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EXISTENCE AND NONEXISTENCE OF SOLUTIONS TO
NONLINEAR GRADIENT ELLIPTIC SYSTEMS INVOLVING

(p(x), q(x))-LAPLACIAN OPERATORS

OUARDA SAIFIA, JEAN VÉLIN

Abstract. In this article, we establish the existence of nontrivial solutions by

employing the fibering method introduced by Pohozaev. We also generalize the
well-known Pohozaev and Pucci-Serrin identities to a (p(x), q(x))-Laplacian

system. A nonexistence result for a such system is then proved.

1. Introduction

After the pioneer work by Kovacik and Rokosnik [31] concerning the Lp(x)(Ω)
and W 1,p(x)(Ω) spaces, many researches have studied the variable exponent spaces.
We refer to [17] for the properties of such spaces and [8, 22] for the applications of
variable exponent on partial differential equations. In the recent years, problems
with p(x)-Laplacian have been applied to a large number of application in nonlinear
electrorheological fluids, elastic mechanics, image processing, and flow in porous
media (see for instance [1, 5, 9, 10, 23, 32, 39, 48]).

In this article, we study the existence and non-existence of the weak solutions
for the following (p(x), q(x))-gradient elliptic system:

−∆p(x)u = c(x)u|u|α−1|v|β+1 in Ω

−∆q(x)v = c(x)v|v|β−1|u|α+1 in Ω
u = v = 0 on Ω.

(1.1)

Here Ω designates a bounded and open set in RN , with a smooth boundary ∂Ω.
p, q : Ω → R are two measurable functions from Ω to [1,+∞), and c is a function
with changing sign. Concerning the existence and nonexistence results for such
systems, we cite the work [6]. There the authors use the fibering method introduced
by Pohozeav. They obtained the existence of multiple solutions for a Dirichlet
problem associated with a quasilinear system involving a pair of (p, q)-Laplacian
operators. Recently, Velin [44, 45], employing the fibering method, proved the
existence of multiple positive solutions for a class of (p, q)-gradient elliptic systems
including systems like (1.1).
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Systems structured as (1.1) have been investigated for instance in [43]. There
the authors presented some results dealing with existence and nonexistence of a
non-trivial solution (u, v) ∈W 1,p

0 (Ω)×W 1,q
0 (Ω) of the system

−∆pu = u|u|α−1|v|β+1 in Ω

−∆qv = v|v|β−1|u|α+1 in Ω
u = v = 0 on Ω.

(1.2)

The authors have proved nonexistence results when Ω is a strictly starshaped open
domain in RN and

(α+ 1)
N − p
Np

+ (β + 1)
N − q
Nq

≥ 1 . (1.3)

On the other hand, under the assumptions

(α+ 1)
N − p
Np

+ (β + 1)
N − q
Nq

< 1,
α+ 1
p

+
β + 1
q
6= 1, (1.4)

some existence results have been obtained. In [13], the authors deal with nonexis-
tence for an elliptic Dirichlet equation governed by the p(x)-Laplacian operator.

The article has the following structure. Section 2 is devoted to introduce some
notation and preliminaries needed for the framework of the paper. We also recall
some tools defined by the theory of variable exponents Lebesgue and Sobolev spaces.
Section 3 states the main results. In Section 4, following the ideas explained in [13],
we establish a Pohozaev-type identity for the system (1.1). By using this identity,
we deal with the non-existence results of non trivial solutions. In section 5, after
recalling the spirit of the fibering method, we show that (1.1) admits at least one
weak non-trivial solution.

2. Preliminaries

Let P(Ω) denote the set {p; p : Ω → [1,+∞) is measurable }. Ω ⊂ RN is an
open set. Lp(x)(Ω) designates the generalized Lebesgue space. Lp(x)(Ω) consists of
all measurable functions u defined on Ω for which the p(x)-modular

ρp(.)(u) =
∫

Ω

|u(x)|p(x)dx

is finite. The Luxemberg norm on this space is defined as

‖u‖p = inf{λ > 0; ρp(.)(u) =
∫

Ω

|u(x)
λ
|p(x)dx ≤ 1}.

Equipped with this norm, Lp(x)(Ω) is a Banach space. Some basic results on the
generalized Lebesgue spaces can be find in [12, 19, 21, 22, 26, 27, 31, 32, 33]. If
p(x) is constant, Lp(x)(Ω) is reduced to the standard Lebesgue space.

For any p ∈ P(Ω) and m ∈ N∗, the generalized Sobolev space Wm,p(x)(Ω) is
defined by

Wm,p(.)(Ω) = {u ∈ Lp(.)(Ω) : Dαu ∈ Lp(.)(Ω) for all |α| ≤ m},

‖u‖m,p(.) =
∑
|α|≤m

‖Dαu‖Lp(.)(Ω) .
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The pair (Wm,p(.)(Ω), ‖·‖m,p(.)) is a separable Banach space (reflexive if p− > 1).
W

1,p(.)
0 (Ω) denotes the closure of C∞0 (Ω) in W 1,p(.)(Ω). On the generalized Sobolev

space, we refer to the works due to [16, 17, 19, 20, 24, 25, 31].
We define: p, q : Ω→ [1,+∞) as two measurable functions.
For a given measurable function p : Ω→ [1,+∞), the conjugate function desig-

nated by

p′(x) =
p(x)

p(x)− 1
.

A function p : Ω → R is ln-Hölder continuous on Ω (See [19]), provided that
there exists a constant L > 0 such that

|p(x)− p(y)| ≤ L

− ln |x− y|
, for all x, y ∈ Ω, |x− y| ≤ 1

2
. (2.1)

p− = min
x∈Ω

p(x), q− = min
x∈Ω

q(x),

p+ = max
x∈Ω

p(x), q+ = max
x∈Ω

q(x).

For c : Ω→ I, c+(x) 6= 0, c−(x) 6= 0.

3. Main results

Let us now state the main results of this paper:

A non-existence result for the (p(x), q(x))-Laplacian system (1.1).

