after two integra-
tions

0 ≤ u[1](τn)ψn,1(τn) =
∫ τn+1

τn

(λ− µn,1(α))αψn,1u

leading to
λ ≥ µn,1(α). (4.2)

Now, let µ∗n,1 = 1/r(Lα,τn+1,l) and let ψ∗n,1 be the associated positive eigenvector.
µ∗n,1 and ψ∗n,1 satisfy

−(pψ∗′n,1)′(t) = µ∗n,1α(t)ψ∗n,1(t), t ∈ (ξ, τn+1)

ψ∗n,1(ξ) = ψ∗n,1(τn+1) = 0.

Again, multiplying the differential equation in (4.1) by ψ∗n,1, we obtain after two
integrations

0 ≥ −ψ[1]
n,1(τn)ψ∗n,1(τn) =

∫ τn+1

τn

(µ∗n,1 − µn,1(α))αψn,1ψ∗n,1

leading to
µn,1(α) ≥ µ∗n,1. (4.3)

Thus, from (4.2), (4.3) and Lemma 4.1 we obtain the contradiction

λ ≥ limµn,1(α) ≥ limµ∗n,1 = 1/ lim r(Lα,τn+1,l) = +∞.

Now, suppose that u > 0 on (ξ, t#) for some t# > ξ. We have by simple integration
over (t, t#) ⊂ (ξ, t#)

p(t)u
′
(t)− p(t#)u

′
(t#) = λ

∫ t#

t

α(s)u(s)ds

leading to

lim
t→ξ

p(t)u
′
(t) = p(t#)u′(t#) + lim

t→ξ

∫ t#

t

α(s)u(s)ds.

This completes the proof. �
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Let α, β be two functions in L1
loc(ξ, η) such that α(t) ≥ 0, β(t) ≥ 0 for t ∈ [ξ, η]

a.e. and each of α and β is positive in a subset of a positive measure; and consider
the initial-value problem

−(pu′)′(t) = λ(α(t)u+(t)− β(t)u−(t)),

u(t0) = lim
t→t0

p(t)u′(t) = 0. (4.4)

By a solution to (4.4) we mean a function u ∈ C(Ī)∩C1(I) with (pu′)′ ∈ L1
loc(I)

where I ⊂ (ξ, η) is an open interval such that t0 ∈ Ī and u satisfies all equations in
(4.4).

Lemma 4.3. Assume that (2.2) holds and let α, β be two functions in KG. Then,
for all t0 ∈ [ξ, η], u ≡ 0 is the unique solution of the initial value problem (4.4).

Proof. The case λ = 0 is obvious. Let λ 6= 0 and u be a solution of (4.4) defined on
some interval [t0, t∗] with t∗ ∈ (t0, η) (the case u defined on [t∗, t0] with t∗ ∈ (ξ, t0)
can be checked similarly). Since L1

G[ξ, η] ⊂ L1
loc(ξ, η) and u is continuous on [t0, t∗],

(pu′)′ ∈ L1
loc(t0, t∗). We distinguish two cases:

• t0 ∈ (ξ, η). Let (zi)i=ni=0 be such that

t0 = z0 < z1 < · · · < zn = t∗,

ki = |λ|
∫ zi+1

zi

dτ

p(τ)

∫ zi+1

zi

(α(τ) + β(τ))dτ < 1.

Set for i ∈ {0, 1, . . . , (n − 1)}, Ji = [zi, zi+1], Xi = C(Ji) equipped with the sup-
norm ‖ · ‖i,∞ and Ti : Xi → Xi with

Tiv(t) = −
∫ t

zi

( λ

p(s)

∫ s

zi

(α(τ)v+(τ)− β(τ)v−(τ))dτ
)
ds.

Let v, w ∈ Xi, we have

|Tiv(t)− Tiw(t)| ≤
∫ t

zi

( |λ|
p(s)

∫ s

zi

α(τ)|v+(τ)− w+(τ)|dτ
)
ds

+
∫ t

zi

( |λ|
p(s)

∫ s

zi

β(τ)|v−(τ)− w−(τ)|dτ
)
ds

then from (2.6)

‖Tiv − Tiw‖i,∞ ≤ |λ|
∫ zi+1

zi

ds

p(s)

∫ s

zi

(α(τ) + β(τ))dτ‖v − w‖i,∞

≤ ki‖v − w‖i,∞.
So, Ti is a ki−contraction.

For i ∈ {0, 1, . . . , (n − 1)}, let ui be the restriction of u to the interval Ji. We
have that u0 is a fixed point of T0. Indeed, since L1

G[ξ, η] ⊂ L1
loc(ξ, η) and u is

continuous on [t0, t∗], (pu′)′ ∈ L1[t0, t∗]. So integrating the differential equation in
(4.4) over [z0, s] ⊂ [z0, z1] we obtain from the initial value condition

p(s)u′0(s) = −
∫ s

z0

(α(τ)u+
0 (τ)− β(τ)u−0 (τ))dτ

from which for all t ∈ [z0, z1] we have

u0(t) = −
∫ t

z0

( λ

p(s)

∫ s

zi

(α(τ)u+
0 (τ)− β(τ)u−0 (τ))dτ

)
ds = T0u0(t).
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Thus, the fact that T0 is a contraction and the trivial function is a fixed point
of T0 lead to u0 ≡ 0, and in particular, we have

u0(z1) = u
[1]
0 (z1) = u1(z1) = u

[1]
1 (z1) = 0. (4.5)

From this equality, u1 is a fixed of T1. Then for the same reasons u1 ≡ 0, and in
particular,

u1(z2) = u
[1]
1 (z2) = u2(z2) = u

[1]
2 (z2) = 0.

Repeating the above process, we obtain that ui ≡ 0 for all i ∈ {0, 1, . . . , (n − 1)};
that is, u ≡ 0 on [t0, t∗].
• t0 = ξ: In this case by Lemma 4.2 we can suppose that u > 0 in (ξ, t∗). We

distinguish two cases:
(a) α ∈ L1[ξ, t∗]. Let t+ ∈ (ξ, t∗) be such that

k+ = |λ|
∫ t+

ξ

dτ

p(τ)

∫ t+

ξ

α(τ)dτ < 1.

Set J+ = [ξ, t+], X+ = C(J+) equipped with the sup-norm ‖·‖+,∞ and T+ : X+ →
X+ with

T+v(t) = −
∫ t

ξ

( λ

p(s)

∫ s

ξ

α(τ)v(τ)dτ
)
ds.

It is easy to see that T+ is a k+-contraction and u+ the restriction of u to [ξ, t+]
is a fixed point of T+, so u+ ≡ 0 in [ξ, t+], and in particular, u(t+) = u[1](t+) = 0.
Thus, we conclude from the above step that u ≡ 0 on its interval of definition
contradicting the beginning of this step.

(b) α /∈ L1[ξ, t∗]: In this case b = 0 and
∫ t∗
ξ

(α(t)
∫ t
ξ

ds
p(s) )dt < ∞. Thus, let

t∞ ∈ (ξ, t∗) be such that

k∞ = |λ|
∫ t∞

ξ

(
α(t)

∫ t

ξ

ds

p(s)

)
dt < 1.

Set

L1
α[ξ, t∞] =

{
v : (ξ, t∞)→ R measuable and

∫ t∞

ξ

α(s)|v(s)|ds <∞}

equipped with the norm

‖v‖L1
α[ξ,t∞] =

∫ t∞

ξ

α(s)|v(s)| ds.

Let u∞ be the restriction of u to the interval [ξ, t∞]. We claim that u∞ belongs to
L1
α[ξ, t∞]. Indeed, integrating the differential equation in (4.4) over [ε, t∞] ⊂ (ξ, t∞],

we obtain

u[1]
∞(ε)− u[1]

∞(t∞) = λ

∫ t∞

ε

α(s)u∞(s)ds. (4.6)

Letting ε→ ξ in (4.6), we obtain

|λ|
∫ t∞

ξ

α(s)u∞(s)ds = |u[1]
∞(t∞)|,

and then ∫ t∞

ξ

α(s)|u∞(s)|ds =
∫ t∞

ξ

α(s)u∞(s)ds = |u
[1]
∞(t∞)
λ

| <∞.



EJDE-2014/156 NODAL SOLUTIONS 19

Now, let T∞ : L1
α[ξ, t∞]→ L1

α[ξ, t∞] be defined by

T∞v(t) =
∫ t

ξ

(
− λ

p(s)

∫ s

ξ

α(τ)v(τ)dτ
)
ds.

It is easy to see that T∞ is a k∞−contraction and u∞ is a fixed point of T∞, so
u∞ ≡ 0 in [ξ, t∞], and in particular, u(t∞) = u[1](t∞) = 0. Thus, we conclude from
the above step that u ≡ 0 on its interval of definition contradicting the beginning
of this step. This completes the proof. �

Lemma 4.4. Assume that (2.2) and (2.3) hold. If λ is a half-eigenvalue of bvp
(2.7) associated with an eigenvector u then u ∈ Sk for some k ≥ 1.

