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CAUCHY PROBLEM FOR DISPERSIVE EQUATIONS IN
α-MODULATION SPACES

QIANG HUANG, JIECHENG CHEN

Abstract. In this article, we consider the Cauchy problem for dispersive

equations in α-Modulation spaces. For this purpose, we find a method for
estimating uk in α-modulation spaces when k is not an integer, and develop

a Strichartz estimate in Ms,α
p,q which is based on semigroup estimates. In the

local case, we that the domain of p is independent of α, which is also the case
in the Modulation spaces and in the Besov space.

1. Introduction and statement of main results

In this article we study the Cauchy problem for the following nonlinear Klein-
Gordon equation (NLKG):

utt + (I −∆)u = ±|u|ku,
u(0) = u0, ut(0) = u1,

(1.1)

and the Cauchy problem for the nonlinear Heat equation (NLH)

ut + ∆u = |u|ku,
u(0) = u0 ,

(1.2)

where k ∈ (0,+∞)\Z, ∆ = ∂2/∂2x1 + · · ·+ ∂2/∂2xn. By Duhamel’s formula, (1.1)
has the equivalent integral form

u(t) = K ′(t)u0 +K(t)u1 −
∫ t

0

K(t− τ)|u|kudτ , (1.3)

where ω = (I −∆),

K(t) =
sin(tω1/2)
ω1/2

, K ′(t) = cos(tω1/2) .

The solution of (1.2) is

u(t) = et∆u0 −
∫ t

0

e(t−τ)∆|u|kudτ . (1.4)

We study the local and global well posedness of (1.1) in α-modulation spaces. As
we know, the frequency-dyadic-decomposition technique plays an important role in
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the theory of function space. Using this technique we can define the Besove space
and the Trieble-Lizorkin space [14]. On the other hand, Modulation spaces was
fist introduced by Feichtinger in [5] where he used short-time Fouier transform
and window function to define it. His initial motivation was using this space to
measure smoothness for some function or distribution spaces. Then, Wang and
Hudzik [18] used the frequency-uniform-decomposition operators to give another
equivalent definition of modulation spaces and considered global solution for the
nonlinear Schrödinger equation and the nonlinear Klein-Gordon equation in modu-
lation spaces. Based on this equivalent definition, there are many studies of PDEs
in modulation spaces, such as [10, 13, 16, 17, 19]. Then, Gröbner [6] introduce a new
decomposition called α-covering, he used this decomposition to define α-modulation
space Ms,α

p,q which is an intermediate function space to connect modulation spaces
and Besov space with respect to a parameter α ∈ [0, 1). When α = 0, Ms,0

p,q is
equivalent to modulation space Ms

p,q which is define in [18]. Besov space can be
regarded as the limit case of α-modulation space as α→ 1. Later, Han and Wang
[8] give another equivalent definition which is more convenient for calculations. In
this paper, we will use the Han and Wang’s definition.

For equations (1.3) and (1.4), we focus on the case k /∈ Z. Because when k is an
integer, we can only use the algebra proposition or analysis on �α

k simply. When
k is not an integer, we use Besov space as an auxiliary space to estimate |u|ku in
α-modulation space which was first introduced in our previous paper[9]. We also
find an interesting phenomenon that the domain of p is independent of α which is
same as modulation space and Besov space. The following theorems are the main
results in this paper:

Theorem 1.1. For any 1 ≤ q <∞, 2 ≤ p <∞, [s] < k, θ ∈ [0, 1] we define

δ = (
1
2
− 1
p

)(θ(n+ 2) + (1− θ)2nα), µ = θn(
1
2
− 1
p

) (1.5)

and denate

S1 = max
{

1− δ

2
− n(1− α)(

1
q
− 1
p

), R(p, q)− 1
k

(1− δ) +
δ

2
}
.

where R(p, q) = αnp + (1 − α) nq′ . When q ∈ [p′, p] ∩ [γ′, γ], (1 − 2
p )n < 1 − δ and