Theorem 3.1. Let Ω be a bounded open set of RN , with boundary ∂Ω of class C1.
Let p, q : Ω→ I functions of class C1

B(Ω)∩ C(Ω), p−, q− > 1, and c(.) ∈ C1
B(Ω\C),

with meas(C) = 0. Assume that Ω be a bounded domain of class C1, starshaped
with respect to the origin; (p, q) ∈ C1

B(Ω) ∩ C(Ω̄); p−, q− > 1; and (x · ∇p) ≥ 0,
(x · ∇q) ≥ 0,

〈x,∇c(x)〉 ≤ 0 for any x in Ω, (3.1)

(α+ 1)
N − p+

Np+
+ (β + 1)

N − q+

Nq+
≥ 1. (3.2)

Then (1.1) has not a nontrivial classical solution (u, v) ∈ (C2(Ω) ∩ C1(Ω̄))2 which
satisfies:

|∇u(x)| ≥ e1/p(x), |∇v(x)| ≥ e1/q(x) a.e x ∈ Ω, (3.3)
and ∫

Ω

c(x)|u|α+1|v|β+1dx > 0.

An existence result for the (p(x), q(x))-Laplacian system (1.1).

Theorem 3.2. Let Ω be a bounded open set of RN , with boundary ∂Ω of class C1.
Let p, q : Ω→ I∗+ two functions of class C1

B(Ω) ∩ C(Ω); p−, q− > 1. Assume that:

(α+ 1)
N − p−

Np−
+ (β + 1)

N − q−

Nq−
< 1, (3.4)

γ+ =
α+ 1
p+

+
β + 1
q+

− 1 > 0. (3.5)
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Then system (1.1) admits at least one nontrivial solution (u∗, v∗) ∈ W 1,p(x)
0 (Ω) ×

W
1,q(x)
0 (Ω). Moreover, one have

‖u∗‖p
+

1,p(x) = ‖v∗‖q
+

1,q(x),∫
Ω

c(x)|u∗|α+1|v∗|β+1dx > 0.

Remark 3.3. Let us remark that conditions (3.2) and (3.4) seem to generalize to
(p(x), q(x))− gradient elliptic systems conditions (1.3) and (1.4) well known when
(p, q)− gradient elliptic systems are considered. Obviously, conditions (3.2) and
(3.4) imply respectively

1 ≤ (α+ 1)
N − p−

Np−
+ (β + 1)

N − q−

Nq−
,

(α+ 1)
N − p+

Np+
+ (β + 1)

N − q+

Nq+
< 1.

4. A Pohozaev-type identity for (p(x), q(x))-Laplacian and a
nonexistence result

Consider the elliptic system with Dirichlet boundary condition:

−∆p(x)u = c(x)u|u|α−1|v|β+1 in Ω

−∆q(x)v = c(x)|u|α+1v|v|β−1 in Ω
u = v = 0 on Ω,

where Ω ⊂ IN is a bounded open set with a regular boundary ∂Ω; p, q, c are defined
as in the previous section.

∆p(x)u =
∂

∂xi

(
|∇u|p(x)−2 ∂u

∂xi

)
.

Proposition 4.1. Let Ω be a bounded open set of RN , with boundary ∂Ω of class
C1. Assume that p, q : Ω→ I are two functions of class C1

B(Ω)∩ C(Ω); p−, q− > 1;
c(.) ∈ C1

B(Ω \ C), with meas(C) = 0 and

〈x,∇c(x)〉 ≤ 0 for any x in Ω.

For every classical solution (u, v) ∈ C2(Ω) ∩ C1(Ω) of (1.1), the following identity
holds:
α+ 1
N

∫
∂Ω

1− p(x)
p(x)

|∇u|p(x)〈x, ν〉dσ +
β + 1
N

∫
∂Ω

1− q(x)
q(x)

|∇v|q(x)〈x, ν〉dσ

=
α+ 1
N

∫
Ω

(N − p(x)
p(x)

− a1

)
|∇u|p(x)dx+

β + 1
N

∫
Ω

(N − q(x)
q(x)

− a2

)
|∇v|q(x)dx

+
∫

Ω

[ 1
p2(x)

〈x · ∇p〉(ln |∇u|p(x) − 1)|∇u|p(x)

+
1

q2(x)
〈x,∇q〉(ln |∇v|q(x) − 1)|∇v|q(x)

]
dx

+
∫

Ω

{
(α+ 1)a1 + (β + 1)a2 −N

}
c(x)|u|α+1|v|β+1dx

−
∫

Ω

〈x,∇c〉|u|α+1|v|β+1dx.
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for all a1 and a2 ∈ RN .

Before proving the proposition 4.1, we present the following result generalizing
the variational identity of Pucci-Serrin [38].

Proposition 4.2. Let Ω be a bounded open set of RN with boundary ∂Ω of class
C1. Assume that p, q : Ω→ I are tow functions of class C1

B(Ω)∩C(Ω); p−, q− > 1;
c(·) ∈ C1

B(Ω \ C), C ⊂ Ω with meas(C) = 0. For every classical solution (u, v) ∈(
C2(Ω) ∩ C1(Ω)

)2 of problem (1.1), the following equality holds

∂

∂xi

[
xi

(α+ 1
p(x)

|∇u|p(x) +
β + 1
q(x)

|∇v|q(x) − c(x)|u|α+1|v|β+1
)

− (α+ 1)
(
xj

∂u

∂xj
+ a1u

)
|∇u|p(x)−2 ∂u

∂xi
− (β + 1)

(
xj

∂v

∂xj
+ a2v

)
|∇v|q(x)−2 ∂v

∂xi

]
= (α+ 1)

[N − p(x)
p(x)

− a1

]
|∇u|p(x) + (β + 1)

[N − q(x)
q(x)

− a2

]
|∇v|q(x)

+
〈x,∇p〉
p2(x)

(ln |∇u|p(x) − 1)|∇u|p(x) +
〈x,∇q〉
q2(x)

(ln |∇v|q(x) − 1)|∇v|q(x)

+ {(α+ 1)a1 + (β + 1)a2 −N}c(x)|u|α+1|v|β+1 − 〈x,∇c〉|u|α+1|v|β+1,

(4.1)
for all a1 and a2 in R.