Proof. If u(t0) = u[1](t0) = 0 for some t0 ∈ [ξ, η] then we have from Lemma 4.3
that u ≡ 0, contradicting (λ, u) is a nontrivial solution of (2.7). This shows that u
has only simple zeros.

Now, to the contrary, assume that u has an infinite sequence of consecutive zeros
(tn) converging to some t∗ ∈ [ξ, η]. We have from the continuity of u, u(t∗) = 0 and
so from Lemma 4.2 t∗ ∈ (ξ, η). Because of the simplicity of zeros of u, we have that
(tn) = (t1n)∪ (t2n) with u[1](t1n) > 0 and u[1](t2n) < 0. Since u ∈ C1[t∗ − ε, t∗ − ε] for
some ε > 0 small enough, we obtain that

0 ≤ limu[1](t1n) = u[1](t∗) = limu[1](t2n) ≤ 0.

Again by Lemma 4.3, u ≡ 0, contradicting (λ, u) is a nontrivial solution of (2.7). �

Lemma 4.5. Assume that (2.2) and (2.3) hold and α, β ∈ KG ∩ L1[ξ, η]. Then,
for each integer k ≥ 1 and ν = + or −, bvp (2.7) admits at most one simple
half-eigenvalue having an eigenvector in Sνk .

Proof. To the contrary, suppose that (λi, φi) ∈ R×Sνk satisfy (2.7) for i = 1, 2. Then
the integrability of 1/p, α and β implies that φi ∈ Sνk ∩AC[ξ, η] and pφ′i ∈ AC[ξ, η].
Let [ξ1, η1] and [ξ2, η2] be the intervals given by Theorem 3.2. Since φ1 and φ2 have
the same sign in each of [ξ1, η1] and [ξ2, η2], we have

0 ≤
∫ η1

ξ1

φ2£φ1 − φ1£φ2 = (λ1 − λ2)
∫ η1

ξ1

αφ+
1 φ

+
2 + βφ−1 φ

−
2 ,

0 ≥
∫ η2

ξ2

φ2£φ1 − φ1£φ2 = (λ1 − λ2)
∫ η2

ξ2

αφ+
1 φ

+
2 + βφ−1 φ

−
2 ,

leading to λ1 = λ2.
Now, suppose that λ is a half-eigenvalue of (2.7) having two eigenvectors φ1 and

φ2 with φ1φ2 > 0 in a right neighborhood of ξ, φ1, φ2 ∈ AC[ξ, η] and pφ′1, pφ
′
2 ∈

AC[ξ, η]. Because of the positive homogeneity of bvp (2.7), there exists two eigen-
vectors ψ1 and ψ2 associated with λ such that ψ1ψ2 > 0 in a right neighborhood
of ξ, ψ1, ψ2 ∈ AC[ξ, η], pψ′1, pψ

′
2 ∈ AC[ξ, η] and

ψ1(ξ) = ψ2(ξ) = b, ψ
[1]
1 (ξ) = ψ

[1]
2 (ξ) = a.

Indeed; Without loss of generality, suppose that φ1 > 0 and φ2 > 0 in a right
neighborhood of ξ. Then we distinguish the following three cases.
• φ1(ξ) = 0. In this case we have b = 0 and from (2.3) that a > 0 (otherwise

if b 6= 0 we obtain from the boundary condition at ξ that φ[1]
1 (ξ) = 0 and Lemma
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4.3 leads to φ1 = 0). The positivity of φ1 near ξ leads to φ[1]
1 (ξ) > 0. Since a > 0,

b = 0 and φ2 > 0 near ξ, we have φ2(ξ) = 0 and φ
[1]
2 (ξ) > 0. Thus,

ψ1 =
aφ1

φ
[1]
1 (ξ)

, ψ2 =
aφ2

φ
[1]
2 (ξ)

are eigenvectors associated with λ satisfying

ψ1(ξ) = ψ2(ξ) = b and ψ
[1]
1 (ξ) = ψ

[1]
2 (ξ) = a.

• φ[1]
1 (ξ) = 0. In this case we have a = 0 and from (2.3) that b > 0 (otherwise if

a 6= 0 we obtain from the boundary condition at ξ that φ1(ξ) = 0 and Lemma 4.3
leads to φ1 = 0). The positivity of φ1 near ξ leads to φ1(ξ) > 0. Since b > 0, a = 0
and φ2 > 0 near ξ, we have φ[1]

2 (ξ) = 0 and φ2(ξ) > 0. Thus,

ψ1 =
bφ1

φ1(ξ)
, ψ2 =

bφ2

φ2(ξ)

are eigenvectors associated with λ satisfying

ψ1(ξ) = ψ2(ξ) = b and ψ
[1]
1 (ξ) = ψ

[1]
2 (ξ) = a.

• φ1(ξ) > 0 and φ
[1]
1 (ξ) > 0. This happens only in the case a > 0 and b > 0 and

we have the boundary condition at ξ, φ1(ξ) > 0 and φ
[1]
1 (ξ) > 0. Thus,

ψ1 =
aφ1

φ
[1]
1 (ξ)

=
bφ1

φ1(ξ)
, ψ2 =

aφ2

φ
[1]
2 (ξ)

=
bφ2

φ2(ξ)

are eigenvectors associated with λ satisfying

ψ1(ξ) = ψ2(ξ) = b and ψ
[1]
1 (ξ) = ψ

[1]
2 (ξ) = a.

At this stage, ψ = ψ1 − ψ2 satisfies

−(pψ′)′(t) = λ(α(t)ψ+(t)− β(t)ψ−(t))

ψ(ξ) = ψ[1](ξ) = 0,

and we have from Lemma 4.3, ψ = 0. That is, ψ1 = ψ2, and then φ1 = ωφ2 with
ω > 0. This shows that the half-eigenvalue λ is simple and completes the proof of
Lemma 4.5. �

For q ∈ KG we define the linear compact operator Lq : E → E by

Lqu(t) =
∫ η

ξ

G(t, s)q(s)u(s)ds.

Since, we will use the global bifurcation theorem of Rabinowitz to prove the main
result of this paper, we need to discuss the geometric and algebraic multiplicities
of characteristic values of Lq (which are also eingenvalues of bvp (2.8)). Let µ0 be
a characteristic value of Lq and note that N(µ0Lq − I) ⊂ N(µ0Lq − I)2. Thus,
if µ0 is not simple then µ0 is of algebraic multiplicity greater than 1. We know
from Theorem 3.6 that if q ∈ KG ∩L1[ξ, η] then all characteristic values of Lq have
the geometric multiplicity equal to one, so let us see what can happens with the
algebraic mutiplicity.

Lemma 4.6. Assume that (2.2) and (2.3) hold and q ∈ KG ∩ L1[ξ, η]. Then, all
characteristic values of Lq are of algebraic multiplicity one.
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Proof. Let (µk(q)) be the sequence of characteristic values of Lq given by Theorem
3.6. Thus the eigenvector φk associated with µk(q) satisfies

−(pφ′k)′(t) = µk(q)q(t)φk(t), a.e. t ∈ (ξ, η),

aφk(ξ)− b lim
t→ξ

p(t)φ′k(t) = 0,

cφk(η) + d lim
t→η

p(t)φ′k(t) = 0.

Multiplying by φk and integrating over [ξ, η] we obtain∫ η

ξ

p(φ′k)2 = µk(q)
∫ η

ξ

qφ2
k (4.7)

leading to

µk(q) > 0, and
∫ η

ξ

qφ2 > 0. (4.8)

Now, let u ∈ N
(
(µk(q)Lq − I)2

)
and set v = (µk(q)Lq0 − I)(u) = µk(q)Lqu − u.

We have µk(q)Lqv − v = 0 leading to v = xφ and

µk(q)Lqu− u = xφk. (4.9)

On the other hand we have that u satisfies the bvp

−(pu′)′(t) = µk(q)q(t)u(t)− xµk(q)q(t)φk(t), a.e. t ∈ (ξ, η),

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0,

cu(η) + d lim
t→η

p(t)u′(t) = 0.

(4.10)

Multiplying the differential equation in (4.10) by φk and integrating on (ξ, η) we
obtain

xµk(q)
∫ η

ξ

qφ2
k = 0.

Because of (4.7), the above equality leads to x = 0. Therefore, we obtain from
(4.9) that u = ωφk ∈ N(µk(q)Lq − I) with ω ∈ R. This completes the proof. �

It remains to discuss the geometric and algebraic multiplicities of characteristic
values of Lq when q ∈ (KG \ L1[ξ, η]). We need the following lemma which is a
version of L’Hopital’s rule.

