
Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 161, pp. 1–8.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

INITIAL-VALUE PROBLEMS FOR HYBRID HADAMARD
FRACTIONAL DIFFERENTIAL EQUATIONS

BASHIR AHMAD, SOTIRIS K. NTOUYAS

Abstract. In this article, we discuss the existence of solutions for an initial-

value problem of nonlinear hybrid differential equations of Hadamard type.
The main result is proved by means of a fixed point theorem due to Dhage.

An example illustrating the existence result is also presented.

1. Introduction

In this article, we study the existence of solutions for an initial-value problem of
hybrid fractional differential equations of Hadamard type given by

HD
α
( x(t)
f(t, x(t))

)
= g(t, x(t)), 1 ≤ t ≤ T, 0 < α ≤ 1,

HJ
1−αx(t)|t=1 = η,

(1.1)

where HD
α is the Hadamard fractional derivative, f ∈ C([1, T ] × R,R \ {0}) and

g : C([1, T ]× R,R), HJ (·) is the Hadamard fractional integral and η ∈ R.
Fractional calculus has evolved into an important and interesting field of re-

search in view of its numerous applications in technical and applied sciences. The
mathematical modeling of many real world phenomena based on fractional-order
operators is regarded as better and improved than the one depending on integer-
order operators. In particular, fractional calculus has played a significant role in the
recent development of special functions and integral transforms, signal processing,
control theory, bioengineering and biomedical, viscoelasticity, finance, stochastic
processes, wave and diffusion phenomena, plasma physics, social sciences, etc. For
further details and applications, see [11, 15].

Fractional differential equations involving Riemann-Liouville and Caputo type
fractional derivatives have extensively been studied by several researchers. However,
the literature on Hadamard type fractional differential equations is not enriched
yet. The fractional derivative due to Hadamard, introduced in 1892 [14], differs
from the aforementioned derivatives in the sense that the kernel of the integral in
the definition of Hadamard derivative contains logarithmic function of arbitrary

2000 Mathematics Subject Classification. 34A08, 34B18.
Key words and phrases. Hadamard fractional derivative; initial value problem;

fixed point theorem; existence.
c©2014 Texas State University - San Marcos.

Submitted May 17, 2014. Published July 24, 2014.

1



2 B. AHMAD, S. K. NTOUYAS EJDE-2014/161

exponent. A detailed description of Hadamard fractional derivative and integral
can be found in [1, 5, 6, 7, 15, 16, 17].

Another interesting class of problems involves hybrid fractional differential equa-
tions. For some recent work on the topic , we refer to [2, 3, 12, 18, 19, 21] and the
references cited therein.

The article is organized as follows: Section 2 contains some preliminary facts
that we need in the sequel. In Section 3, we present the main existence result for
the given problem whose proof is based on a fixed point theorem due to Dhage [10].

2. Preliminaries

Definition 2.1 ([15]). The Hadamard fractional integral of order q for a continuous
function g is defined as

HJ
qg(t) =

1
Γ(q)

∫ t

1

(
log

t

s

)q−1 g(s)
s
ds, q > 0.

Definition 2.2 ([15]). The Hadamard derivative of fractional order q for a contin-
uous function g : [1,∞) → R is defined as

HD
qg(t) =

1
Γ(n− q)

(
t
d

dt

)n ∫ t

1

(
log

t

s

)n−q−1 g(s)
s
ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q and log(·) = loge(·).

Theorem 2.3 ([15, p. 213]). Let α > 0, n = −[−α] and 0 ≤ γ < 1. Let G be an
open set in R and let f : (a, b]×G→ R be a function such that: f(x, y) ∈ Cγ,log[a, b]
for any y ∈ G, then the problem

HD
αy(t) = f(t, y(t)), α > 0, (2.1)

HJ
α−ky(a+) = bk, bk ∈ R, (k = 1, . . . , n, n = −[−α]), (2.2)

satisfies the Volterra integral equation

y(t) =
n∑
j=1

bj
Γ(α− j + 1)

(
log

t

a

)α−j
+

1
Γ(α)

∫ t

a

(
log

t

s

)α−1

f(s, y(s))
ds

s
, (2.3)

for t > a > 0; i.e., y(t) ∈ Cn−α,log[a, b] satisfies the relations (2.1)-(2.2) if and only
if it satisfies the Volterra integral equation (2.3).