The proof of Proposition 4.2 can be established by a simple computation.

Proof of Proposition 4.1. In this proof, for any vectors in IN x = (xi)i=1,...,N and
y = (yi)i=1,...,N , the classical inner product xy is denoted xiyi and the notation∑N
i=1 is omitted. Let (u, v) ∈

(
C2
B ∩ C1(Ω̄)

)2 be a classical solution of the problem
(1.1). According to the Proposition 4.2, (u, v) satisfies the identity (4.1). Integrat-
ing by part over Ω, we get∫

∂Ω

[(α+ 1
p(x)

|∇u|p(x) +
β + 1
q(x)

|∇v|q(x) − c(x)|u|α+1|v|β+1
)

− (α+ 1)
(
xj

∂u

∂xj
+ a1u

)
|∇u|p(x)−2 ∂u

∂xi

− (β + 1)
(
xj

∂v

∂xj
+ a2v

)
|∇v|q(x)−2 ∂v

∂xi

]
νidσ

= (α+ 1)
∫

Ω

(N − p(x)
p(x)

− a1

)
|∇u|p(x)dx

+ (β + 1)
∫

Ω

(N − q(x)
q(x)

− a2

)
|∇v|q(x)dx

+
∫

Ω

[ 1
p2(x)

〈x · ∇p〉(ln |∇u|p(x) − 1)|∇u|p(x)

+
1

q2(x)
〈x,∇q〉(ln |∇v|q(x) − 1)|∇v|q(x)

]
dx

+
∫

Ω

{
(α+ 1)a1 + (β + 1)a2 −N

}
c(x)|u|α+1|v|β+1dx

−
∫

Ω

〈x,∇c〉|u|α+1|v|β+1dx,

(4.2)
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where ν is the unit outer normal to the boundary ∂Ω Since u = 0 on ∂Ω, clearly it
follows that ∂u

∂xi
= (∇u.ν)νi for i = 1, . . . , N . Then, for x on ∂Ω, we can write

xj
∂u

∂xj

∂u

∂xi
|∇u|p(x)−2νi = xj [(∇u.ν)νj ]

∂u

∂xi
|∇u|p(x)−2νi

=
∂u

∂xi

∂u

∂xi
|∇u|p(x)−2(x.ν)

= |∇u|p(x)(x.ν) on ∂Ω

Using the relation (4.2) and the fact that u|∂Ω = 0 in the left hand side of this
relation, the statement of the Proposition 4.1 occurs. �

Remark 4.3. Before proving Proposition 4.2, we note that the set of functions
c satisfying to hypothesis (3.1), is non-empty. Indeed, let x0 be in ∂Ω such that
dist(0, ∂Ω) = dist(0, x0). We set R0 = dist(0, ∂Ω). Obviously, we remark that the
ball B(0, R0) is contained in Ω. We define the set Ω1 by Ω1 = {x ∈ Ω; 0 ≤ ‖x‖ ≤
R0/2}. For instance, we define the function

c(x) =

{
−e‖x‖2 if x ∈ Ω1

e−‖x‖
2

if x ∈ Ω \ Ω1.

This function changes sign in Ω and we also have for any x ∈ Ω, 〈x,∇c(x)〉 ≤ 0.
Moreover, c ∈ L∞(Ω).

Proof of Theorem 3.1. Suppose that there exists a nontrivial classical solution (u, v)
in C2(Ω) ∩ C1(Ω̄) of the problem (1.1). So that, (u, v) satisfies the statement of
Proposition 4.1. Since Ω ⊂ RN is strictly starshaped with respect to the origin, we
have x · ν > 0 on ∂Ω thus

−α+ 1
N

∫
∂Ω

1
p̃(x)
|∇u|p(x)〈x, ν〉dσ − β + 1

N

∫
∂Ω

1
q̃(x)
|∇v|q(x)〈x, ν〉dσ < 0,

where 1
p̃(x) = p(x)−1

p(x) , 1
q̃(x) = q(x)−1

q(x) .
On other hand, choosing a1 ∈ I and a2 ∈ I such that

(α+ 1)
a1

N
+ (β + 1)

a2

N
= 1

and using the relations (3.2), (3.3), we obtain

α+ 1
N

∫
∂Ω

1− p(x)
p(x)

|∇u|p(x)〈x, ν〉dσ +
β + 1
N

∫
∂Ω

1− q(x)
q(x)

|∇v|q(x)〈x, ν〉dσ

=
α+ 1
N

∫
Ω

(N − p(x)
p(x)

− a1

)
|∇u|p(x)dx+

β + 1
N

∫
Ω

(N − q(x)
q(x)

− a2

)
|∇v|q(x)dx

+
∫

Ω

{
(α+ 1)a1 + (β + 1)a2 −N

}
c(x)|u|α+1|v|β+1dx

−
∫

Ω

〈x,∇c〉|u|α+1|v|β+1dx

≥ (α+ 1)
N − p+

Np+

∫
Ω

|∇u|p(x)dx+ (β + 1)
N − q+

Nq+

∫
Ω

|∇v|q(x)dx

− (α+ 1)
a1

N

∫
Ω

|∇u|p(x)dx− (β + 1)
a2

N

∫
Ω

|∇v|q(x)dx
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+
∫

Ω

{
(α+ 1)a1 + (β + 1)a2 −N

}
c(x)|u|α+1|v|β+1dx

−
∫

Ω

〈x,∇c〉|u|α+1|v|β+1dx

≥ {(α+ 1)
N − p+

Np+
+ (β + 1)

N − q+

Nq+
− (α+ 1)

a1

N

− (β + 1)
a2

N
}
∫

Ω

c(x)|u|α+1|v|β+1dx

≥ {(α+ 1)
N − p+

Np+
+ (β + 1)

N − q+

Nq+
− 1}

∫
Ω

c(x)|u|α+1|v|β+1dx

−
∫

Ω

〈x,∇c〉|u|α+1|v|β+1dx.