Lemma 4.7. Let f and g be two differentiables functions on (ξ, ξ + ε) with ε > 0
such that limt→ξ f(t) = limt→ξ g(t) = +∞. If limt→ξ

f ′(t)
g′(t) = l then limt→ξ

f(t)
g(t) = l.

Lemma 4.8. Assume that (2.2) and (2.3) hold and q ∈ KG \ L1[ξ, η]. Let µ be a
characteristic value of Lq associated with an eigenvector φ. We have

(1) If φ does not change sign then µ is double
(2) If φ has more than one zero in (ξ, η) then µ is simple.

Proof. Suppose that ψ is another eigenvector associated with the caracteristic value
µ and let W = W (φ, ψ) be the Wronksian of φ and ψ. By simple computations
follows (pW )′ = 0, from which we obtain

φψ′ − φ′ψ =
B

p
, B ∈ R. (4.11)
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Considering (4.11) as a linear first order differential equation where the unknown
is ψ, we obtain that ψ takes the form

ψ(t) = Aφ(t) +Bψε(t) with A,B ∈ R, ε ∈ (ξ, η),

ψε(t) = φ(t)
∫ t

ε

ds

p(s)φ2(s)
.

Thus, we have to examine for ε ∈ (ξ, η) the ability of the function ψε to be an
eigenvector associated with µ or not. Without loss of generality, suppose that q is
not integrable at ξ and η (the other cases can be checked similarly). This occurs
if b = d = 0 and in this case the boundary conditions in bvp (2.1) become the
Dirichlet conditions

u(ξ) = u(η) = 0. (4.12)
1. Suppose that φ is positive in (ξ, η) and let ε ∈ (ξ, η) be fixed. We have by

simple computations

p(t)ψ′ε(t) =
1
φ(t)

+ p(t)φ′(t)
∫ t

ε

ds

p(s)φ2(s)
, for all t ∈ (ξ, η) (4.13)

then
− (pψ′ε)

′(t) = λq(t)ψε(t), a.e. t ∈ (ξ, η). (4.14)
Moreover, since q is not integrable at ξ and η, from Lemma 4.2 and [36, Theorem
2.3.1] we have

lim
t→ξ

p(t)φ′(t) =∞, lim
t→η

p(t)φ′(t) =∞.

Thus, from Lemma 4.7 when limt→ξ
∫ t
ε

ds
p(s)φ2(s) =∞ (the case

∫ ε
ξ

ds
p(s)φ2(s) <∞ is

obvious), we have

lim
t→ξ

ψε(t) = lim
t→ξ

( ∫ t
ε

ds
p(s)φ2(s)

)′
( 1
φ(t) )′

= lim
t→ξ

1
p(t)φ2(t)

− φ′(t)
φ2(t)

= − 1
limt→ξ p(t)φ′(t)

= 0

and also

lim
t→η

ψε(t) = − 1
limt→η p(t)φ′(t)

= 0.

That is, ψε satisfies the boundary conditions (4.12) and all the above shows that ψε
is an eigenvector of the characteristic value µ of Lq. Moreover, since the function
ϕε(t) = A+B

∫ t
ε

ds
p(s)φ2(s)0 vanishes at most once in (ξ, η), the eigenvector ψ lies in

S1 ∪ S2 and this shows that µ is double.
2. Note that if φ(t1) = 0 for some t1 ∈ (ξ, η), we obtain from (4.13) following

t1 > ε and t1 < ε that at least one of the limits

lim
t>t1, t→t1

p(t)ψ′ε(t), lim
t<t1, t→t1

p(t)ψ′ε(t)

are infinite and this means that ψε /∈ Y#. So, the function ψε can not be an
eigenvector associated with the characteristic value µ of Lq.

By the contrary suppose that the characteristic value µ is not simple and there
exists another eigenvector of µ, φ1 ∈ Y#. In this case, arguing as in the discussion
in the beginning of this proof we obtain

φ(t) = Aφ1(t) +Bφ1(t)
∫ t

ε

ds

p(s)φ2
1(s)
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and

p(t)φ′(t) = Aφ1(t) +
B

φ1(t)
+ p(t)φ′1(t)

∫ t

ε

ds

p(s)φ2
1(s)

, for all t ∈ (ξ, η)

where A,B ∈ R and ε ∈ (ξ, η).
Thus, arguing as in the beginning of part 2 of this proof we obtain that the

eigenvector φ1 must be positive. Therefore, from

φ(t) = φ1(t)
(
A+B

∫ t

ε

ds

p(s)φ2
1(s)

)
yields that φ has at most one zero in (ξ, η). Contradicting φ has more than one
zero. This completes the proof. �

Lemma 4.9. Assume that (2.2) and (2.3) hold and q ∈ KG \ L1[ξ, η]. If µ is a
characteristic value of Lq associated with an eigenvector φ vanishing more than one
time in (ξ, η) then µ is of algebraic multiplicity one.

Proof. In the same way as in the proof of Lemma 4.6, let us show that if u is a
solution to

−(pu′)′(t) = µq(t)u(t)− xµq(t)φ(t), a.e. t ∈ (ξ, η),

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0,

cu(η) + d lim
t→η

p(t)u′(t) = 0.

(4.15)

then u = ωφ with ω ∈ R. Let u be a solution to (4.15) and W = W (φ, u) be the
Wronksian of φ and u. We have that W satisfies

(pW )′ = (pu′φ− puφ′)′ = xµqφ2

leading to

u′φ− uφ′ =
B

p
+
xµ

p

∫ s

ε

q(τ)(φ(τ))2dτ, B ∈ R. (4.16)

Considering (4.16) as a linear first order differential equation where the unknown
is u, we obtain that u takes the form

u(t) = Aφ(t) +Bφ(t)
∫ t

ε

ds

p(s)φ2(s)

+ xµφ(t)
∫ t

ε

( 1
p(s)φ2(s)

∫ s

ε

q(τ)(φ(τ))2dτ
)
ds,

(4.17)

for A,B ∈ R and ε ∈ (ξ, η).
Arguing as in 2 of the proof of Lemma 4.8, we see that the expression for u

given in (4.17) is a solution of (4.10) if and only if B = x = 0. This completes the
proof. �

Lemma 4.10. Assume that (2.2) and (2.3) hold and let (qn) be a sequence in L1
G

converging to q ∈ L1
G. Then Lqn → Lq as n→∞ in operator norm. Moreover, for

all [ξ0, η0] ⊂ (ξ, η)

p(Lqnu)′ → p(Lqu)′ in C[ξ0, η0] for all u ∈ E.
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Proof. It is easy to check that for all [ξ0, η0] ⊂ (ξ, η), qn → q in L1[ξ0, η0], Φabqn →
Φabq in L1[ξ, ξ0], and Ψcdqn → Ψcdq in L1[η0, η]. Thus, we have, for all [ξ0, η0] ⊂
(ξ, η) and u ∈ E with ‖u‖∞ = 1,

sup
t∈[ξ,η]

|Lqnu(t)− Lqu(t)| ≤
∫ η

ξ

G(s, s)|qn(s)− q(s)|ds = ‖qn − q‖G,

leading to Lqn → Lq as n→∞.
Also, for all [ξ0, η0] ⊂ (ξ, η) and u ∈ E with ‖u‖∞ = 1,, we have

|p(t)(Lqnu)′(t)− p(t)(Lqu)′(t)|

≤
∫ η0

ξ0

cΦab(s) + aΨcd(s)
∆

|qn(s)− q(s)|ds

+
∫ ξ0

ξ

c

∆
Φab(s)|qn(s)− q(s)|ds+

∫ η

η0

a

∆
Ψcd(s)|qn(s)− q(s)|ds

=
c

∆
‖Φab(qn − q)‖L1[ξ,ξ0]. +

a

∆
‖Ψcd(qn − q)‖L1[η0,η]. + ‖qn − q‖L1[ξ0,η0]

leading to p(Lqnu)′ → p(Lqu)′ in C[ξ0, η0]. The proof is complete. �

Lemma 4.11. Assume that (2.2) and (2.3) hold and let (αn) and (βn) be two
sequences in KG converging, respectively, to α and β in L1

G[ξ, η]. Assume also that
for all integers n ≥ 1, there exist λn > 0 and φn ∈ E \ {0} satisfying

−(pφ′n)′(t) = λn(αn(t)φ+
n (t)− βn(t)φ−n (t)), t ∈ (ξ, η),

aφn(ξ)− b lim
t→ξ

p(t)φ′n(t) = 0,

cφn(η) + d lim
t→η

p(t)φ′n(t) = 0.

We have φn = λnAnφn where An = LαnI
+ − LβnI−.

If (λn) converges to λ̃ > 0, then there exists ψ ∈ E \ {0} such that ψ = λ̃Aψ

where A = LαI
+ − LβI− (i.e. λ̃ is a half-eigenvalue to bvp (2.7)).