In particular, if 0 < α ≤ 1, problem (2.1)-(2.2) is equivalent to the equation

y(t) =
b

Γ(α)

(
log

t

a

)α−1

+
1

Γ(α)

∫ t

a

(
log

t

s

)α−1

f(s, y(s))
ds

s
, s > a > 0. (2.4)

Further details can be found in [15]. From Theorem 2.3 we have the following
result.

Lemma 2.4. Given y ∈ C([1, T ],R), the integral solution of initial-value problem

HD
α
( x(t)
f(t, x(t))

)
= y(t), 0 < t < 1,

HJ
1−αx(t)|t=1 = η,

(2.5)

is given by

x(t) = f(t, x(t))
( η

Γ(α)
(log t)α−1 +

1
Γ(α)

∫ t

1

(
log

t

s

)α−1 y(s)
s
ds
)
, t ∈ [1, T ].
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The following fixed point theorem due to Dhage [10] is fundamental in the proof
of our main result.

Lemma 2.5. Let S be a non-empty, closed convex and bounded subset of the Banach
algebra X let A : X → X and B : S → X be two operators such that:

(a) A is Lipschitzian with a Lipschitz constant k,
(b) B is completely continuous,
(c) x = AxBy ⇒ x ∈ S for all y ∈ S, and
(d) Mk < 1, where M = ‖B(S)‖ = sup{‖B(x)‖ : x ∈ S}.

Then the operator equation x = AxBx has a solution.

3. Existence result

Let C([1, T ],R) denote the Banach space of all continuous real-valued functions
defined on [1, T ] with the norm ‖x‖ = sup{|x(t)| : t ∈ [1, T ]}. For t ∈ [1, T ], we
define xr(t) = (log t)rx(t), r ≥ 0. Let Cr([1, T ],R) be the space of all continuous
functions x such that xr ∈ C([1, T ],R) which is indeed a Banach space endowed
with the norm ‖x‖C = sup{(log t)r|x(t)| : t ∈ [1, T ]}.

Let 0 ≤ γ < 1 and Cγ,log[1, T ] denote the weighted space of continuous functions
defined by

Cγ,log[1, T ] = {g(t) : (log t)γg(t) ∈ C[1, T ], ‖y‖Cγ,log = ‖(log t)γg(t)‖C}.
In the following we denote ‖y‖Cγ,log by ‖y‖C .

Theorem 3.1. Assume that:
(H1) the function f : [1, T ]×R→ R \ {0} is bounded continuous and there exists

a positive bounded function φ with bound ‖φ‖ such that

|f(t, x(t))− f(t, y(t))| ≤ φ(t)|x(t)− y(t)|,
for t ∈ [1, T ] and for all x, y ∈ R;

(H2) there exist a function p ∈ C([1, T ],R+) and a continuous nondecreasing
function Ω : [0,∞)→ (0,∞) such that

|g(t, x(t))| ≤ p(t)Ω(|x|), (t, x) ∈ [1, T ]× R;

(H3) there exists a number r > 0 such that

r ≥ K
[ |η|
Γ(α)

+ log T
1

Γ(α+ 1)
‖p‖Ω(r)

]
. (3.1)

where |f(t, x)| ≤ K, ∀(t, x) ∈ [1, T ]× R and

‖φ‖
[ |η|
Γ(α)

+ log T
1

Γ(α+ 1)
‖p‖Ω(r)

]
< 1.

Then the initial-value problem (1.1) has at least one solution on [1, T ].

Proof. Set X = C([1, T ],R) and define a subset S of X as

S = {x ∈ X : ‖x‖C ≤ r},
where r satisfies inequality (3.1).

Clearly S is closed, convex and bounded subset of the Banach space X. By
Lemma 2.4, the initial-value problem (1.1) is equivalent to the integral equation

x(t) = f(t, x(t))
( η

Γ(α)
(log t)α−1 +

1
Γ(α)

∫ t

1

(
log

t

s

)α−1 g(s, x(s))
s

ds
)
, (3.2)
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for t ∈ [1, T ].
Define two operators A : X → X by

Ax(t) = f(t, x(t)), t ∈ [1, T ], (3.3)

and B : S → X by

Bx(t) =
η

Γ(α)
(log t)α−1 +

1
Γ(α)

∫ t

1

(
log

t

s

)α−1 g(s, x(s))
s

ds, t ∈ [1, T ]. (3.4)

Then x = AxBx. We shall show that the operators A and B satisfy all the condi-
tions of Lemma 2.5. For the sake of clarity, we split the proof into a sequence of
steps.
Step 1. We first show that A is a Lipschitz on X, i.e. (a) of Lemma 2.5 holds.