Now we remark that any solution (u, v) of (1.1) satisfies∫
Ω

c(x)|u|α+1|v|β+1dx =
∫

Ω

|∇u|p(x)dx =
∫

Ω

|∇v|q(x)dx.

So from the hypothesis (3.1), the right-hand side is positive. A contradiction occurs,
then the proof is complete. �

5. Existence results via the fibering method

Throughout this section, Ω denotes a bounded open set in RN . The general-
ized Sobolev spaces W 1,p(x)

0 (Ω) and W 1,q(x)
0 (Ω) are equipped with the Luxembourg

norm ‖u‖
W

1,p(x)
0 (Ω)

and ‖u‖
W

1,q(x)
0 (Ω)

respectively. For a best reading, we denote
as ‖u‖

W
1,p(x)
0 (Ω)

= ‖u|‖1,p(x) and ‖u‖
W

1,q(x)
0 (Ω)

= ‖u‖1,q(x). Before starting this
section, we need to make some crucial remarks for the understanding of this article.

Remark 5.1. Assuming that

(α+ 1)
N − p−

Np−
+ (β + 1)

N − q−

Nq−
≤ 1.

We can establish that the term
∫

Ω
c(x)|z|α+1|w|β+1dx is well defined. Indeed, since

the functional c is bounded in Ω, it suffices to verify that |z|α+1|w|β+1 belongs in
L1(Ω). This fact derives to the condition α+1

p+ + β+1
q+ > 1 and so α+1

p− + β+1
q− > 1.

So, there exists a pair (p̂, q̂) such that (1)

p− < p̂ <
Np−

N − p−
, (5.1)

q− < q̂ <
Nq−

N − q−
(5.2)

(2) α+1
p̂ + β+1

q̂ = 1.

Remark 5.2. Since Np−

N−p− < Np(x)
N−p(x) and Nq−

N−q− < Nq(x)
N−q(x) , the assumption (α +

1)N−p
−

Np− + (β + 1)N−q
−

Nq− ≤ 1 implies that for any x ∈ Ω, inequalities (5.1) and (5.2)
become

p− < p̂ <
Np(x)
N − p(x)

,
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q− < q̂ <
Nq(x)
N − q(x)

.

In particular, the imbeddings W 1,p(x)
0 (Ω) ↪→ Lp̂(Ω) and W

1,q(x)
0 (Ω) ↪→ Lq̂(Ω) are

continuous. Consequently, employing the Hölder inequality, the above estimate is
fulfilled:∣∣∣ ∫

Ω

c(x)|u|α+1|v|β+1dx
∣∣∣ ≤ ‖c‖L∞(Ω)‖u‖α+1

Lp̂(Ω)
‖v‖β+1

Lq̂(Ω)
≤ Cst‖u‖α+1

1,p(x)‖v‖
β+1
1,q(x).

Remark 5.3. (1) Under assumption (3.5), we have
α+ 1
p−

+
β + 1
q−

− 1 > 0. (5.3)

(2) When q(x) and p(x) are constant, (3.5) and (5.3) are reduced to the well-
known condition

1 <
α+ 1
p

+
β + 1
q

.

5.1. Notation and hypotheses.

Notation. X0(x) denotes W 1,p(x)
0 (Ω)×W 1,q(x)

0 (Ω).
For any (z, w) ∈ X0(x), we set

A(z) =
∫

Ω

|∇z|p(x)dx, B(w) =
∫

Ω

|∇w|q(x)dx,

C(z, w) =
∫

Ω

c(x)|z|α+1|w|β+1dx.

(5.4)

γ+ =
α+ 1
p+

+
β + 1
q+

, γ− =
α+ 1
p−

+
β + 1
q−

.

J designates the functional from X0(x) to R and defined by

J(u, v) = (α+1)
∫

Ω

1
p(x)
|∇u|p(x)dx+(β+1)

∫
Ω

1
q(x)
|∇v|q(x)dx−C(u, v)dx. (5.5)

Following remarks 5.1-5.2, the functional J is well defined from X0(x) to I.

Hypotheses.

1 < γ+, (5.6)

(p, q) ∈
(
P(Ω) ∪ C(Ω)

)2 satisfies (2.1). (5.7)

Moreover, assume that

1 < p− ≤ p+ < +∞, 1 < q− ≤ q+ < +∞. (5.8)

Definition of a weak solution for (1.1).

Definition 5.4. A pair (u, v) ∈ X0(x) is a weak solution of (1.1) if for any (φ, ψ) ∈
X0(x): ∫

Ω

|∇u|p(x)−2∇u∇φdx =
∫

Ω

c(x)u|u|α−1|v|β+1uφ dx,∫
Ω

|∇v|q(x)−2∇v∇ψ dx =
∫

Ω

c(x)|u|α+1v|v|β−1uψ dx.
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Fibering Method for quasilinear systems. Pohozaev introduced the fibering
method in [34] (see also [36, 37]). For more details about various applications, we
refer the reader to [2, 3, 4, 6, 7, 14, 28, 29, 40, 41, 46, 47]). The fibering method
applied to this problem consists in seeking the the pair (u, v) ∈ X in the form

u = rz, v = ρw (5.9)

where the functions z and w belong to W 1,p(x)
0 (Ω) \ {0} and W

1,q(x)
0 (Ω) \ {0} re-

spectively, where r and ρ are real numbers. Moreover, since we look for nontrivial
solutions (i.e: u 6= 0, v 6= 0), we must assume that r 6= 0 and ρ 6= 0. The fibering
method ensures the existence. However, compared to other well known methods,
we obtain the specific form (5.9).