Proof. First, note that Lemma 4.10 guarantee that Lαn → Lα and Lβn → Lβ in
operator norm. Let φn be the eigenvector corresponding to λn with ‖φn‖∞ = 1
and set ψn = λnAφn and ψ = limψn (up to a subsequence). We have

‖φn − ψ‖∞ = ‖λnAn(φn)− ψ‖∞
≤ |λn|‖An(φn)−A(φn)‖∞ + ‖λnA(φn)− ψ‖∞
≤ |λn|‖Lαn − Lα‖+ |λn|‖Lβn − Lβ‖+ ‖λnA(φn)− ψ‖∞,

leading to limφn = ψ and ‖ψ‖∞ = 1. Also we have

‖λnAn(φn)− λ̃A(ψ)‖∞ ≤ ‖λnAn(φn)− λnAn(ψ)‖∞ + ‖λnAn(ψ)− λnA(ψ)‖∞
+ ‖λnA(ψ)− λ̃A(ψ)‖∞
≤ |λn|‖An‖‖φn − ψ‖∞ + |λn|‖An −A‖+ |λn − λ̃|‖A‖,

leading to limλnAn(φn) = λ̃A(ψ). At the end, letting n → ∞ in the equation
φn = λnAn(φn) we obtain ψ = λ̃Aψ. �

Remark 4.12. Arguing as in the proof of Lemma 4.10, one can prove that pφ′n →
pψ′ in C[ξ0, η0] for all [ξ0, η0] ⊂ (ξ, η) where φn and ψ are those of the above proof.
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Let Λa,b,c,d and Λa,b be the functions defined in Subsection 3.5. We deduce from
Theorem 3.12 a first result for existence of half-eigenvalues in the case where p ≡ 1
and the functions α and β are constants.

Corollary 4.13. Assume that p ≡ 1 and α and β are positive constants. Then bvp
(2.7) admits two sequences of half eigenvalues (λ+

k ) and (λ−k ) such that
• λ+

1 is the unique solution of Λa,b,c,d(ασ) = η − ξ,
• λ−1 is the unique solution of Λa,b,c,d(βσ) = η − ξ,
• λ+

2l with l ≥ 1 is the unique solution of

Λa,b(ασ) + Λc,d(βσ) + π(l − 1)
( 1√

ασ
+

1√
βσ

)
= η − ξ,

• λ−2l with l ≥ 1 is the unique solution of

Λa,b(βσ) + Λc,d(ασ) + π(l − 1)
( 1√

ασ
+

1√
βσ

)
= η − ξ,

• λ+
2l+1 with l ≥ 1 is the unique solution of

Λa,b(ασ) + Λc,d(ασ) +
π(l − 1)√

ασ
+

πl√
βσ

= η − ξ,

• λ−2l+1 with l ≥ 1 is the unique solution of

Λa,b(βσ) + Λc,d(βσ) +
π(l − 1)√

βσ
+

πl√
ασ

= η − ξ.

Proposition 4.14. Assume that p ≡ 1 and α and β are positive and continuous
on [ξ, η]. Then the set of half-eigenvalues of bvp (2.7) consists of two increasing
sequences of simple half-eigenvalues (λ+

k )k≥1 and (λ−k )k≥1, such that for all k ≥ 1
and ν = + or −, the corresponding half-lines of solutions are in {λνk}×Sνk . Moreover
for all k ≥ 1 and ν = + or −, λνk is a decreasing function with respect to the weights
α and β lying in C[ξ, η].

Proof. Consider the bvp

−u′′(t) = θ(α(t) + β(t))u+(t) + λα(t)u−(t)− λβ(t)u+(t), t ∈ (ξ, η),

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0,

cu(η) + d lim
t→η

p(t)u′(t) = 0.

(4.18)

From Theorem 3.9 We have that for each integer k ≥ 1, ν = + or − and all λ ≥ 0,
there exists a unique θνk(λ) such that (4.18) has a solution in Sνk .

Note that θνk(0) = µk(α + β) > 0. Now we claim that there exists λ0 > 0 such
that θνk(λ0) ≤ λ0. To the contrary, assume that for all λ ≥ 0, θνk(λ) > λ. Thus we
have from Proposition 3.10 that

λ < θνk(λ) < θνk(λ, α+, β+) = θ∗(λ)

where for k ≥ 1 and ν = + or −, θνk(λ, α+, β+) is the unique real number for which

−u′′(t) = θ(α+ + β+)u+(t) + λα+u
−(t)− λβ+u

+(t), t ∈ (ξ, η),

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0,

cu(η) + d lim
t→η

p(t)u′(t) = 0.
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has a solution in Sνk .
Assume that k = 2l with l ≥ 1 and ν = + or − (the other cases can be checked

similarly). We have from Corollary 4.13 that

Λa,b((θ∗(λ)− λ)β+ + θ∗(λ)α+) + Λc,d((θ∗(λ)− λ)α+ + θ∗(λ)β+)

+
π(l − 1)√

(θ∗(λ)− λ)β+ + θ∗(λ)α+

+
π(l − 1)√

(θ∗(λ)− λ)α+ + θ∗(λ)β+

= η − ξ. (4.19)

Taking into consideration the fact that Λa,b and Λc,d are decreasing functions, we
obtain from (4.19) that

η − ξ ≤ Λa,b(θ∗(λ)α+) + Λc,d(θ∗(λ)β+) +
π(l − 1)√
θ∗(λ)α+

+
π(l − 1)√
θ∗(λ)β+

≤ πl( 1√
θ∗(λ)α+

+
1√

θ∗(λ)β+

)

leading to

θ∗(λ) ≤ π2l2(η − ξ)2(
1
√
α+

+
1√
β+

)2,

which contradicts limλ→+∞ θ∗(λ) = +∞.
Thus there exists λνk such that θνk(λνk) = λνk and λνk is a half-eigenvalue of (2.7).

Uniqueness and simplicity of λνk follow from Lemma 4.5. Finally, the monotonicity
of λνk with respect of the weights α and β follows directly from Proposition 3.10. �

Proposition 4.15. Assume that p ≡ 1, α, β are nonnegative and continuous on
[ξ, η] and the set {t ∈ [ξ, η] : α(t)β(t) > 0} has positive measure. Then the set
of half-eigenvalues of bvp (2.7) consists of two increasing sequences of simple half-
eigenvalues (λ+

k )k≥1 and (λ−k )k≥1, such that for all k ≥ 1 and ν = + or −, the
corresponding half-lines of solutions are in {λνk} × Sνk . Moreover for all k ≥ 1 and
ν = + or −, λνk is a decreasing function with respect to the weights α and β lying
in C[ξ, η].

Proof. For n ≥ 1, αn = α + 1
n and βn = β + 1

n , let λνk,n = λνk(αn, βn) be the
half-eigenvalue given by Proposition 4.14 associated with the eigenvector φn ∈ Θν

k.
Because (αn) and (βn) are decreasing sequences, we have from Proposition 4.14
that (λνk,n)n is nondecreasing. Now let I0 = [ξ0, η0] ⊂ (ξ, η) be such that αβ > 0 in
I0 and set ϑ = min(α, β). Hence, we have ϑn = min(αn, βn) = ϑ + 1

n ≥ ϑ and we
deduce, from the montonicity property in Proposition 4.14 and Properties 5 and 6
in Theorem 2.7, that

λνk,n = λνk(αn, βn) ≤ λνk(ϑn, ϑn) = µk(ϑn, [ξ, η]) ≤ µk(ϑn, I0) ≤ µk(ϑ, I0),

and the sequence (λνk,n)n converges to some λνk > 0, which is by Lemma 4.11
and Lemma 4.5, a simple half-eigenvalue of bvp (2.7) having an eigenvector φ =
limφn ∈ Θν

k (up to a subsequence). Because the functions u ∈ ∂Θν
k have a double

zero, Lemma 4.4 guarantees that φ ∈ Θν
k.