S1 < s < R(p, q) − n(1+α)
k (1 − 2

p )n + δ
2 . Then for any (u0, u1) ∈ Ms,α

2,q ×M
s−1,α
2,q ,

there exist T > 0 such that equation (1.3) has an unique solution in

X = L∞(0, T ;Ms
2,q) ∩ Lγ(0, T ;Ms− δ2

p,q ) (1.6)

where γ = 2/µ > (k + 2).
Moreover, if γ = 2/µ = (k + 2). Then there exists a small ν > 0 such that for

any ‖u0‖Ms
p,q

+ ‖u1‖Ms−1
p,q
≤ ν, equation (1.1) has an unique global solution

u ∈ L∞(R;Ms
p,q) ∩ Lγ(R;Ms− δ2

p,q ) (1.7)

Remark 1.2. Theorem 1.1 extends the local well posedness in modulation space
and Besov space. The only difference is that R(p, q) replace n/p in Besov space
and n/q′ in modulation space. This phenomenon coincides with the nature of α-
modulation space (see (2.2)).
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Remark 1.3. When p = 2, the condition q ∈ [p′, p] means q = 2. Han and Wang [8]
proved that Ms,α

2,2 is equivalent to Hs for any α ∈ [0, 1], so this result is meaningless.
Actually, when p = 2, we do not need to choose q = 2. The range of q for p = 2 is
wider which will be described in Remark 2.7.

For (1.4), we have similar result as in Theorem 1.1. The estimate of the Heat
semigroup is different to NLKG’s, so its domain of p, q, s and work space are also
different. Specifically, we have following result for (1.2).

Theorem 1.4. For any 1 ≤ q < ∞, 2 ≤ p < ∞, [s] < k which satisfy q ∈ [p′, p],
and n(1− (2/p)) < 2. We denote

S2 = max
{

2− n(1− α)(
1
q
− 1
p

), R(p, q)− 2
k

+
n

k
(1− α)(1− 2

p
)
}
.

When

S2 < s < R(p, q)− n(1 + α)
k

(1− 2
p

)n.

For any u0 ∈ Ms,α
p,q , there exist T > 0 such that equation (1.3) has an unique

solution in L∞(0, T ;Ms,α
p,q )

2. Preliminaries

In this section we give some definitions and properties of function spaces. Also,
we will prove the key lemma to estimate |u|ku in α-Modulation space when k is not
an integer.

Definition 2.1 (α-Modulation spaces). Let ρ be a nonnegative smooth radial bump
function supported in B(0, 2), satisfying ρ(ξ) = 1 for |ξ| < 1 and ρ(ξ) = 0 for |ξ| > 2.
For any k = (k1, k2, . . . , kn) ∈ Zn, we set

ραk (ξ) = ρ
(ξ − 〈k〉 α

1−α k

〈k〉
α

1−α

)
and denote

ηαk = ραk (ξ)
( ∑
l∈Zn

ραk

)−1

Corresponding to the sequence {ηαk }k∈Zn , we define an operator sequence denoted
by {�α

k}k∈Zn

�α
k = F−1ηαkF

where F denote standard Fourier transform. This type of decomposition on fre-
quency extends the dyadic and the uniform decomposition. Moreover, it still has
almost orthogonal property which is the same as that in dyadic and the uniform
decomposition. That is, for any k ∈ Zn the number of l which satisfy �α

l �α
k 6= 0

is uniformly bounded and independent of k. For any α we use Λα to denote this
number.

When 0 ≤ α < 1, 1 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, using this decomposition, we
defined the α-modulation spaces as

Ms,α
p,q := {f ∈ S′ : ‖f‖Ms,α

p,q
<∞},

where

‖f‖Ms,α
p,q

:=
( ∑
k∈Zn
〈k〉

sq
1−α ‖�α

k‖
q
Lp

)1/q
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where 〈k〉 = (1 + k2)1/2, see [8] for details. Also we need another form of α-
modulation space as auxiliary tool to prove Stricharz estimate which is defined as
follows:

‖f‖ls,α
�,q

(Lr(0,T ;Lp(Rn))) =
( ∑
k∈Zn
〈k〉

sq
1−α ‖�α

k‖
q
Lr(0,T ;Lp(Rn))

)1/q

If the domain of t is (−∞,+∞), we denote ls,α�,q(L
rLp) for convenience. The idea

of ls,α�,q(L
r(0, T ;Lp(Rn))) was first introduced by Planchon [11, 12] when studing

the nonlinear Schrödinger equation and the nonlinear wave equation. It seems only
change Lr norm and lq norm, but very important in α-modulation spaces. Because,
we can see that the index q will influence the regularity. In many cases, we should
deal with q carefully and choose lq norm in last step.