Remark 5.5. In [6], the authors applied the fibering method to obtain the existence
of multiple solutions for a problem like (1.1) when the exponents p(x) and q(x) are
constant. In their studies, we note that the fibering parameters r and ρ depending
on z and w verify rp = ρq for (z, w) such that A(z) = 1 and B(z) = 1 for instance.
Inspired by this point of view, here we propose to seek a couple (u, v) = (rz, ρw),
with r = t1/p

+
and ρ = t1/q

+
, for t > 0.

Existence of a fibering parameter t(z, w). Existence and properties: Since
∂J
∂u (u, v) and ∂J

∂v (u, v) exist, a weak solution of (1.1) corresponds to a critical point
of the energy functional J associated to the system (1.1). Hence, assuming that
(u, v) ∈ X0(x) is a critical point of J, (u, v) satisfies

(
∂J
∂u (u, v), ∂J∂v (u, v)

)
= (0, 0).

So, according to remark 5.5, a fibering parameter t(z, w) associated to (z, w) is
characterized as

dJ
dt

(
t1/p

+
z, t1/q

+
w
)

= 0. (5.10)

More precisely, t(z, w) is defined by the following Proposition.

Proposition 5.6. Let (z, w) be fixed in X0(x) such that C(z, w) > 0.
(1) Assuming (5.6), there is t(z, w) ∈ R∗+ depending on (z, w) such that

α+ 1
p+γ+

∫
Ω

t(z, w)
p(x)
p+ |∇z|p(x)dx+

β + 1
q+γ+

∫
Ω

t(z, w)
q(x)
q+ |∇z|q(x)dx = t(z, w)γ

+

C(z, w).

(5.11)
(2) Location of t(z, w): for t(z, w) > 1 (respectively, t(z, w) ≤ 1) if Q(z, w) > 1

(respectively Q(z, w) ≤ 1), for any (z, w) such that C(z, w) > 0, we have

Q(z, w) =
α+1
p+γ+

∫
Ω
|∇z|p(x)dx+ β+1

q+γ+

∫
Ω
|∇z|q(x)dx

C(z, w)
.

Moreover, the following two estimates hold: (a) If 0 < t(z, w) < 1, then

Q(z, w)1/γ+−1 ≤ t(z, w) ≤ Q(z, w)1/γ+
(5.12)

(b) If 1 ≥ t(z, w), then

Q(z, w)1/γ+
≤ t(z, w) ≤ Q(z, w)1/γ+−1. (5.13)

Proof. We divide the proof in three steps
Step 1: Existence of t(z, w). Using the definition of J (see (5.5)), solving (5.10)
is equivalent to solving the equation

α+ 1
p+γ+

∫
Ω

t
p(x)
p+ |∇z|p(x)dx+

β + 1
q+γ+

∫
Ω

t
q(x)
q+ |∇z|q(x)dx = tγ

+
C(z, w).
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To do this, consider a function f̃ defined on [0,+∞[ by

f̃(t) =
α+ 1
p+γ+

∫
Ω

t
p(x)
p+ |∇z|p(x)dx+

β + 1
q+γ+

∫
Ω

t
q(x)
q+ |∇z|q(x)dx− tγ

+
C(z, w).

Choosing 0 < t < 1, it follows that

t[Q(z, w)− tγ
+−1]C(z, w) ≤ f̃(t). (5.14)

Now, for 1 ≤ t, we obtain

f̃(t) ≤ t[Q(z, w)− tγ
+−1]C(z, w). (5.15)

Consequently, on one side we have limt→0 f̃(t) ≥ 0, and on the other side we have
limt→+∞ f̃(t) = −∞. So, using the Mean Value Theorem, we deduce that there
exists t(z, w) ∈ R∗+ depending on z, w such that f̃(t(z, w)) = 0. Moreover, t(z, w)
obeys to (5.11).
Step 2: Location of t(z, w). We distinguish the cases Q(z, w) < 1 and Q(z, w) ≥
1.

(a) Assume that Q(z, w) < 1, it follows that 0 < t(z, w) < 1. Arguing by
opposite, if the assert 1 ≤ t(z, w) holds, then from (5.15), we obtain t(z, w) ≤
Q(z, w). So, Q(z, w) is greater than 1. This is contradicts the hypothesis Q(z, w) <
1.

(b) Conversely, assuming Q(z, w) ≥ 1, from (5.14), we get t(z, w) ≥ 1.
From (5.11) and the hypothesis (5.6), it is easy to deduce that for any (z, w) fixed

in X0(x) such that C(z, w) > 0, the location of the fibering parameter t(z, w). �

Lemma 5.7. Assume (5.6). Let (z, w) in X0(x) \ {(0, 0)} and t(z, w) defined as
in (5.11). The function (z, w) 7−→ t(z, w) is C1 on X0(x) \ {(0, 0)}.

Proof. From (5.11), we consider on the open set X0(x) \ {(0, 0)} × (]0, 1[∪]1,+∞[)
of X0(x)× I, the functional η defined as follows:

η(z, w, t) =
α+ 1
p+γ+

∫
Ω

t
p(x)
p+ −γ

+

|∇z|p(x)dx+
β + 1
q+γ+

∫
Ω

t
q(x)
q+
−γ+

|∇w|q(x)dx− C(z, w).

Obviously, we note that η(z, w, t(z, w)) = 0 and ∂η
∂t (z, w, t(z, w)) < 0. We used the

implicit function theorem for the function η. Then (z, w) 7−→ t(z, w) is C1 function
on X0(x) \ {(0, 0)}. �

A new definition for the enegy functional J derived from Proposition 5.6
and Lemma 5.7. On X0(x) \ {(0, 0)}, we define the function

J (z, w) =
∫

Ω

α+ 1
p(x)

t(z, w)
p(x)
p+ |∇z|p(x)dx+

∫
Ω

β + 1
q(x)

t(z, w)
q(x)
q+ |∇w|q(x)dx

− t(z, w)γ
+

C(z, w).
(5.16)

5.2. A conditional critical point of J . We start by giving some lemmas.

Lemma 5.8. Let (z0, w0) ∈ X0(x) \ {(0, 0)} such that C(z0, w0) 6= 0. Then, there
exists Z0 ∈W 1,p(x)

0 (Ω) \ {0} satisfying C(Z0, w0) > 0.