Let α1 be a nonnegative continuous function such that the set {t ∈ [ξ, η] :
α1(t)β(t) > 0} has a positive measure and α ≤ α1. We have from Proposition 4.14
that

λνk

(
α+

1
n
, β +

1
n

)
≤ λνk

(
α1 +

1
n
, β +

1
n

)
.
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Letting n → ∞ we obtain λνk(α, β) ≤ λνk(α1, β). Similarly we prove that λνk is
nonincreasing with respect to the weight β. The proof is complete. �

4.2. Proof of Theorem 2.4. Let ϕ and ρ0 be as in Section 2 and note that λ is a
half-eigenvalue with an eigenvector u of (2.7) if and only if λ/ρ0 is a half-eigenvalue
with the eigenvector v = u ◦ ϕ−1 of the bvp

−v′′(t) =
λ

ρ0

(
α̃(t)v+(t)− β̃(t)v−(t)

)
, t ∈ (ξ, η),

av(ξ)− bρ0v
′(ξ) = 0,

cv(η) + dρ0v
′(η) = 0,

(4.20)

where
α̃(t) = p(ϕ−1(t))α(ϕ−1(t)), β̃(t) = p(ϕ−1(t))β(ϕ−1(t))

are integrable functions. So, it suffices to prove Theorem 2.4 with p ≡ 1. To
this aim, let (αn) and (βn) be two sequences in Cc(ξ, η) such that limαn = α
and limβn = β in L1(ξ, η), and let λνk,n = λνk(αn, βn) be the half-eigenvalue given
by Proposition 4.15 associated with an eigenvector φn. Let ϑn = inf(αn, βn),
θn = sup(αn, βn), and θ = sup(α, β) ≥ ϑ = inf(α, β) > 0 on some interval I0 =
[ξ0, η0] ⊂ (ξ, η). We have that limϑn = ϑ in L1(ξ, η). Then, we deduce from the
monotonicity property in Proposition 4.15 and Property 5 in Theorem 3.6 that

0 < µk(ϑ)− ε = µk(ϑn)

= λνk(θn, θn) ≤ λνk,n
= λνk(αn, βn) ≤ λνk(ϑn, ϑn)

= µk(ϑn) ≤ µk(ϑ) + C

where the constant ε and C are respectively small enough and large enough. Let
λνk,s = lim supλνk,n and λνk,i = lim inf λνk,n. We have from Lemma 4.11 that λνk,s
and λνk,i are half-eigenvalues of (2.7). Then we deduce from Lemma 4.5 that λνk =
λνk,s = λνk,i is the unique and simple half-eigenvalue of (2.7). The same arguments
as those used in the proof of Proposition 4.15 show that the eigenvector associated
with λνk belongs to Sνk ∩ Y .

4.3. Proof of Theorem 2.5.

4.3.1. Proof of uniqueness of λν1 .

Lemma 4.16. Assume that Hypotheses (2.2) and (2.3) hold and α, β ∈ KG. Then
for ν = + or −, bvp (2.7) admits at most one half-eigenvalue having an eigenvector
in Sν1 .

Proof. Suppose that λ+
1 is a half-eigenvalue having an eigenvector φ1 ∈ S+

1 (unique-
ness of λ−1 can be proved in the same way), then 1/λ+

1 is a positive eigenvalue of
the positive operator Lα : E → E defined by

Lαu(t) =
∫ η

ξ

G(t, s)α(s)u(s)ds.

So, we have that r(Lα) > 0 and since the cone of nonnegative functions is total in
E, r(Lα) is a positive eigenvalue of Lα and

λ+
1 ≥ 1/r(Lα). (4.21)
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Let (ξn) and (ηn) be two sequences in (ξ, η) such that lim ξn = ξ, lim ηn = η,
(ξn) is decreasing, (ηn) is increasing, and set

αn(t) =


inf(α(t), α(ξn)), if t ≤ ξn,
α(t), if t ∈ (ξn, ηn),
inf(α(t), α(ηn)), if t ≥ ηn,

and let Ln : E → E be the linear operator defined by

Lnu(t) =
∫ η

ξ

G(t, s)αn(s)u(s)ds. (4.22)

We see that for all n ∈ N, Ln ≤ Lα. Then from Lemma 3.4 we have r(Ln) ≤ r(Lα).
We have that for all n ∈ N, λn1 = 1/r(Ln) > 0 is the unique positive eigenvalue

associated with a positive eigenvector φn1 to the linear bvp

−(pu′)′(t) = λαn(t)u(t), a.e. t ∈ (ξ, η),

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0,

cu(η) + d lim
t→η

p(t)u′(t) = 0.

Moreover, αn → α in L1
G[ξ, η]. So, we have from Lemmas 4.10 and 3.5 that

limλn1 = 1/r(Lα) ≤ λ+
1 . (4.23)

Before proving uniqueness, note that, if λ is a positive eigenvalue of bvp (2.8)
associated with an eigenvector φ, then there exists a subinterval [γ, δ] ⊂ (ξ, η) such
that α(t)φ(t) > 0 for almost all t ∈ [γ, δ]. Indeed if this does not occur, we obtain
the contradiction

φ(t) = λ

∫ η

ξ

G(t, s)α(s)φ(s)ds = 0 for all t ∈ (ξ, η).

This means also that

φ(t) = λ

∫ η

ξ

G(t, s)α(s)φ(s)ds > 0 for all t ∈ (ξ, η).

Set
ψn = Lnφ1 ≤ Lαφ1 = (λ+

1 )−1φ1.

Observe that ψn satisfies

−(p′ψn)′(t) = αn(t)φ1(t) ≥ λ+
1 αn(t)ψn(t) a.e. t ∈ (ξ, η),

aψn(ξ)− b lim
t→ξ

p(t)ψ′n(t) = 0,

cψn(η) + d lim
t→η

p(t)ψ′n(t) = 0.

(4.24)

Multiplying the differential inequality in (4.24) by φn1 (the eigenvector of λn1 ) and
integrating over [ξ, η] we obtain∫ η

ξ

−(pψ′n)′φn1 ≥ λ+
1

∫ η

ξ

αnψnφ
n
1 .

We find, after two integration by parts of the left hand side,

λn1

∫ η

ξ

αnψnφ
n
1 ≥ λ+

1

∫ η

ξ

αnψnφ
n
1 ,
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leading to λ+
1 ≤ λn1 for all n ≥ 1, from which we have

λ+
1 ≤ limλn1 . (4.25)

At the end, combining (4.25) with (4.23), we obtain λ+
1 = 1/r(Lα), that is 1/r(Lα)

is the unique half eigenvalue of (2.7) having an eigenvector in S+
1 . �

4.3.2. Proof of uniqueness of λνk, k ≥ 2.

Lemma 4.17. Assume that Hypotheses (2.2) and (2.3) hold and α, β ∈ KG. Then
for each integer k ≥ 1 and ν = + or −, bvp (2.7) admits at most one half-eigenvalue
having an eigenvector in Sνk .

Proof. To the contrary, assume that λ1 and λ2 are two half-eigenvalues having, re-
spectively, the eigenvectors φ1, φ2 ∈ Sνk with the sequences of simple zeros (xi)1≤i≤k
and (yi)1≤i≤k. In the spirit of Theorem 3.1, assume that x1 ≤ y1 and let i0, j0 ∈
{1, . . . , k} such that xi0 ≤ zj0 ≤ zj0+1 ≤ xi0+1, and without loss of generality,
suppose that φ1 ≥ 0 and φ2 ≥ 0 in each of the intervals [ξ, x1] and [zj0 , zj0+1]. Let
(ξn) and (ηn) be the sequences given in the proof of Lemma 4.16 and set

α1
n(t) =

{
inf(α(t), α(ξn)), if t ≤ ξn,
α(t), if t ∈ (ξn, z1).

From Lemma 4.16, we have λ1 = limµ1(α1
n, [ξ, x1]) and λ2 = limµ1(α1

n, [ξ, z1]), and
from Property 4 of Theorem 3.6, that for all n ≥ 1, µ1(α1

n, [ξ, x1]) ≥ µ1(α1
n, [ξ, z1]).

Letting n→∞ we obtain λ1 ≥ λ2.
Now we will discuss the cases zj0+1 < η and zj0+1 = η. If zj0+1 < η, then

integrating on [zj0 , zj0+1], we obtain

0 ≥
∫ zj0+1

zj0

−(pφ′1)′φ2 + (pφ′2)′φ1 = (λ1 − λ2)
∫ zj0+1

zj0

αφ1φ2,

leading to λ1 = λ2.
If zj0+1 = η, then considering

α2
n(t) =

{
α(t), if t ∈ (xi0 , ηn),
inf(α(t), α(νn)), if t ≥ ηn,

we have that λ1 = limµ1(α2
n, [xi0 , η]) and λ2 = limµ1(α2

n, [zj0 , η]), and from Prop-
erty 3 of Theorem 2.5, that for all n ≥ 1, µ1(α2

n, [zj0 , η]) ≥ µ1(α2
n, [xi0 , η]). So,

letting n→∞ we obtain also in this case λ1 = λ2. This completes the proof. �

4.3.3. Proof of existence of (λνk)k≥1. Let (ξn) and (ηn) be the sequences introduced
in the proof of Lemma 4.16 and consider

αn(t) =

{
α(t), if t ∈ (ξn, ηn),
0, if t /∈ (ξn, ηn),

βn(t) =

{
β(t), if t ∈ (ξn, ηn),
0, if t /∈ (ξn, ηn).

