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MEROMORPHIC SOLUTIONS TO COMPLEX DIFFERENCE
AND q-DIFFERENCE EQUATIONS OF MALMQUIST TYPE

JIE ZHANG, JIANJUN ZHANG

Abstract. In this article, we study the zeros, poles and fixed points of fi-

nite order transcendental meromorphic solutions of complex difference and
q-difference equations of Malmquist type respectively. Some examples are

structured to show that our results are sharp.

1. Introduction

In this article, a meromorphic function always means it is meromorphic in the
whole complex plane C. We assume that the reader is familiar with the standard
notations in the Nevanlinna theory. We use the following standard notations in
value distribution theory (see [4, 8, 9]):

T (r, f),m(r, f), N(r, f), N(r, f), . . . .

And we denote by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)}, as r → ∞,
possibly outside of a set E with finite linear or logarithmic measure, not necessarily
the same at each occurrence. We also use the notation τ(f) to denote the exponent
of convergence of fixed points of f , namely

τ(f) = lim sup
r→∞

logN(r, 1
f−z )

log r
.

The deficiency of a with respect to f(z) is defined by

δ(a, f) = 1− lim sup
r→∞

N(r, 1
f−a )

T (r, f)
.

We use λ(f) and λ̄(f) to denote the exponent of convergence of zeros of f counting
multiplicities and ignoring multiplicities respectively, namely

λ(f) = lim sup
r→∞

logN(r, 1
f )

log r
, λ̄(f) = lim sup

r→∞

logN(r, 1
f )

log r
.

A polynomial Q(z, f) is called a differential-difference polynomial in f if Q is a
polynomial in f , its derivatives and shifts with small meromorphic coefficients, say
{aλ|λ ∈ I}, such that T (r, aλ) = S(r, f) for all λ ∈ I. We define the difference
operator ∆f = f(z + 1)− f(z).

2000 Mathematics Subject Classification. 30D35, 34M10.

Key words and phrases. Meromorphic; differential-difference equation; fixed point; order.
c©2013 Texas State University - San Marcos.

Submitted September 13, 2013. Published January 10, 2014.

1



2 J. ZHANG, J. ZHANG EJDE-2014/16

Recently, a large number of researches focusing on complex difference and q-
difference equation emerged. For example, Gundersen et al [3] considered the com-
plex q-difference equation of Malmquist type and obtained the following result.

Theorem 1.1. Let f be a transcendental meromorphic solution of the q-difference
equation

f(qz) = R(z, f) =
a0(z) + a1(z)f(z) + · · ·+ ap(z)fp(z)
b0(z) + b1(z)f(z) + · · ·+ bt(z)f t(z)

, (1.1)

where q ∈ C, |q| ≥ 1, ap(z) 6≡ 0, bt(z) ≡ 1, and meromorphic coefficients ai(z)
(i = 0, 1, . . . , p) and bj(z) (j = 0, 1, . . . , t− 1) are of growth S(r, f). If

N(r, f) +N(r,
1
f

) = S(r, f),

then (1.1) is either the form

f(qz) = ap(z)fp(z) or f(qz) =
a0(z)
f t(z)

.

Here we consider a q-difference equation whose form is more general than in
Equation (1.1) under a condition similar to Theorem 1.1 and obtain some results
as follows.

Theorem 1.2. Let f be a transcendental meromorphic solution of a q-difference
equation of the following form

n∏
i=1

f(qiz) = R(z, f) =
a0(z) + a1(z)f(z) + · · ·+ ap(z)fp(z)
b0(z) + b1(z)f(z) + · · ·+ bt(z)f t(z)

, (1.2)

where qi 6= 0, 1, i = 1, 2 . . . n, and R(z, f) is an irreducible rational function in
f with meromorphic coefficients ai(z) (i = 0, 1, . . . p) and bj(z) (j = 0, 1, . . . t) of
growth S(r, f) such that ap(z) 6≡ 0, bt(z) ≡ 1. If

max{λ(f), λ(
1
f

)} < σ(f) = σ ≤ ∞,

then (1.2) is reduced to the form
n∏
i=1

f(qiz) = ap(z)fp(z) or
n∏
i=1

f(qiz) =
a0(z)
f t(z)

.