Proof. We fix (z0, w0) ∈ X0(x) \ {(0, 0)} for which C(z0, w0) 6= 0. Then distinguish
two cases: (1) C(z0, w0) > 0. Then, the assertion of Lemma 5.8 holds by taking
Z0 = z0.
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(2) If C(z0, w0) < 0. In this context, we note that∫
Ω

c+(x)|z0|α+1|w0|β+1dx <

∫
Ω

c−(x)|z0|α+1|w0|β+1dx.

Assuming that c+(x) > 0 and c−(x) ≥ 0, we put

Z0 = z0 χ{h>0} − ε̂z0 χ{h≤0}

and

0 < ε̂ <
[ ∫

{c>0} h+(x)|z0|α+1|w0|β+1dx∫
{c≤0} h−(x)|z0|α+1|w1|β+1dx+ 1

]1/α+1

.

From easy calculations, it follows that
∫

Ω
c(x)|Z0|α+1|w0|β+1dx > 0. The proof is

complete. �

Consequently, we define the set

E =
{

(z, w) ∈ X;
∫

Ω

|∇z|p(x)dx = 1,
∫

Ω

|∇w|q(x)dx = 1
}
. (5.17)

It is obvious that E is a nonempty set (see [19, 31]). We then have the next lemma.

Lemma 5.9. The set {(z, w) ∈ E;C(z, w) > 0} is nonempty.

Proof. Let (z0, w0) be in X0(x) \ {(0, 0)} such that C(z0, w0) 6= 0. According to
the lemma 5.8, there is (Z, w0) ∈ X0(x) \ {(0, 0)} such that C(Z, w0) > 0. The
assert of the lemma is holds if for instance (Z, w0) ∈ E. Now, assume that (Z, w0)
is not in E. Assume that for instance

∫
Ω
|∇Z|p(x)dx > 1 and

∫
Ω
|∇w0|q(x)dx < 1.

Applying the mean value theorem to the functions t → 1 −
∫

Ω
|∇tZ|p(x)dx and

s→
∫

Ω
|∇sw0|q(x)dx− 1, we get a pair (tp, sq) ∈]0, 1[×]1,+∞[ such that∫

Ω

|∇tpZ|p(x)dx = 1 =
∫

Ω

|∇sqw0|q(x)dx.

Moreover, since C(Z, w0) > 0, we also have C(tpZ, sqw0) > 0. The proof is com-
plete. �

Proposition 5.10. Let the functional J be defined by (5.16), and let (z, w) be in
E. Under hypothesis (5.6)–(5.8), the following estimates hold:

γ+

C(z, w)1/γ+−1
− 1 ≤ J (z, w) ≤ γ− − 1

C(z, w)min( p
−
p+ ,

q−
q+

)
, if c(z, w) ≥ 1,

γ+ − 1

C(z, w)min( p
−
p+ ,

q−
q+

)
≤ J (z, w) ≤ γ−

C(z, w)1/γ+−1
− 1, if c(z, w) < 1.

Proof. Estimates (5.12) and (5.13) imply the following lower and upper bounds for
the functional J (z, w). Indeed: (1) Consider t(z, w) ≥ 1: after combining (5.16)
and (5.11), it follows that

J (z, w)

= (α+ 1)
∫

Ω

( 1
p(x)

− 1
p+γ+

)
t(z, w)

p(x)
p+ |∇z|p(x)dx

+ (β + 1)
∫

Ω

( 1
q(x)

− 1
q+γ+

)
t(z, w)

q(x)
q+ |∇w|q(x)dx
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≥
[
(α+ 1)

γ+ − 1
p+γ+

∫
Ω

|∇z|p(x)dx

+ (β + 1)
γ+ − 1
q+γ+

∫
Ω

|∇w|q(x)dx
]
t(z, w)min( p

−

p+ ,
q−

q+
)

≥
[α+ 1
p+γ+

∫
Ω

|∇z|p(x)dx+
β + 1
q+γ+

∫
Ω

|∇w|q(x)dx
]
(γ+ − 1)Q(z, w)min( p

−

p+ ,
q−

q+
)
.

The functional J (z, w) is bounded as follows:

J (z, w) ≤ t(z, w)
[α+ 1
p−

∫
Ω

|∇z|p(x)dx+
β + 1
q−

∫
Ω

|∇w|q(x)dx
]
− t(z, w)γ

+

C(z, w)

≤
[α+ 1
p−

∫
Ω

|∇z|p(x)dx+
β + 1
q−

∫
Ω

|∇w|q(x)dx
]
Q(z, w)1/γ+−1

−
[α+ 1
p+γ+

∫
Ω

|∇z|p(x)dx+
β + 1
q+γ+

∫
Ω

|∇w|q(x)dx
]
.

(2) Now, consider t(z, w) < 1:

J (z, w)

≥ t(z, w)
[α+ 1
p+

∫
Ω

|∇z|p(x)dx+
β + 1
q+

∫
Ω

|∇w|q(x)dx
]
− t(z, w)γ

+

C(z, w)

≥
[α+ 1
p+

∫
Ω

|∇z|p(x)dx+
β + 1
q+

∫
Ω

|∇w|q(x)dx
]
Q(z, w)1/γ+−1

−
[α+ 1
p+γ+

∫
Ω

|∇z|p(x)dx+
β + 1
q+γ+

∫
Ω

|∇w|q(x)dx
]
.