For all n, k ≥ 1 and ν = + or −, let λνk,n be the unique half-eigenvalue of

−(pu′)′(t) = λ(αn(t)u+(t)− βn(t)u−(t)) a.e. t ∈ (ξ, η),

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0,



30 A. BENMEZAÏ, W. ESSERHANE, J. HENDERSON EJDE-2014/156

cu(η) + d lim
t→η

p(t)u′(t) = 0,

having eigenvector φn ∈ Sνk with ‖φn‖ = 1, θn = sup(αn, βn) and θ = sup(α, β) > 0
in some closed interval I0 ⊂ (ξ, η). Since (αn) and (βn) are nondecreasing sequences,
we have from Property 2 in Theorem 2.4 that, for all n ≥ 1,

λνk,n ≥ λνk,n+1,

and
λνk,n = λνk(αn, βn) ≥ λνk(θn, θn) = µk(θn) > µ1(θn). (4.26)

Because µ1(θn) = 1/r(Lθn), µ1(θ) = 1/r(Lθ) and Lθn → Lθ in operator norm, it
follows from Lemma 3.5 that, for ε > 0 small enough,

λνk,n ≥ λνk,n+1 ≥ µ1(θ)− ε > 0.

Thus, from Lemma 4.11 we have that λνk = limn→∞ λνk,n is a half-eigenvalue of
(2.7)) having an eigenvector ψ (as it it shown in proof of Lemma 4.11 ψ = limφn).

In view of Lemma 4.4, it remains to show that ψ ∈ Sνk . To the contrary, assume
that ψ ∈ S+

l with l 6= k and let (zj)
j=l−1
j=1 be the sequence of interior zeros of ψ and

[ξ1, η1] ⊂ (ξ, η) such that

ξ1 < z1 < z2 < · · · < zl−1 < η1.

Choose δ > 0 small enough and set Ij = (zj− δ, zj + δ) for j ∈ {1, . . . , l−1}. There
exists n∗ ∈ N such that for all n ≥ n∗, φnψ > 0 in all the intervals [ξ1, z1 − δ],
[zk−1 + δ, η1], [zj + δ, zj+1 − δ], j ∈ {1, . . . , l − 2}.

Fix j ∈ {1, . . . , l−1}. There exists nj ≥ n∗ such that the function φn has exactly
one zero in Ij . Otherwise if there is a subsequence (φni) such that for all i ≥ 1, φni
has at least two zeros, then we can choose x1

ni and x2
ni in Ij such that

φ[1]
ni (x

1
ni) ≤ 0 ≤ φ[1]

ni (x
2
ni).

Let

x1
inf = lim inf x1

ni , x1
sup = lim supx1

ni

x2
inf = lim inf x1

ni , x2
sup = lim inf x1

ni .

Hence, since ψ = limφn/‖φn‖ we have

ψ(x1
inf) = ψ(x2

inf) = ψ(x1
sup) = ψ(x2

sup) = 0

leading to
limx1

ni = limx2
ni = zj .

Moreover, from Remark 4.12 it follows that

ψ[1](zj) = limφ[1]
nl

(x1
ni) = limφ[1]

nl
(x2
ni) = 0,

contradicting the simplicity of zj .
Now, we claim that there exists n∗ ∈ N such that for all n ≥ n∗, φn does

not vanish in the intervals (ξ, ξ1) and (η1, η). Again, to the contrary, assume that
there is a subsequence (φni) such that for all i ≥ 1, φni has at least one zero. Let
xni ∈ (ξ, ξ1) be the first zero of φni . In this case, we have that

limxni = ξ, ψ(ξ) = φni(ξ) = 0.
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Moreover, for all i ≥ 1, φni satisfies

−(pφ′ni)
′(t) = µniαni(t)φni(t) a.e. t ∈ (ξ, xni),

φni(ξ) = φni(xni) = 0

φni > 0 in (ξ, xni).
(4.27)

Clearly, Equation (4.27) implies that µni = µ1(αni , [ξ, xni ]). Taking into con-
sideration limαn = α in L1

G[ξ, η] and µni = µ1(αni , [ξ, xni ]) = 1/r(Lniα ) where
Lniα : C[ξ, xni ]→ C[ξ, xni ] is defined by

Lniα u(t) =
∫ xni

ξ

Gni(t, s)α(s)u(s)ds,

from Lemma 3.5 we obtain

µni = µ1(αni , [ξ, xni ]) =
1

r(Lniαni )
≥ 1
r(Lniα )

= µ1(α, [ξ, xni ]). (4.28)

Thus, combining Lemma 4.1 with (4.28)), we obtain the contradiction

λ̃ = limµni ≥ limµ1(α, [ξ, xni ]) = lim
1

r(Lniα )
= +∞.

Hence, we conclude that for all n ≥ n∞ = max{n∗, n∗, n1, . . . , nk−1}, φn has
exactly (l − 1) simple zeros in (ξ, η) contradicting φn ∈ S+

k .
Finally, letting n→∞ in λνk,n < λνk+1,n we obtain λνk ≤ λνk+1.

4.4. Proof of Theorem 2.7. The existence of (µk(q))k≥1 as a nondecreasing se-
quence follows from Theorem 2.5 when taking α = β = q in bvp (2.7) and for all
k ≥ 1, µk(q) has an eigenvector φk ∈ Sk. We have from Lemma 4.5 and assertion 2
in Lemma 4.8 that µk(q) is simple for all k ≥ 3 and Assertion 1 is proved. Assertion
2 follows from the monotonicity of the sequence (µk(q))k≥1 and the simplicity of
µk(q) for k ≥ 3. Assertion 3 follows from Lemma 4.5, and assertion 1 in Lemma
4.8 and Lemma 4.16. Assertion 4 is obvious.

Assertion 5 follows from the monotonicity property of half-eigenvalues in Theo-
rem 2.5 and Assertion 6 is obtained when letting n→∞ in the relation

µk(qn, [ξ, η]) ≤ µk(qn, [ξ1, η1]),

where

qn(t) =

{
q(t), if t ∈ (ξn, ηn),
0, if t /∈ (ξn, ηn),

and (ξn)n≥1, (ηn)n≥1 are those in the proof of Lemma 4.16.
It remains to prove Assertion 7. Let (qn) ⊂ KG be a sequence converging to

q ∈ KG in L1
G[ξ, η], and [ξ0, η0] ⊂ (ξ, η) such that q > 0 in [ξ0, η0]. We have then

from Property 6 and Property 5 in Theorem 3.6

µk(qn, [ξ, η]) ≤ µk(qn, [ξ0, η0]) ≤ µk(q, [ξ0, η0]) + C.

Set µ1 = lim inf µk(qn, [ξ, η]) and µ2 = lim supµk(qn, [ξ, η]). There exist two sub-
sequences (µk(qni , [ξ, η])) and (µk(qnj , [ξ, η])) of (µk(qn, [ξ, η])) converging respec-
tively to µ1 and µ2. Applying Lemma 4.11, we obtain that µ1 and µ2 are eigenvalues
of (2.8). Furthermore, arguing as in Subsection 4.3.3, we see that the eigenvectors
associated with µ1 and µ2 belongs to Sk. Thus, we deduce from Lemmas 4.16 and
4.17 that

µ1 = µ2 = limµk(qn, [ξ, η]) = µk(q, [ξ, η]).
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This completes the proof

4.5. Proof of Theorem 2.9. Consider the bifurcation bvp associated with bvp
(2.1),

−(pu′)′(t) = µq0(t)u(t) + µg(t, u(t)), a.e. t ∈ (ξ, η),

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0,

cu(η) + d lim
t→η

p(t)u′(t) = 0,

(4.29)

where µ is a real parameter and g(t, u) = f(t, u) − q0(t)u and in all that follows,
we denote by (µk(q0))k≥1 the sequence of eigenvalues obtained from Theorem 2.7
for the bvp

£u(t) = µq0(t)u(t), a.e. t ∈ (ξ, η),

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0,

cu(η) + d lim
t→η

p(t)u′(t) = 0,

and by (χνk)k≥1, with ν = + or −, the two sequences of half-eigenvalues of the bvp

−(pu′)′(t) = χ(α∞(t)u+(t)− β∞(t)u−(t)), a.e. t ∈ (ξ, η),

au(ξ)− b lim
t→ξ

p(t)u′(t) = 0,

cu(η) + d lim
t→η

p(t)u′(t) = 0,

given by Theorem 2.5.
Applying £−1, we obtain that bvp (4.29) is equivalent to the equation

u = µLq0u+ µH(u)

where H : E → E is defined by

Hu(s) =
∫ η

ξ

G(t, s)g(s, u(s))ds

and is completely continuous.

Lemma 4.18. Assume that (2.2)-(2.4) hold. Then from each µk(q0), with k ≥ 3,
bifurcate two unbounded components (in R×E), Γ+

k and Γ−k such that for all k ≥ 3
and ν = + or −, Γνk ⊂ R× Sνk .