Proposition 2.2 (Isomorphism [8]). Let 0 < p, q ≤ ∞, s, σ ∈ R. Then Jσ =
(I −∆)σ/2:

Ms,α
p,q →Ms−σ,α

p,q and ls,α�,q(L
r(0, T ;Lp(Rn)))→ ls−σ,α�,q (Lr(0, T ;Lp(Rn)))

are isomorphic mappings.

Proposition 2.3 (Embedding [8]). Ms1,α
p1,q1 ⊂ Ms2,α

p2,q2 and ls1,α�,q1
(Lr(0, T ;Lp1)) ⊂

ls2,α�,q2
(Lr(0, T ;Lp2)) under each of the following two conditions:

if p1 ≤ p2, q1 ≤ q2 and s1 ≥ s2 + nα(
1
p1
− 1
p2

), (2.1)

if p1 ≤ p2, q1 > q2, and s1 > s2 + nα(
1
p1
− 1
p2

) + n(1− α)(
1
q2
− 1
q2

) (2.2)

When α = 1, we can see that (2.2) coincides with that in Besov space, although
we can not use α = 1 to define Besov spaces. We always say that index n/p
influences the regularity in Besov spaces, and n/q′ influences the regularity in mod-
ulation space. Actually, in α-modulation space, that index is αn/p + (1 − α)n/q′

which coincide with Besov space and modulation space. That is why we define

R(p, q) = α
n

p
+ (1− α)

n

q′

in Theorem 1.1. For convenience and we use R(p, q) through out this article.

Lemma 2.4 (Embedding with Besove spaces [8]). Assume Bsp,q is the standard
Besov spaces, and 1 ≤ p, q ≤ ∞, s ∈ R, we have following embeddings:

Ms+σ(p,q),α
p,q ⊂ Bsp,q, σ(p, q) = max(0, n(1− α)(

1
p ∧ p′

− 1
q

)) (2.3)

Bs+τ(p,q)
p,q ⊂Ms,α

p,q , τ(p, q) = max(0, n(1− α)(
1
q
− 1
p ∨ p′

)) (2.4)

Moreover, we need nonlinear estimate in Besov spaces. There are many forms
of such estimate, such as [3][4][15]. All of these forms restricted q = 2, but in α-
modulation space q will influence regularity, so we use a new form which is obtained
in [9].

Lemma 2.5 (nonlinear estimate in Besove space). Assume 2 ≤ p <∞, 1 ≤ q ≤ ∞,
0 ≤ δ < s < s1 <∞, [s− δ] < k and satisfy

k(
1
p
− s

n
) +

1
p
− δ

n
=

1
p′
,

1
p
− s

n
> 0 (2.5)
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then we have
‖|u|ku‖Bs−δ

p′,q
� ‖u‖k+1

B
s1
p,q

(2.6)

Then, by Lemmas 2.4 and 2.5 we can estimate the nonlinear part in α-modulation
spaces which is the crucial lemma in this paper.