Also we have

J (z, w) = (α+ 1)
∫

Ω

( 1
p(x)

− 1
p+γ+

)
t(z, w)

p(x)
p+ |∇z|p(x)dx

+ (β + 1)
∫

Ω

( 1
q(x)

− 1
q+γ+

)
t(z, w)

q(x)
q+ |∇w|q(x)dx

≤
[
(α+ 1)

( 1
p−
− 1
p+γ+

) ∫
Ω

|∇z|p(x)dx

+ (β + 1)
( 1
q−
− 1
q+γ+

) ∫
Ω

|∇w|q(x)dx
]
t(z, w)min( p

−

p+ ,
q−

q+
)

≤
[
(α+ 1)

( 1
p−
− 1
p+γ+

) ∫
Ω

|∇z|p(x)dx

+ (β + 1)
( 1
q−
− 1
q+γ+

) ∫
Ω

|∇w|q(x)dx
]
Q(z, w)min( p−

p+γ+ ,
q−

q+γ+ )
.

We choose (z, w) ∈ E, then Q(z, w) is reduced to become Q(z, w) = 1
C(z,w) . Thus,

the assert of the Proposition 5.10 follows. �

Consider the optimal problem

inf
{(z,w)∈E; c(z,w)>0}

1
C(z, w)

. (5.18)

We claim that the infimum value is attained in E. To assert this claim, we need
the following lemma.
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Lemma 5.11. Under assumption (5.7), the optimal problem (5.18) possesses at
least one solution.

Proof. Solving (5.18) is equivalent to solving the maximizing problem:

sup
{∫

Ω

c(x)|z|α+1|w|β+1dx; (z, w) ∈ E, C(z, w) > 0
}

=: M. (5.19)

Firstly, from Remarks 5.1 and 5.2, we observe that M is finite. Indeed, from the end
of Remark 5.2 and the use of [19] or [31], for any (z, w) ∈ E, 0 < C(z, w) ≤ ‖c‖∞K,
(the constants ‖c‖∞ and K are not depending on (z, w)). We follow the ideas of
[6] and we show that there exists (zM , wM ) ∈ E such that C(z, w) ≤ C(zM , wM )
for any (z, w) ∈ E.

Let (zn, wn) be a maximizing sequence of (5.19) (i.e (zn, wn) is such that A(zn) =
1, B(wn) = 1 and C(zn, wn)→M > 0). It is easy to see that (zn, wn) is bounded
in X0(x). It follows that zn ⇀ z weakly in W

1.p(x)
0 (Ω) and zn → z strongly in

Lp̂(Ω). Similarly, wn ⇀ w weakly in W
1.q(x)
0 (Ω) and zn → z strongly in Lq̂(Ω).

Consequently
C(zn, wn)→ C(z̄, w̄).

Moreover, since z 7→
∫

Ω
|∇z|p(x)dx is a semimodular in the sense of [12, Definition

2.1.1], applying [12, Theorem 2.2.8]), we obtain that p(x)- and q(x)-modular func-
tions ρp(·) and ρq(·) are weakly lower semicontinuous. So, since zn ⇀ z̄ weakly in
W

1.p(x)
0 (Ω), we deduce that∫

Ω

|∇z̄|p(x) dx ≤ lim inf
n

∫
Ω

|∇z̄n|p(x) dx = 1

and ∫
Ω

|∇w̄|q(x) dx ≤ lim inf
n

∫
Ω

|∇w̄n|q(x) dx = 1.

Now assume by contradiction that
∫

Ω
|∇z̄|p(x) dx < 1 and

∫
Ω
|∇w̄|p(x) dx < 1. Then

we have ‖z̄‖1,p(x) < 1 and ‖w̄‖1,p(x) < 1. We set

a = ‖z̄‖1,p(x) = ‖∇z̄‖Lp(x) , b = ‖w̄‖1,q(x) = ‖∇w̄‖Lq(x) .

Using again the properties of the functions ρp and ρq, it follows that

ρp
(
|∇(

1
a
z̄)|
)

=
∫

Ω

|∇(
1
a
z̄)|p(x) dx = 1

and

ρq
(
|∇(

1
b
w̄)|
)

=
∫

Ω

|∇(
1
b
w̄)|q(x) dx = 1.

Obviously, we see that
(

1
a z̄,

1
b w̄
)
∈ E. On the other hand,

C
(1
a
zn,

1
b
wn
)
→ C

(1
a
z̄,

1
b
w̄
)

as n→ +∞.

However, we remark that

C
(1
a
z̄,

1
b
w̄
)

=
(1
a

)α+1(1
b

)β+1
C(z̄, w̄) =

(1
a

)α+1(1
b

)β+1
M.

Since a < 1 and b < 1, we obtain C
(

1
a z̄,

1
b w̄
)
> M . A contradiction occurs. �
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Consequently, combining Proposition 5.10 and Lemma 5.11, we deduce that

inf
{(z,w)∈E; C(z,w)>0}

J (z, w)

exists. In the next section, we will show that the infimum of the functional J (z, w)
is attained on E.

Existence result for the optimal problem (5.18). We are looking for (z, w) ∈ E
satisfying

inf J (z, w) : A(z) = 1, B(w) = 1. (5.20)

To investigate (5.20), we give some lemmas and remarks.

Lemma 5.12. Let E be the set defined as in (5.17). Assume that the functions p
and q satisfy hypothesis (5.7). Then, for any (z, w) ∈ X0(x), there exit δ(z) > 0
and θ(w) > 0 such that ( 1

δ(z)
z,

1
θ(w)

w
)
∈ E.

Proof. For any fixed z in W
1,p(x)
0 (Ω) \ {0}, we define a function f on ]0,+∞[ by

f(z, δ) =
∫

Ω

(
1
δ

)p(x)|∇z|p(x)dx− 1.

For any δ > 1, we have

(
1
δ

)p+

∫
Ω

|∇z|p(x)dx− 1 ≤ f(z, δ) ≤ (
1
δ

)p
−
∫

Ω

|∇z|p(x)dx− 1.

Now, taking δ < 1, we obtain

(
1
δ

)p
−
∫

Ω

|∇z|p(x)dx− 1 ≤ f(z, δ) ≤
(1
δ

)p+
∫

Ω

|∇z|p(x)dx− 1.