Proof. First, note that Hypothesis (2.4) implies that H(u) = ◦(‖u‖∞) near 0.
Indeed, we have for (un) ⊂ E with lim ‖un‖∞ = 0

|Hun(t)|
‖un‖∞

≤
∫ η

ξ

Rn(s)ds where Rn(s) = G(s, s)
|f(s, un(s))− q0(s)un(s)|

‖un‖∞
.

Then, it follows from (2.5) that

Rn(s) ≤ G(s, s)(γ∞(s) + δ∞(s) + q0(s))
|un(s)|
‖un‖∞

≤ G(s, s)(γ∞(s) + δ∞(s) + q0(s)) ∈ L1[ξ, η]

and from (2.4) that

Rn(s) ≤ G(s, s)|f(s, un(s))
un(s)

− q0(s)| |un(s)|
‖un‖∞
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≤ G(s, s)|f(s, un(s))
un(s)

− q0(s)| → 0

as n→ +∞, s ∈ [ξ, η] a.e..
So, by the Lebesgue dominated convergence theorem, we have

lim
H(un)
‖un‖∞

= 0;

that is, H(u) = o(‖u‖∞) at 0.
Since for all k ≥ 3, µk(q0) is of algebraic multiplicity one, from [25, Theorem

1.40] we conclude that from each (µk(q0), 0) with k ≥ 3, bifurcate two components
Γ1
k and Γ2

k of nontrivial solutions of bvp (4.29) such that for i = 1, 2, Γik is either
unbounded in R× E or meets (µl(q0), 0) where l 6= k.

Now, note that if (λ, u) ∈ Γik i = 1, 2 then all zeros of u are simple. This is due
to the fact that (λ, u) satisfies also the bvp

−(pv′)′(t) = λqu(t)v(t), t ∈ (ξ, η),

av(ξ)− b lim
t→ξ

p(t)v′(t) = 0,

cv(η) + d lim
t→η

p(t)v′(t) = 0,

with

qu(t) =
f(t, u)
u

.

Since Hypothesis (2.5) guarantees that qu ∈ L1
G[ξ, η], we deduce from Theorem 2.7

that there exists an integer j ≥ 1 such that u ∈ Sj .
Also, we claim that for all k ≥ 3 and i = 1, 2, there exists a neighborhood V ik

of (µk(q0), 0) such that Γik ∩ V 1
k ⊂ R × Sk. Let (µn, un)n≥1 ⊂ Γik be a sequence

converging to (µk, 0). Thus, vn = un/‖un‖∞ satisfies

vn = µnLq0(vn) + µn
H(un)
‖un‖∞

and ‖vn‖∞ = 1.

Since Lq0 is compact and H(u) = o(‖u‖∞) near 0, there exists a subsequence (vnj )
of (vn) converging to v in E satisfying

v = µk(q0)Lq0v and ‖v‖∞ = 1.

So, from Theorem 2.7 we have v ∈ Sk.
Let (zj)

j=k−1
j=1 be the sequence of interior zeros of v and [ξ1, η1] ⊂ (ξ, η) such that

ξ1 < z1 < z2 < · · · < zk−1 < η1.

Choose δ > 0 small enough and set Ij = (zj−δ, zj +δ) for j ∈ {1, . . . , k−1}. There
exists n∗ ∈ N such that for all nj ≥ n∗, vnjv > 0 in all the intervals [zj +δ, zj+1−δ]
j ∈ {1, . . . , k − 2}, [ξ1, z1 − δ], [zk−1 + δ, η1].

Fix j ∈ {1, . . . , k−1}. There exists nj ≥ n∗ such that the function vn has exactly
one zero in Ij . Otherwise if there is a subsequence (vnl) such that for all l ≥ 1, vnl
has at least two zeros, then we can choose x1

nl
and x2

nl
in Ij such that

v[1]
nl

(x1
nl

) ≤ 0 ≤ v[1]
nl

(x2
nl

).

Hence, we obtain
limx1

nl
= limx2

nl
= zj ,
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and from Lemma 4.10 that

v[1](zj) = lim v[1]
nl

(x1
nl

) = lim v[1]
nl

(x2
nl

) = 0,

contradicting the simplicity of zj .
Now, we claim that there exists n∗ ∈ N such that for all n ≥ n∗, vn does not

vanish in the intervals (ξ, ξ1) and (η1, η). To the contrary, assume that there is a
subsequence (vnl) such that, for all l ≥ 1, vnl has at least one zero. Let xnl ∈ (ξ, ξ1)
be the first zero of vnl . In this case, we have that

limxnl = ξ, v(ξ) = vn(ξ) = 0.

Moreover, for all l ≥ 1, unl satisfies

−(pu′nl)
′(t) = µnlqnl(t)unl(t), t ∈ (ξ, xnl),

unl(ξ) = unl(xnl) = 0,

unl > 0 in (ξ, xnl),
(4.30)

where qnl(t) = (f(t, unl(t))/unl(t)). Clearly, Equation (4.30) implies that µnl =
µ1(qnl , [ξ, xnl ]). Taking into consideration Hypothesis (2.5), from Property 3 in
Theorem 2.7 we obtain that

µnl = µ1(qnl , [ξ, xnl ]) ≥ µ1(γ∞, [ξ, xnl ]).

So, we obtain as in Subsection 4.3.3 the contradiction

µk(q0) = limµnl ≥ limµ1(γ∞, [ξ, xnl ]) = +∞.

At this stage we conclude that, for all n ≥ n∞ = max{n∗, n∗, n1, . . . , nk−1}, vn
has exactly (k − 1) simple zeros in (ξ, η) and so the existence of the neighborhood
V νk .

Using the same arguments as those used above, we see that for all (µ0, u0) ∈ Γik
with u0 ∈ Sk1 , there exists a neighborhood W0 of (µ0, u0) such that W0 ∩ Γνk ⊂
R×Sνk1 . This shows that the number of zeros of functions u lying in the projection
of Γνk onto the space E is locally constant, so it is constant and it is equal to (k−1).
Thus, Γik ⊂ R× Sk. Set

Γ+
k = (Γ1

k ∩ R× S+
k ) ∪ (Γ2

k ∩ R× S+
k )and Γ−k = (Γ1

k ∩ R× S−k ) ∪ (Γ2
k ∩ R× S−k )

and let ς > 0 and κ ∈ (0, 1). We have from Theorem 1.25 in [25] that, for i = 1, 2,
there exists a sequence (µin, u

i
n)n≥1 ⊂ Γik such that |µin − µk(q0)| < ς, uin = tinvk +

win, lim tin = 0 and t1n > κ‖u1
n‖, t2n < −κ‖u2

n‖. Moreover, from [25, Lemma 1.24]
we have that win = o(|tin|). Arguing as above, we see that lim(uin/‖uin‖∞) = vi (up
to a subsequence) where v1 and v2 are eigenvectors associated with µk(q0) with
v1 > 0 near ξ and v2 < 0 near ξ. So v1 ∈ S+

k and v2 ∈ S−k . Since the limits
are in E = C[ξ, η], arguing as in the proof of existence of neighborhood V ik , in the
beginning of the proof, we obtain that u1

n ∈ S+
k and u2

n ∈ S−k for n large enough.
This shows that for all k ≥ 3 and ν = + or −, Γνk 6= ∅, and again because of the
topology of E (if vn → v in E and v > 0 near ξ then vn > 0 near ξ for n large) and
functions u lying in the projection of Γνk onto the space E have only simple zeros
and all have the same number of zeros, Γνk does not leave R× Sνk .

Finally, taking into consideration the claim in the beginning of the proof, and
the fact that Γνk does not leave R×Sνk we understand that for all k ≥ 3 and ν = +
or −, Γνk is unbounded in R× E. �
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Lemma 4.19. Assume that (2.2)-(2.5) hold. Then for all k ≥ 3 and ν = + or −,
the component Γνk rejoins the point (χνk,∞).

Proof. Because u ≡ 0 is the unique solution of bvp (4.29) for µ = 0, we have from
Lemma 4.18 that for all k ≥ 1 and ν = + or −, ({0} × E) ∩ Γνk = ∅. Therefore, if
(µ, u) ∈ Γνk then µ > 0.

Moreover, if (µ, u) ∈ Γνk, then µ = µk( f(t,u)
u , [ξ, η]), and this together with

Hypothesis (2.5) and Property 3 of Theorem 2.7, leads to

µ = µk

(f(t, u)
u

, [ξ, η]
)
≤ µk(δ∞, [ξ, η]).

This shows that for all k ≥ 1 and ν = + or −, the projection of Γνk onto the real
axis is bounded.