Lemma 2.6 (Nonlinear estimate in α-modulation spaces). Let 1 ≤ q < ∞, 2 ≤
p <∞, [s] < k which satisfy q ∈ [p′, p], (1− 2

p )n < r, and

max
{
r−n(1−α)(

1
q
− 1
p

), R(p, q)−αn
k

(1− 2
p

)− r
k

}
< s < R(p, q)−(1+α)

n

k
(1− 2

p
)

then we have
‖uk+1‖Ms−r,α

p′,q
� ‖u‖k+1

Ms,α
p,q

(2.7)

Proof. By Lemma 2.4 we have

‖uk+1‖Ms−r,α
p′,q

� ‖uk+1‖
B
s−r+τ(p′,q)
p′,q

(2.8)

Since r − n(1− α)( 1
q −

1
p ) < s, we have s− r + τ(p′, q) > 0, so we can use Lemma

2.6 to obtain
‖uk+1‖

B
s−r+n(1−α)( 1

q
− 1
p

)

p′,q

� ‖u‖k+1

B
s−n(1−α)( 1

p′ −
1
q
)

p,q

(2.9)

and choose s1 = s+ ε in (2.6) then s satisfies

k(
1
p
− 1
n

(s− n(1− α)(
1
p′
− 1
q

)) +
1
p
− 1
n

(r − n(1− α)(1− 2
p

)− ε) =
1
p′
. (2.10)

by (2.13) we have

s = n(
α

p
+

1− α
q′

)− αn
k

(1− 2
p

)− r

k
+
ε

k
(2.11)

because τ(p′, q) + σ(p, q) = n(1 − α)(1 − 2
p ) < r, it is easy to find 0 < ε <

r − n(1− α)(1− 2
p ). Combining this with (2.11) and condition of Lemma 2.6, the

domain of s is

max
{
r − n(1− α)(

1
q
− 1
p

), n(
α

p
+

1− α
q′

)− αn
k

(1− 2
p

)− r

k

}
< s < n(

α

p
+

1− α
q′

)− (1 + α)
n

k
(1− 2

p
)

Finally, we use Lemma 2.4 again to obtain

‖uk+1‖
B
s−r+n(1−α)( 1

q
− 1
p

)

p′,q

� ‖u‖k+1

B
s−n(1−α)( 1

p′ −
1
q
)

p,q

� ‖u‖k+1
Ms,α
p,q

.

�

Remark 2.7. The condition q ∈ [p′, p] is not necessary, but only for continence
in calculation. So it doesn’t means q must equal to 2 when p = 2, we can use the
same method to find the domain of q when p = 2. By the same method as above,
we get the following result:
when q < 2, p = 2, n(1− α)( 1

q −
1
2 ) < r,

max{r − (1− α)(
1
q
− 1

2
)n,

n

2
− 1
k

[r − (1− α)(
1
q
− 1

2
)n]} < s <

n

2
(2.12)
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when q > 2, p = 2, n(1− α)( 1
2 −

1
q ) < r,

max{r,R(2, q)− 1
k

[r − n(1− α)(
1
2
− 1
q

)]} < s < R(2, q) (2.13)

the same conclusion holds.

3. Proof of main results

First, we estimate the Klein-Gordon semigroup G(t) = eitω
1/2

in α-Modulation
spaces, where ω = I − ∆. It is well known that G(t) have the following estimate
(cf.[1, 2])

‖(I −∆)−σ(p)/2G(t)f‖p � |t|−n(1/2−1/p)‖f‖p′ (3.1)

where

2 ≤ p <∞, σ(p) = (n+ 2)
(1

2
− 1
p

)
(3.2)

By Bernstein’s multiplier estimate

‖�α
k (I −∆)σ/2g‖p � 〈k〉

σ
1−α ‖g‖p (3.3)

So, by (3.1) and (3.3), we have

‖�α
kG(t)f‖p � 〈k〉

σ(p)
1−α

∑
l∈Λα

‖(I −∆)−σ(p)/2�α
k+lG(t)f‖p

� 〈k〉
σ(p)
1−α |t|−n(1/2−1/p)

∑
l∈Λα

‖�α
k+lf‖p′

(3.4)

On the other hand, by Hölder’s and Young’s inequalities

‖�α
kG(t)f‖p � ‖ηαk eit(1+|ξ|2)1/2 f̂‖p′

�
∑
l∈Λα

‖ηαk eit(1+|ξ|2)1/2F�α
k+lf‖p′

�
∑
l∈Λα

‖ηαk eit(1+|ξ|2)1/2‖ 2p
p−2
‖F�α

k+lf‖p

� 〈k〉
αn
1−α (1− 2

p )
∑
l∈Λα

‖�α
k+lf‖p′ .