The author in [10] considered a special complex difference equation of Malmquist
type and obtained the following result.

Theorem 1.3. Let R(z) be a non-constant rational function. For the difference
equation

f(z + 1) = R ◦ f(z),
(1) suppose it admits a non-constant rational solution f(z), then both R(z) and
f(z) are fractional linear functions;
(2) suppose it admits a transcendental meromorphic function f(z) of finite order
σ(f), then R(z) is a fractional linear function, and suppose that it is denoted by
R(z) = az+b

cz+d , where ad− bc 6= 0, furthermore:
(2.1) if bc 6= 0, then λ(f) = λ( 1

f ) = τ(f) = σ(f);
(2.2) if R 6= id and σ(f) > 0, then
(2.2.1) f(z) has at most one finite Borel exceptional value provided (d−a)2+4b = 0
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when c 6= 0;
(2.2.2) if f(z) has Borel exceptional value∞, then f(z) has at most one finite Borel
exceptional value b

1−a .

Here we consider a type of difference equation more general than in Theorem 1.3
and obtain some results as follows.

Theorem 1.4. Suppose that c1, c2, . . . , cn are distinct nonzero constants. If com-
plex difference equation of Malmquist type

n∑
j=1

f(z + cj) = R(f(z)) =
P (f(z))
Q(f(z))

=
apf

p(z) + ap−1f
p−1(z) + · · ·+ a0

bqfq(z) + bq−1fq−1(z) + · · ·+ b0
(1.3)

admits a transcendental meromorphic solution f(z) of finite order, where P (f)
and Q(f) are relatively prime polynomials in f with constant coefficients as (s =
0, 1, . . . , p) and bt (t = 0, 1, . . . , q) such that a0apbq 6= 0, and

d = degR(z) = max {degP (z),degQ(z)} ≥ 2,

then
(1) f(z) has infinitely many zeros and satisfies δ(0, f) = 0;
(2) f(z) has infinitely many fixed points and satisfies τ(f) = σ(f);
(3) f(z) has infinitely many poles and satisfies λ( 1

f ) = σ(f);
(4) f(z) has no deficiency value b except that the value b satisfies

apb
p + ap−1b

p−1 + · · ·+ a0 = nb(bqbq + bq−1b
q−1 + · · ·+ b0).

Example 1.5. Let f(z) = 1/(eπiz−1), then we see the following identical equation
holds.

(f(z + 1) + f(z + 2))(2f(z) + 1) = 2f2(z),

which means f(z) satisfies the complex difference equation of Malmquist type

2∑
j=1

f(z + cj) = R(f(z)),

where c1 = 1, c2 = 2 and R(z) = 2z2/(2z + 1). But f(z) 6= 0.

This example shows that the assumption a0 6= 0 is necessary for our result (1)
in Theorem 1.4.

Example 1.6. Let f(z) = eπiz + z, then we see the following identical equation
holds.

f(z + 2) + f(z + 4) = 2f(z) + 6,

which means f(z) satisfies the complex difference equation of Malmquist type

2∑
j=1

f(z + cj) = R(f(z)),

where c1 = 2, c2 = 4 and R(z) = 2z + 6. But f(z) 6= z,∞.

This example shows that the assumption degR(z) ≥ 2 is necessary for our results
(2)-(3) in Theorem 1.4.
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Example 1.7. Let f(z) = eπiz + 1, then we see the following identical equation
holds.

f(z − log 2
iπ

) + f(z − log 2
iπ

+ 2) = f(z) + 1,

which means f(z) satisfies the complex difference equation of Malmquist type
2∑
j=1

f(z + cj) = R(f(z)),

where c1 = − log 2
iπ , c2 = 2 + c1 and R(z) = z + 1. But f(z) 6= 1,∞.