Let x, y ∈ X. Then by (H1) we have

|(log t)1−αAx(t)− (log t)1−αAy(t)| = (log t)1−α|f(t, x(t))− f(t, y(t))|
≤ φ(t)(log t)1−α|x(t)− y(t)|
≤ ‖φ‖‖x− y‖C

for all t ∈ [1, T ]. Taking the supremum over the interval [1, T ], we obtain

‖Ax−Ay‖C ≤ ‖φ‖‖x− y‖C
for all x, y ∈ X. So A is a Lipschitz on X with Lipschitz constant ‖φ‖.
Step 2. The operator B is completely continuous on S, i.e. (b) of Lemma 2.5
holds.

First we show that B is continuous on S. Let {xn} be a sequence in S converging
to a point x ∈ S. Then by Lebesque dominated convergence theorem,

lim
n→∞

(log t)1−αBxn(t)

= lim
n→∞

( η

Γ(α)
+ (log t)1−α 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 g(s, xn(s))
s

ds
)

=
( η

Γ(α)
+ (log t)1−α 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 limn→∞ g(s, xn(s))
s

ds
)

=
( η

Γ(α)
+ (log t)1−α 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 g(s, x(s))
s

ds
)

= (log t)1−αBx(t),

for all t ∈ [1, T ]. This shows that B is continuous os S. It is sufficient to show that
B(S) is a uniformly bounded and equicontinuous set in X. First we note that

(log t)1−α|Bx(t)| =
∣∣∣ η

Γ(α)
+ (log t)1−α 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 g(s, x(s))
s

ds
∣∣∣

≤
[ |η|

Γ(α)
+ ‖p‖Ω(r)(log T )1−α 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 1
s
ds
]

=
|η|

Γ(α)
+ (log T )

1
Γ(α+ 1)

‖p‖Ω(r),

for all t ∈ [1, T ]. Taking supremum over the interval [1, T ], the above inequality
becomes

‖Bx‖C ≤
|η|

Γ(α)
+ (log T )

1
Γ(α+ 1)

‖p‖Ω(r),
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for all x ∈ S. This shows that B is uniformly bounded on S.
Next we show that B is an equicontinuous set in X. Let τ1, τ2 ∈ [1, T ] with

τ1 < τ2 and x ∈ S. Then we have∣∣(log τ2)1−α(Bx)(τ2)− (log τ1)1−α(Bx)(τ1)
∣∣

≤ ‖p‖Ω(r)
Γ(α)

∣∣∣ ∫ τ2

1

(log τ2)1−α
(

log
τ2
s

)α−1 1
s
ds−

∫ τ1

1

(log τ1)1−α
(

log
τ1
s

)α−1 1
s
ds
∣∣∣

≤ ‖p‖Ω(r)
Γ(α)

∣∣∣ ∫ τ1

1

[
(log τ2)1−α

(
log

τ2
s

)α−1

− (log τ1)1−α
(

log
τ1
s

)α−1 ]1
s
ds
∣∣∣

+
‖p‖Ω(r)

Γ(α)

∣∣∣ ∫ τ2

τ1

(log τ2)1−α
(

log
τ2
s

)α−1 1
s
ds
∣∣∣.

Obviously the right hand side of the above inequality tends to zero independently
of x ∈ S as t2 − t1 → 0. Therefore, it follows from the Arzelá-Ascoli theorem that
B is a completely continuous operator on S.
Step 3. Next we show that hypothesis (c) of Lemma 2.5 is satisfied. Let x ∈ X
and y ∈ S be arbitrary elements such that x = AxBy. Then we have

(log t)1−α|x(t)| = (log t)1−α|Ax(t)||By(t)|

= |f(t, x(t))|
∣∣∣( η

Γ(α)
+ (log t)1−α 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 g(s, y(s))
s

ds
)∣∣∣

≤ K
∣∣∣( η

Γ(α)
+ (log t)1−α 1

Γ(α)

∫ t

1

(
log

t

s

)α−1 g(s, y(s))
s

ds
)∣∣∣

≤ K
[ |η|

Γ(α)
+ (log T )1−α‖p‖Ω(r)

1
Γ(α)

∫ t

1

(
log

t

s

)α−1 1
s
ds
]

≤ K
[ |η|

Γ(α)
+ (log T )

1
Γ(α+ 1)

‖p‖Ω(r)
]
.