(3.5)

From (3.4) and (3.5) we have

‖�α
kG(t)f‖p � 〈k〉

δ(p)
1−α |t|−nθ(1/2−1/p)

∑
l∈Λα

‖�α
k+lf‖p′ (3.6)

where

δ(p) = (
1
2
− 1
p

)(θ(n+ 2) + (1− θ)2nα), θ ∈ [0, 1] (3.7)

Multiplying by 〈k〉
s

1−α and taking the lq norm in both sides of (3.6), we obtain the
following estimate.

Theorem 3.1. Let s ∈ R, 2 ≤ p < ∞, 1/p + 1/p′ = 1, 0 < q < ∞, δ(p) be as in
(3.7). Then we have

‖G(t)f‖Ms,α
p,q
� |t|−θn(1/2−1/p)‖f‖

M
s+δ(p),α
p′,q

(3.8)
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Then we establish the Stricharz estimates in Ms,α
p,q which is more general than the

estimate in [7]. Motivate by Theorem 3.1, we assume U(t) is a dispersive semigroup:

U(t) = F−1eitP (ξ)F (3.9)

which satisfy
‖U(t)f‖Ms,α

p,q
� |t|−µ(p)‖f‖

M
s+δ(p),α
p,q

(3.10)

where 2 ≤ p <∞, 1 ≤ q <∞, δ(p) ∈ R, 0 < µ(p) < 1, and P (·) : Rn → R is a real
valued function.

Theorem 3.2. If U(t) satisfy (3.9) and (3.10), for γ = 2/θ(p) we have

‖U(t)f‖ls,α
�,q

(Lγ(R, Lp)) � ‖f‖
M
s+δ(p)/2,α
2,q

(3.11)

In addition, if γ ≥ q, then

‖U(t)f‖Lγ(R,Ms,α
p,q ) � ‖f‖Ms+δ(p)/2,α

2,q
. (3.12)

Proof. By the standard dual estimate method, we need to prove only that∫
R

(U(t)f, ϕ(t)) dt � ‖f‖M0,α
2,q
‖ϕ‖

l
δ(p)/2,α
�,q′ (Lγ′ (R,Lp′ ))

(3.13)

holds for all f ∈ S(Rn), ϕ ∈ C∞0 (R, S(Rn). Because S(Rn) and C∞0 (R, S(Rn) are
dense in M0,α

2,q and l
δ(p)/2,α
�,q′ (Lγ

′
(R,Lp′)). By the duality of α-Modulation (see[8]),∫

R
(U(t)f, ϕ(t))dt � ‖f‖M0,α

2,q
‖
∫

R
U(−t)ϕ(t)dt‖M0,α

2,q′
(3.14)

then for any k ∈ Zn,

‖�k

∫
R
U(−t)ϕ(t)dt‖22 � ‖�kϕ‖Lγ′ (R,Lp′ )‖�k

∫
R
U(t− s)ϕ(s)ds‖Lγ(R,Lp) (3.15)

By the almost orthogonal property of {�α
k} and Bernstein’s multiplier estimate we

have

‖�α
kU(t)f‖p �

∑
l∈Λα

‖�α
k�α

k+lU(t)f‖p � |t|−θ(p)〈k〉δ(p)‖�α
kf‖p′ (3.16)

Notice that 0 < θ(p) < 1, we can use Hardy-Littlewood-Sobolev’s inequality to
obtain that

‖�k

∫
R
U(t− s)ϕ(s)ds‖Lγ(R,Lp) � 〈k〉δ(p)‖�kϕ‖Lγ′ (R,Lp′ ) (3.17)

So, in view of (3.15) and (3.17) we have

‖�k

∫
R
U(−t)ϕ(t)dt‖2 � 〈k〉δ(p)/2‖�kϕ‖Lγ′ (R,Lp′ ) (3.18)

Taking the lq
′

norm in both side of above inequality, we have

‖
∫

R
U(−t)ϕ(t)dt‖M0,α

2,q′
� ‖ϕ‖

l
δ(p)/2,α
�,q′ (Lγ′ (R,Lp′ )) (3.19)