This example shows that the assumption degR(z) ≥ 2 is necessary for our result
(3) and the assumption apbp + ap−1b

p−1 + · · ·+ a0 = nb(bqbq + bq−1b
q−1 + · · ·+ b0)

is necessary for our result (4) in Theorem 1.4.

Example 1.8. Let f(z) = 2 + 1
eπiz−1 , then by a simple calculation, we see the

following identical equation holds.

(f(z + 2) + f(z + 1))(f(z)− 3
2

) = f2(z)− 2,

which means f(z) satisfies the complex difference equation of Malmquist type
2∑
j=1

f(z + cj) = R(f(z)) =
f2(z)− 2
f(z)− 3

2

,

where c1 = 1, c2 = 2 and R(z) = z2−2
z− 3

2
. But f(z) 6= 2.

This example shows that the assumption apbp + ap−1b
p−1 + · · ·+ a0 = nb(bqbq +

bq−1b
q−1 + · · · + b0) is necessary for our result (4) in Theorem 1.4 even when

degR(z) ≥ 2.
In 2007, Laine and Yang [6] considered zeros of one certain type of difference

polynomials and obtained the following classic theorem.

Theorem 1.9. Let f be a transcendental entire function of finite order and c be
a nonzero complex constant. If n ≥ 2, then fn(z)f(z + c) − a has infinitely many
zeros, where a ∈ C \ {0}.

At last, we also consider one special difference polynomial fn(∆f)s − α(z) cor-
responding to Theorem 1.9 as follows.

Theorem 1.10. Let f be a transcendental entire function of finite order, α(z)( 6≡ 0)
be a small function of f and ∆f 6≡ 0. Then fn(∆f)s − α(z)(n ≥ 2) has infinitely
many zeros.

2. Some lemmas

To prove our results, we need some lemmas as follows.

Lemma 2.1 ([2]). Let f be a meromorphic function with a finite order σ, and η
be a nonzero constant. For any ε > 0, we have

m(r,
f(z + η)
f(z)

) = O(rσ−1+ε).
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Lemma 2.2 ([2]). Let f(z) be a transcendental meromorphic function with finite
order σ and η be a nonzero complex number. Then for each ε > 0, we have

T (r, f(z + η)) = T (r, f) +O(rσ−1+ε) +O(log r);

i.e., T (r, f(z + η)) = T (r, f) + S(r, f).

Lemma 2.3 ([2]). Let f(z) be a meromorphic function with finite exponent of
convergence of poles λ = λ( 1

f ) <∞, and η be a fixed number. Then for each ε > 0,
we have

N(r, f(z + η)) = N(r, f) +O(rλ−1+ε) +O(log r).

Lemma 2.4 ([5]). Let w(z) be a finite order transcendental meromorphic solution
of the equation

P (z, w) = 0,
where P (z, w) is a differential-difference polynomial in w and its shifts. If P (z, a) 6≡
0 for a meromorphic function a ∈ S(r, w), then

m(r,
1

w − a
) = S(r, w).

Lemma 2.5 ([8]). Let f(z) be a non-constant meromorphic function in the complex
plane and

R(f) =
p(f)
q(f)

,

where p(f) =
∑p
k=0 akf

k and q(f) =
∑q
j=0 bjf

j are two mutually prime polyno-
mials in f(z). If the coefficients ak, bj are small functions of f(z) and ap(z) 6≡
0, bq(z) 6≡ 0, then

T (r,R(f)) = max{p, q}T (r, f) + S(r, f).

Lemma 2.6 ([7]). Let f be a transcendental meromorphic function and

F = anf
n + an−1f

n−1 + · · ·+ a0 (an 6≡ 0)

be a polynomial in f with coefficients being small functions of f . Then either

F = an(f +
an−1

nan
)n or T (r, f) ≤ N(r,

1
F

) +N(r, f) + S(r, f).