Taking supremum for t ∈ [1, T ], we obtain

‖x‖C ≤ K
[ |η|
Γ(α)

+ (log T )
1

Γ(α+ 1)
‖p‖Ω(r)

]
≤ r,

that is, x ∈ S.
Step 4. Now we show that Mk < 1, that is, (d) of Lemma 2.5 holds.

This is obvious by (H4), since we have M = ‖B(S)‖ = sup{‖Bx‖ : x ∈ S} ≤
|η|

Γ(α) + (log T ) 1
Γ(α+1)‖p‖Ω(r) and k = ‖φ‖.

Thus all the conditions of Lemma 2.5 are satisfied and hence the operator equa-
tion x = AxBx has a solution in S. In consequence, the problem (1.1) has a solution
on [1, T ]. This completes the proof. �

Example 3.2. Consider the initial-value problem

HD
1/2
( x(t)
f(t, x)

)
= g(t, x), 1 < t < e,

HJ
1/2x(t)|t=1 = 1,

(3.5)

where

f(t, x) =
1

5
√
π

(sin t tan−1 x+ π/2),
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g(t, x) =
1
10

(1
6
|x|+ 1

8
cosx+

|x|
4(1 + |x|)

+
1
16

)
.

Obviously |f(t, x)| ≤
√
π

5 = K, ‖φ‖ = 1
5
√
π

, |g(t, x)| ≤ 1
10

(
1
6 |x| +

7
16

)
. We choose

‖p‖ = 1
10 , Ω(r) = 1

6r + 7
16 . By the condition (H3), it is found that 261

1192 ≤ r <
3
8 (400π − 87). Clearly all the conditions of Theorem 3.1 are satisfied. Hence, by
the conclusion of Theorem 3.1, it follows that problem (3.5) has a solution.

4. Discussion

Operator equations such as x = AxBx associated with problem (1.1), are known
as quadratic integral equations. Some recent works on these kinds of equations can
be found in [4, 8, 9, 13, 20] and the references cited therein. It is interesting to
note that the involvement of the term η

Γ(α) (log t)α−1 in the integral solution (3.2)
of the problem (1.1) makes it unbounded. In consequence, we have to consider an
appropriate space to establish the existence of a solution to the given problem. In
this scenario, Banach’s fixed point theorem cannot be used in the weighted normed
space. However, if we take η = 0, then we can obtain an integral equation x = Fx,
where the operator F : C([1, T ],R)→ C([1, T ],R) is

(Fx)(t) =
1

Γ(α)
f(t, x(t))

∫ t

1

(
log

t

s

)α−1 g(s, x(s))
s

ds,

where C([1, T ],R) denote the Banach space of all continuous functions from [1, T ]→
R endowed with a topology of uniform convergence with the norm defined by
‖x‖ = sup{|x(t)| : t ∈ [1, T ]}. In this situation, we can apply Banach’s contrac-
tion mapping principle. For that, assuming that |f(t, x(t))| ≤M1, |g(t, x(t))| ≤M2,
|f(t, x(t))−f(t, y(t))| ≤ L1|x−y|, |g(t, x(t))−g(t, y(t))| ≤ L2|x−y|, for all x, y ∈ R,
we obtain

|(Fx)(t)− (Fy)(t)|

=
1

Γ(α)

∣∣∣f(t, x(t))
∫ t

1

(
log

t

s

)α−1 g(s, x(s))
s

ds

− f(t, y(t))
∫ t

1

(
log

t

s

)α−1 g(s, y(s))
s

ds
∣∣∣

=
1

Γ(α)

∣∣∣[f(t, x(t))− f(t, y(t))]
∫ t

1

(
log

t

s

)α−1 g(s, x(s))
s

ds

+ f(t, y(t))
∫ t

1

(
log

t

s

)α−1 [g(s, x(s))− g(s, y(s))]
s

ds
∣∣∣

≤ max
t∈[1,T ]

[ 1
Γ(α)

{
(L1M2 +M1L2)

∫ t

1

(
log

t

s

)α−1 1
s
ds
}]
‖x− y‖

≤ (log T )α

Γ(α+ 1)
(L1M2 +M1L2)‖x− y‖.

Letting (log T )α

Γ(α+1) (L1M2 + M1L2) < 1, the operator F is a contraction. Thus, by
Banach’s contraction principle, the problem (1.1) with η = 0 has a unique solution.
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