Together (3.14) with (3.19), we obtain (3.11).
For (3.12), when γ ≥ q, we can find that the left side of (3.12) is controlled by

the left side of (3.11) by Minkowski’s inequality. �



8 Q. HUANG, J. CHEN EJDE-2014/158

Then we estimate the nonlinear part, denote

(Af)(t) =
∫ t

0

U(t− s)f(s, ·)ds

Theorem 3.3. Suppose U(t) satisfies (3.9) and (3.10). For γ = 2
θ(p) , we have

‖Af‖ls,α
�,q

(L∞(R,L2)) � ‖f‖ls+δ(p)/2,α
�,q

(Lγ′ (R,Lp′ )) (3.20)

In addition, if γ′ ≤ q, then

‖U(t)f‖L∞(R,Ms,α
2,q ) � ‖f‖Lγ′ (R,Ms+δ(p)/2,α

p′,q )
(3.21)

Proof. Using the same method as in Theorem 3.2, the crucial inequality

‖�α
kf‖22 � 〈k〉δ(p)‖�α

kf‖2Lγ′ (R,Lp′ )
implies (3.20). Then applying Minkowski’s inequality, we get (3.21) from (3.20). �

Theorem 3.4. Let U(t) satisfy (3.9) and (3.10). For γ = 2/θ(p), we have

‖Af‖ls,α
�,q

(Lγ(R,Lp)) � ‖f‖ls+δ(p)/2,α
�,q

(L1(R,L2))
(3.22)

Proof. Let f, ϕ ∈ C∞0 (R, S(Rn)). From Theorem 3.2, we have

|
∫

R

(∫ t

0

U(t− τ)f(τ)dτ, ϕ(t)
)
dt| � ‖f‖L1(R,M0,α

2,q )‖
∫ ∞
·

U(· − t)ϕ(t)dt‖L∞(R,M0,α
2,q′ )

� ‖f‖L1(R,M0,α
2,q )‖ϕ‖lδ(p)/2,α

�,q′ (Lγ′ (R,Lp′ ))

By the density and duality we obtain the desired result. �

From (3.20) and (3.22), using Minkowski’s inequality, we immediately obtain the
next result.

Theorem 3.5. Let U(t) satisfy (3.9) and (3.10). For γ = 2/θ(p), we have

‖Af‖ls,α
�,q

(Lγ(R,Lp)) � ‖f‖ls+δ(p)/2,α
�,q

(Lγ′ (R,Lp′ )) (3.23)

In addition, if q ∈ [γ′, γ], we have

‖Af‖
Lγ(R,Ms−δ(p)/2,α

p,q )
� ‖f‖

Lγ′ (R,Ms+δ(p)/2,α
p′,q )

(3.24)

Proof of Theorem 1.1. We consider the integral equation:

Φ(u) = K ′(t)u0 +K(t)u1 −
∫ t

0

K(t− τ)|u|kudτ

in the Banach space

X = L∞(0, T ;Ms
2,q) ∩ Lγ(0, T ;Ms−δ(p)

p,q ) (3.25)

where γ = 2/µ(p), µ(p) = nθ(1/2 − 1/p) and δ(p) is defined by (3.7). For all
2 < p ≤ ∞, we can choose θ such that 0 < θ(p) < 1. So by (3.10) and (3.12), we
have

‖Φ(u)‖X1 � ‖u1‖Ms,α
2,q

+ ‖u0‖Ms−1,α
p,q

+ ‖|u|ku‖
Lγ′ (0,T ;M

s+δ(p)/2−1,α
p′,q )

(3.26)

Choosing r = 1− δ(p) s = s− δ(p)
2 in Lemma 2.6 and using Hölder inequality,

‖|u|ku‖
Lγ′ (0,T ;M

s+δ(p)/2−1,α
p′,q )

� ‖u‖k+1

L(k+1)γ′ (0,T ;M
s−δ(p),α
p,q )

� T 1− k+2
γ ‖u‖k+1

X (3.27)



EJDE-2014/158 CAUCHY PROBLEM FOR DISPERSIVE EQUATIONS 9

Together with (3.11) and (3.12), yield

‖u‖X � ‖u1‖Ms,α
2,q

+ ‖u0‖Ms−1,α
p,q

+ T 1− k+2
γ ‖u‖k+1

X (3.28)

By standard way of contraction mapping, Theorem 1.1 can be proved easily.
For the global case, when 1− k+2

γ = 0, we obtain the global solution with small
initial value by replacing (0, T ) by R in (3.25).