Remark 2.7. From the definition, we have (see [1])

m(r, f(cz)) = m(|c|r, f(z)) and N(|c|r, f(z)) = N(r, f(cz)) + n(0, f(cz)) log |c|,
i.e.,

N(|c|r, f(z)) = N(r, f(cz)) +O(1) and T (|c|r, f(z)) = T (r, f(cz)) +O(1).

3. Proofs of theorems

Proof of Theorem 1.2. First of all, we suppose that both p and t are positive inte-
gers, and rewrite Equation (1.2) as

H(z) :=
n∏
i=1

f(qiz) = A(z)
P (z, f)
T (z, f)

, (3.1)

where

A(z) =
ap(z)
bt(z)

, P (z, f) =
a0(z)
ap(z)

+
a1(z)
ap(z)

f(z) + · · ·+ fp(z)
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and

T (z, f) =
b0(z)
bt(z)

+
b1(z)
bt(z)

f(z) + · · ·+ f t(z).

Then from the definitions of H,P and T in Equation (3.1), we obtain

H ′

H
=

n∑
i=1

qif
′(qiz)

f(qiz)
, (3.2)

(
H ′

H
− A′

A
)PT = P ′T − PT ′. (3.3)

Fixing constants β, γ such that

max{λ(f), λ(
1
f

)} < β < γ < σ,

then we obtain

T (r,
f ′

f
) = m(r,

f ′

f
) +N(r, f) +N(r,

1
f

) = O(rβ) + S(r, f). (3.4)

By choosing subsequence rn such that T (rn, f) > rn
γ , and noticing Equation (3.4)

simultaneously, we obtain

T (rn,
f ′

f
) = S(rn, f). (3.5)

Using the same method which leads to (3.4), and taking note of Remark 2.7, we
can get

T (r,
H ′

H
) = m(r,

H ′

H
) +N(r,H) +N(r,

1
H

)

≤
n∑
i=1

N(r, f(qiz)) +
n∑
i=1

N(r,
1

f(qiz)
) + S(r, f)

=
n∑
i=1

N(|qi|r, f(z)) +
n∑
i=1

N(|qi|r,
1

f(z)
) + S(r, f)

= O(rβ) + S(r, f),

which shows

T (rn,
H ′

H
) = S(rn, f). (3.6)

By substituting P, T which are defined in (3.1) into (3.3), we obtain

(
H ′

H
− A′

A
)(fp+t +Qp+t−1) = P ′T − PT ′ = (p− t)f

′

f
fp+t + Q̃p+t−1

where Qp+t−1 and Q̃p+t−1 are differential polynomials in f with coefficients being
small functions with degree at most p + t − 1. Thus from the equation above, we
obtain

[
H ′

H
− A′

A
− (p− t)f

′

f
]fp+t = Q̃p+t−1 − (

H ′

H
− A′

A
)Qp+t−1. (3.7)

From (3.5) and (3.6), we see H′

H −
A′

A − (p− t) f
′

f is small function of f(z) (for rn).

Thus if H′

H −
A′

A − (p− t) f
′

f 6≡ 0, then by applying Lemma 2.5 to (3.7), we obtain

(p+ t)T (rn, f) ≤ (p+ t− 1)T (rn, f) + S(rn, f),
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which is impossible. Thus

H ′

H
− A′

A
− (p− t)f

′

f
≡ 0.

Then we solve the equation above and get

fp−t = k
H

A
= k

P

T
, (3.8)

where k is a nonzero constant. By (3.8) and Lemma 2.5, we obtain |p − t| =
max{p, t}, which is impossible since p and t are positive integers. Thus p = 0 or
t = 0, and we distinguish two cases as follows.
Case 1. t = 0, then (1.2) becomes

F :=
n∏
i=1

f(qiz) = a0(z) + a1(z)f(z) + · · ·+ ap(z)fp(z).