Now, let (µn, un) be a sequence in Γνk such that limn→+∞ ‖un‖ = +∞. For
contradiction purposes, suppose that limn→+∞ µn 6= χνk. Then there exist ε > 0
and a subsequence of (µn), which will be denoted for convenience by (µn)n≥1, such
that

|µn − χνk| ≥ ε.
Denote by (vn) the sequence defined by vn = un

‖un‖ . Note that ‖vn‖∞ = 1 and
(µn, vn) satisfies

vn = µnA∞vn +
Ωun
‖un‖∞

where A,K : E → E are defined by

A∞u(t) =
∫ η

ξ

G(t, s)(α∞(s)u+(s)− β∞(s)u−(s))ds,

Ωu(t) =
∫ η

ξ

G(t, s)g∞(s, u(s))ds,

with g∞(t, x) = f(t, x)−α∞(t)x+ +β∞(t)x−. Note that Hypotheses (2.4) and (2.5)
imply that Ωun = o(‖un‖∞) at ∞. Indeed, we have

|Ωun(t)|
‖un‖∞

=
∣∣ ∫ η

ξ

G(t, s)(
g∞(s, un(s))
‖un‖∞

)ds
∣∣

≤
∫ η

ξ

G(s, s)
∣∣f(s, un(s))− α∞(s)u+

n (s) + β∞(s)u−n (s)
‖un‖∞

∣∣ds.
From (2.4) we have

G(s, s)
∣∣f(s, un(s))− α∞(s)u+

n (s) + β∞(s)u−n (s)
‖un‖∞

∣∣
≤ G(s, s)(γ∞(s) + δ∞(s) + α∞(s) + β∞(s))

|un(s)|
‖un‖∞

≤ G(s, s)(γ∞(s) + δ∞(s) + α∞(s) + β∞(s)) ∈ L1[ξ, η].

Now, set

Pn(s) = G(s, s)
∣∣f(s, un(s))− α∞(s)u+

n (s) + β∞(s)u−n (s)
‖un‖∞

∣∣
and let us prove that limPn(s) = 0 for s ∈ [ξ, η] a.e..
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Let s ∈ [ξ, η] (such s exists a.e.), such that

lim
x→+∞

f(s, x)
x

= α∞(s) and lim
x→−∞

f(s, x)
x

= β∞(s).

For such an s we distinguish the following cases:
• limun(s) = +∞: in this case we have

Pn(s) = G(s, s)|f(s, un(s))
un(s)

− α∞(s)| un(s)
‖un‖∞

≤ G(s, s)|f(s, un(s))
un(s)

− α∞(s)| → 0 as n→ +∞.

• limun(s) = −∞: in this case we have

Pn(s) = G(s, s)|f(s, un(s))
un(s)

− β∞(s)| |un(s)|
‖un‖∞

≤ G(s, s)|f(s, un(s))
un(s)

− β∞(s)| → 0 as n→ +∞.

• limun(s) 6= ±∞: in this case there may exist subsequences (un1
k
(s)) and

(un2
k
(s)) such that (un1

k
(s)) is bounded and limun2

k
(s) = ±∞. Arguing as in the

above two cases we obtain limPn2
k
(s) = 0 and we have

Pn1
k
(s) ≤ G(s, s)(γ∞(s) + δ∞(s) + α∞(s) + β∞(s))

|un1
k
(s)|

‖un1
k
‖∞
→ 0 as k → +∞.

Thus, we have limPn(s) = 0 for s ∈ [ξ, η] a.e. By the Lebesgue dominated
convergence theorem, we conclude that Ωun = o(‖un‖∞) at ∞.

Now, because of the compactness of A∞ and the boundedness of (vn), there
exists a subsequence (vnj ) converging to v ∈ Sνk (use the same arguments as in the
proof of Lemma 4.18) with ‖v‖∞ = 1 satisfying v = χ∞Av, where χ∞ is the limit of
some subsequence of (µnl) of (µn). Thus, we have χ∞ = χνk and the contradiction

0 = lim |µnl − χνk| ≥ ε > 0.

�

Now, we are able to prove Theorem 2.9. Note that u ∈ Sνi is a solution to (2.1)
if and only if (1, u) ∈ Γνi , and this occurs if λνi < 1 < µi(q0) or µi(q0) < 1 < λνi .

Assume that µl(q0) < 1 < µk(θ∞) with 2 < k < l, and let i ∈ {k, . . . , l}. We
have µi(q0) ≤ µl(q0) < 1, and from the nondecreasing property of λνi with respect
to the functions α and β,

λνi = λνi (α∞, β∞) ≥ λνi (θ∞, θ∞) = µi(θ∞) ≥ µk(θ∞) > 1.

Now, assume that µl(ϑ∞) < 1 < µk(q0) with 2 < k < l, and let i ∈ {k, . . . , l}. We
have µi(q0) ≥ µk(q0) > 1, and from the nondecreasing property of λνi with respect
to the functions α and β,

λνi = λνi (α∞, β∞) ≤ λνi (ϑ∞, ϑ∞) = µi(ϑ∞) ≥ µk(ϑ∞) > 1.

Thus, Theorem 2.9 is proved.

Remark 4.20. Note that if q0 ∈ KG ∩ L1[ξ, η], from Lemma 4.6 we have that for
all n ≥ 1, µn(q0) is of algebraic multiplicity one. Thus, Theorem 2.9 and Corollary
2.10 can be extended to the case 1 ≤ k < l.



EJDE-2014/156 NODAL SOLUTIONS 37

Remark 4.21. Theorem 2.9 holds if we replace Hypothesis (2.4) by the following
assumptions:

|f(t, u)− q0(t)u| ≤ ĝ0(t, |u|) for all |u| ≤ ς0, , t ∈ [ξ, η] a.e., for some ς0 > 0,

|f(t, u)− α∞(t)u+ + β∞(t)u−| ≤ ĝ∞(t, |u|) for all u ∈ R, t ∈ [ξ, η] a.e.,

lim
u→%

ĝ%(t, u)
u

= 0 in L1
G[ξ, η] for % = 0,+∞

where ĝ0, ĝ+∞ : [ξ, η]× R+ → R+ are such that for % = 0,+∞, ĝ%, (·, u) ∈ L1
G[ξ, η]

for u fixed and ĝ%(t, ·) is nondecreasing for t ∈ [ξ, η] a.e. Indeed, we have for
(un) ⊂ E with lim ‖un‖∞ = 0

|Hun(t)|
‖un‖∞

≤
∫ η

ξ

G(s, s)
|f(s, un(s))− q0(s)un(s)|

‖un‖∞
ds

≤
∫ η

ξ

G(s, s)
ĝ0(s, ‖un‖∞)
‖un‖∞

ds→ 0 as n→ +∞

leading to Hu = o(‖u‖∞) at 0.
Also, for (un) ⊂ E with lim ‖un‖∞ = +∞ we have

|Ωun(t)|
‖un‖∞

≤
∫ η

ξ

G(s, s)
|f(s, un(s))− α∞(s)u+

n (s) + β∞(s)u−n (s)|
‖un‖∞

ds

≤
∫ η

ξ

G(s, s)
ĝ+∞(s, ‖un‖∞)
‖un‖∞

ds→ 0 as n→ +∞

leading to Ωu = o(‖u‖∞) at ∞.
The function f given in Example 2.2 satisfies the above condition with

q0(t) = At−3/2(1− t)−5/4,

α∞(t) = At−3/2(1− t)−5/4 +Bt−7/6(1− t)−7/4,

β∞(t) = At−3/2(1− t)−5/4 + Ct−11/7(1− t)−13/10,

and

ĝ0(t, u) = (Bt−7/6(1− t)−7/4 + Ct−11/7(1− t)−13/10)u3,

ĝ∞(t, u) =

{
MCt−11/7(1− t)−13/10 +Bt−

7
6 (1− t)−7/4, for u > 0,

Ct−11/7(1− t)−13/10 +MBt−7/6(1− t)−7/4, for u < 0,

where

M = sup{ x3

1 + x2 + ex
: x ≥ 0}.
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Faculty of Mathematics, USTHB, Algiers, Algeria

E-mail address: aehbenmezai@gmail.com

Wassila Esserhane

Graduate School of Statistics and Applied Economics, P.O. Box 11, Doudou Mokhtar,
Ben-Aknoun Algiers, Algeria

E-mail address: ewassila@gmail.com

Johnny Henderson
Department of Mathematics, Baylor University, Waco, Texas 76798-7328, USA

E-mail address: Johnny Henderson@baylor.edu


	1. Introduction
	2. Main results
	3. Background
	3.1. A comparison result
	3.2. Spectral radius of a positive operator
	3.3. The linear eigenvalue bvp in the integrable case
	3.4. Berestycki's half-eigenvalue bvp
	3.5. Fucik spectrum

	4. Proofs of main results
	4.1. Auxiliary results
	4.2. Proof of Theorem 2.4
	4.3. Proof of Theorem 2.5
	4.4. Proof of Theorem 2.7
	4.5. Proof of Theorem 2.9
	Acknowledgements

	References