Finally, we find the domain of p in the local problem. When we use Lemma 2.5,
p should satisfy

n(1− α)(1− 2
p

) < 1− θ(p);

that is,

n(1− α)(1− 2
p

) < 1− (n+ 2)θ(
1
2
− 1
p

)− nα(1− 2
p

)

by simply calculations, p should satisfy (1
2−

1
p ) < 1

2n+(n+2)θ . Then we choose θ = 0,
the domain of p is n(1− 2

p ) < 1 which is dependence of α and also same as that in
Modulation space and Besove space.

We briefly interpret this interesting phenomenon. In the Modulation space case,
when choose α = 0 and θ = 0 in (3.7), we can see that there is no any regularity lost
in semigroup estimate. As the result, there is also no regularity lost in Stricharz
estimate. But in the estimate of nonlinear term, we lost n(1− 2

p ) regularity when
embedding between Modulation space and Besov space. In the Besov case, we lost
n(1 − 2

p ) regularity in semigroup estimate and Stricharz estimate. And there is
no any regularity lost when estimate |u|ku. For α-Modulation case, in semigroup
estimate and Stricharz estimate we lost nα(1 − 2

p ) and in nonlinear estimate the
number is n(1 − α)(1 − 2

p ). So, the total lost is n(1 − 2
p ) for any α. Also, see the

integral form of the (1.1), there is a (I−∆)−
1
2 in its nonlinear part. So the domain

is n(1− 2
p ) < 1 for any α. �

Proof of Theorem 1.4. we first prove that

‖et∆f‖Ms1,α
p,q
� (1 + t−

s1−s2
2 )‖f‖Ms2,α

p,q
(3.29)

for any s1 ≥ s2. For the low frequency part; that is, |k| ≤ 100
√
n, we have∑

|k|≤100
√
n

〈k〉
s1q
1−α ‖�α

k e
t∆f‖qLp �

∑
|k|≤100

√
n

〈k〉
s2q
1−α ‖�α

kf‖
q
Lp � ‖f‖

q

M
s2,α
p,q

(3.30)

For the high frequency part, we use Bernstein’s inequality

‖�α
k e
t∆f‖ � e−ct|k|

2
1−α ‖�α

kf‖Lp

when |k| ≥ 100
√
n, we have

〈k〉
s1

1−α ‖�α
k e
t∆f‖Lp � 〈k〉

s1−s2
1−α e−ct|k|

2
1−α 〈k〉

s2
1−α ‖�α

kf‖Lp

� t
s1−s2

2 〈k〉
s2

1−α ‖�α
k‖Lp

(3.31)

Taking lq norm in both side of (3.31) and combing with (3.30), we obtain (3.29).
Then, we prove the existence of a local solution to (1.4) in the Banach space

X2 = {u : ‖u‖L∞(0,T ;Ms,α
p,q ) ≤ C0}, d(u, v) = ‖u− v‖L∞(0,T ;Ms,α

p,q )
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Choosing s1 such that s− s1 → 2−, By (3.29) and Lemma 2.6, we have

‖Φ(u)‖X2 � ‖u0‖Ms,α
p,q

+ ‖
∫ t

0

e(t−τ)∆|u|kudτ‖X2

� ‖u0‖Ms,α
p,q

+ ‖
∫ t

0

(t− τ)−
s−s1

2 dτ‖L∞(0,T )‖u‖k+1
X2

� ‖u0‖Ms,α
p,q

+ T 1− s−s12 ‖u‖k+1
X2

By choosing suitable C0 and T , we can obtain the conclusion of Theorem 1.4. �
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