By Lemma 2.6 and the equation above, we obtain

T (r, f) ≤ N(r,
1
F

) +N(r, f) + S(r, f) (3.9)

or
F = ap(f +

ap−1

pap
)p. (3.10)

If Equation (3.9) holds, then

T (r, f) ≤
n∑
i=1

N(r,
1

f(qiz)
) +N(r, f) + S(r, f) = O(rβ) + S(r, f).

Thus by the same discussion above, we see T (rn, f) ≤ S(rn, f), which is impossible.
If Equation (3.10) holds, and ap−1 6≡ 0, then the second main theorem related

to small functions implies

T (r, f) ≤ N(r,
1
f

) +N(r, f) +N(r,
1

f + ap−1
pap

) + εT (r, f) + S(r, f)

≤ O(rβ) +N(r,
1
F

) + εT (r, f) + S(r, f)

≤
n∑
i=1

N(r,
1

f(qiz)
) +O(rβ) + εT (r, f) + S(r, f)

= O(rβ) + εT (r, f) + S(r, f).

That is,
T (rn, f) ≤ εT (rn, f) + S(rn, f),

which is impossible since can ε be set small enough. Thus ap−1 ≡ 0, and then
Equation (1.2) becomes

∏n
i=1 f(qiz) = apf

p.
Case 2. p = 0. then Equation (1.2) becomes

F̃ := (
n∏
i=1

f(qiz))−1 =
1
a0

(b0(z) + b1(z)f(z) + · · ·+ bt(z)f t(z)).

Using the similar method in case 1, we obtain
∏n
i=1 f(qiz) = a0(z)

ft(z) . The proof of
Theorem 1.2 is complete. �
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Proof of Theorem 1.4. First of all, we suppose that f is a finite order transcendental
meromorphic solution of (1.3). Then by Lemma 2.2, Lemma 2.5 and Equation (1.3),
we can deduce

dT (r, f) + S(r, f) = T (r,
n∑
j=1

f(z + cj)) ≤ nT (r, f) + S(r, f),

which leads to n ≥ d ≥ 2.
(1) From (1.3), it is easy to see

P (z, f) :=
[ n∑
j=1

f(z + cj)][bqf(z)q + bq−1f(z)q−1 + · · ·+ b0

]
− [apf(z)p + ap−1f(z)p−1 + · · ·+ a0] ≡ 0.

Then we see P (z, 0) = −a0 6≡ 0. It follows from Lemma 2.4 that

m(r,
1
f

) = S(r, f)

possibly out a set with logarithmic measure, which leads to

N(r,
1
f

) = T (r, f) + S(r, f).

Thus δ(0, f) = 0, i.e., λ(f) = σ(f).
(2) Let f(z) = g(z) + z and substitute it into (1.3), we see

P̃ (z, g) := [
n∑
j=1

g(z + cj) +
n∑
j=1

cj + nz][bq(g(z) + z)q + bq−1(g(z) + z)q−1 + . . .

+ b0]− [ap(g(z) + z)p + ap−1(g(z) + z)p−1 + · · ·+ a0] ≡ 0.

Thus

P̃ (z, 0) = (nz +
n∑
j=1

cj)Q(z)− P (z).

If (nz +
∑n
j=1 cj)Q(z) − P (z) ≡ 0, then Q(z)|P (z). But Q(z), P (z) are relatively

prime polynomials, soQ(z) is a nonzero constant and then P (z) is a polynomial with
degree 1. This is impossible since degR(z) ≥ 2. Thus (nz+

∑n
j=1 cj)Q(z)−P (z) 6≡

0, that is P̃ (z, 0) 6≡ 0. It follows from Lemma 2.4 once again that

m(r,
1

f − z
) = m(r,

1
g

) = S(r, f)

possibly out a set with logarithmic measure, which leads to

N(r,
1

f − z
) = T (r, f) + S(r, f).

Thus τ(f) = σ(f).
(3) By applying Lemmas 2.1, 2.3, 2.5 to (1.3), we have

dT (r, f) + S(r, f) = T (r,
n∑
j=1

f(z + cj))

= m
(
r,

∑n
j=1 f(z + cj)

f
f
)

+N(r,
n∑
j=1

f(z + cj))
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≤ m(r, f) +
n∑
j=1

N(r, f(z + cj)) + S(r, f)

= T (r, f)−N(r, f) + nN(r, f) + S(r, f).

That is,
T (r, f) ≤ (d− 1)T (r, f) ≤ (n− 1)N(r, f) + S(r, f),

which leads to λ( 1
f ) = σ(f).

(4) Suppose that b is a deficiency value with respect to f , from result (3), we see
b 6=∞. Set f(z) = g(z) + b and substitute it into (1.3), we have

nb+
n∑
j=1

g(z + cj) = R(z) ◦ (g(z) + b) = R(z) ◦ (z + b) ◦ g(z).

That is,
n∑
j=1

g(z + cj) = R̃(z) ◦ g(z),

where R̃(z) = R(z + b)− nb. If

ã0 = apb
p + ap−1b

p−1 + · · ·+ a0 − nb(bqbq + bq−1b
q−1 + · · ·+ b0) 6= 0,

then from result (1), we see

N(r,
1

f − b
) = N(r,

1
g

) = T (r, f) + S(r, f),

which implies b is not a deficiency value of f . The proof of Theorem 1.4 is complete.
�

Proof of Theorem 1.10. If n ≥ 3, then by Lemma 2.1, it is easy to see that

T (r,
∆f
f

) = N(r,
∆f
f

) +m(r,
∆f
f

) ≤ T (r, f) + S(r, f),

T (r,∆f) = m(r,∆f) ≤ m(r,
∆f
f

) +m(r, f) ≤ T (r, f) + S(r, f).

Thus

nT (r, f) + S(r, f)

≤ (n+ s)T (r, f)− sT (r,
∆f
f

)

≤ T (r, fn+s(
∆f
f

)
s

)

= T (r, fn(∆f)s)

≤ N(r,
1
f

) +N(r,
1

∆f
) +N(r,

1
fn(∆f)s − α(z)

) + εT (r, f) + S(r, f)

≤ 2T (r, f) +N(r,
1

fn(∆f)s − α(z)
) + εT (r, f) + S(r, f).

That is,

(n− 2− ε)T (r, f) ≤ N(r,
1

fn(∆f)s − α
) + S(r, f).

Thus fn(∆f)s − α(z) has infinitely many zeros since ε can be fixed small enough.
Now we just need to consider the case n = 2. On the contrary, we suppose that
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fn(∆f)s − α(z) has just only finitely many zeros, then we obtain that there exists
two polynomials said p and Q such that

f2(∆f)s − α = peQ. (3.11)

By differentiating (3.11) and eliminating eQ(z), we obtain

f [2pf ′(∆f)s + sp(∆f)s−1(∆f)′f − (p′ + pQ′)(∆f)sf ] = pα′ − α(p′ + pQ′). (3.12)

If pα′ − α(p′ + pQ′) 6≡ 0, then from (3.12), we see

N(r,
1
f

) ≤ N(r,
1

pα′ − α(p′ + pQ′)
) = S(r, f).

Hence

2T (r, f) ≤ T (r, f2(∆f)s) + S(r, f)

≤ N(r,
1
f

) +N(r,
1

∆f
) +N(r,

1
f2(∆f)s − α(z)

) + εT (r, f) + S(r, f)

≤ T (r, f) + εT (r, f) + S(r, f),

which is impossible.
If pα′ − α(p′ + pQ′) ≡ 0, we see peQ = kα, where k is a constant. Thus we

substitute it into (3.11), and obtain

f2(∆f)s = (k + 1)α.

Thus

2T (r, f) ≤ T (r, f2(∆f)s) + S(r, f) = T (r, (k + 1)α) + S(r, f) = S(r, f),

which is a contradiction. The proof of Theorem 1.10 is complete. �
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