It follows from the above inequality that

• for δ large enough, f(z, δ)→ −1 as δ → +∞,
• for δ small enough, f(z, δ)→ +∞ as δ → 0.

By applying the Mean Value Theorem, we conclude that there exists δz ∈]0,+∞[
such that ∫

Ω

1

δ
p(x)
z

|∇z|p(x)dx = 1.

Similarly, we can prove that, there exists θw > 0 such that:∫
Ω

1

θ
q(x)
w

|∇w|q(x)dx = 1.

The proof is complete. �

Lemma 5.13. Let (z, w) ∈ X0(x) be fixed. The functions z 7→ δ(z) defined in
Lemma 5.12 possess C1-regularity respectively from Uz,δz to I and Vw,θw to I. Here,
Uz,δz is a neighborhood of (z, δz) lying on the open set U = W

1,p(x)
0 (Ω)\{0}×]0,+∞[

and Vw,θw is a neighborhood of (w, θw) lying on the open set V = W
1,q(x)
0 (Ω) \

{0}×]0,+∞[.
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Proof. After making a simple computation, it is easily to see that
∂f

∂δ
(z, δ) = −1

δ

∫
Ω

p(x)
1

δp(x)
|∇z|p(x)dx.

Replacing δ by δz, we have

|∂f
∂δ

(z, δz)| >
p−

δz
> 0.

Hence, the implicit function theorem implies that there exist a neighborhood of
(z, δz), Uz,δz ⊂ U and a function of class C1 : z 7−→ δ(z) from Uz,δz to I. Particularly,
for all z in W

1,q(x)
0 (Ω), we have

δ′(z) · φ = −
∂f
∂z (z, δz) · φ
∂f
∂δ (z, δz)

. (5.21)

Since we have
∂f

∂z
(z, δz) · φ =

∫
Ω

p(x)
1

δ
p(x)
z

|∇z|p(x)−2∇z · ∇φdx,

the definition (5.21) then becomes

δ′(z) · φ = −

∫
Ω
p(x) 1

δ
p(x)
z

|∇z|p(x)−2∇z · ∇φdx
1
δ z

∫
Ω
p(x) 1

δ
p(x)
z

|∇z|p(x)dx
. (5.22)

In the same way, we have

θ′(w) · ψ = −

∫
Ω
q(x) 1

θ
q(x)
w

|∇w|q(x)−2∇w · ∇ψdx
1
θw

∫
Ω
q(x) 1

θ
q(x)
w

|∇w|q(x)dx.
. (5.23)

�

Remark 5.14. We introduce the functional J̃ defined on W 1,p(x)
0 ×W 1,q(x)

0 × I by

J̃(z, w, t) = J(t1/p
+
z, t1/q

+
w). (5.24)

Thus, for any (z, w) ∈ X0(x) \ {(0, 0)} and t(z, w) given by (5.11), this definition
implies that

J̃(z, w, t(z, w)) = J (z, w) (5.25)
where the functional J is given by (5.16).

Lemma 5.15. Let (zn, wn) ∈ E be a minimizing sequence of (5.20), the sequence
(un, vn) with

un = t(zn, wn)1/p+
zn, vn = t(zn, wn)1/q+

wn

is then a Palais-Smale sequence for the functional J. i.e.,

J(un, vn) ≤ m, (5.26)

J′(un, vn)→ 0, in the meaning of the norm ‖ · ‖X∗0 (x). (5.27)

Proof. We follow the ideas of [3]. For a best understanding, some of the notation
used here remain unchanged. Generalizing [3], we define π : W 1,p(x)

0 (Ω) \ {0} → I
by

π(z) = (π1(z), π2(z)) =
(
δ(z),

z

δ(z)
)
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and τ : W 1,q(x)
0 (Ω) \ {0} → I by

τ(w) = (τ1(w), τ2(w)) =
(
θ(w),

w

θ(w)
)
.

Before continuing, let us designate by T(z,w)E the tangent space to E. Denote

Ep = {z ∈W 1,p(x)
0 (Ω);A(z) = 1}

(respectively, Eq = {w ∈ W 1,q(x)
0 (Ω);B(z) = 1}), hence, it is clear that T(z,w)E =

TzEp×TwEq. Moreover, for any (z, w) ∈ X0(x), for any (Φ,Ψ) ∈ T(z,w)E, we have

J ′(z, w)(Φ,Ψ) =
∂J̃
∂z

(z, w, t(z, w))(Φ) +
∂J̃
∂w

(z, w, t(z, w))(Ψ).

Now, we consider a minimizing sequence (zn, wn) ∈ E. For any (φ, ψ) ∈ X0(x), it
is obvious that (π′2(zn) · φ, τ ′2(wn) · ψ) ∈ T(z,w)E.

From the above, setting Bn = (zn, wn, t(zn, wn)) and following the spirit of the
proof of the [3, Lemma 3.1], we have:

∂J
∂u

(un, vn)(φ) =
∂J̃
∂z

(Bn)(π′2(zn) · φ),

∂J
∂v

(un, vn)(φ) =
∂J̃
∂w

(Bn)(π′2(wn) · ψ),

J ′(zn, wn)(π′2(zn) · φ, τ ′2(wn) · ψ) =
∂J̃
∂z

(Bn)(π′2(zn) · φ) +
∂J̃
∂w

(Bn)(τ ′2(wn) · ψ).

Then, since

J′(un, vn)(φ, ψ) =
∂J
∂u

(un, vn)(φ) +
∂J
∂v

(un, vn)(ψ)

for any (φ, ψ) ∈ X0(x), it follows that

J′(un, vn)(φ, ψ) = J ′(zn, wn)(π′2(zn) · φ, τ ′2(wn) · ψ).

However, applying the Ekeland variational principle, we have

|J ′(zn, wn)(π′2(zn) · φ, τ ′2(wn) · ψ)| ≤ 1
n
‖(π′2(zn) · φ, τ ′2(wn) · ψ)‖X0(x),

for all (φ, ψ) ∈ X0(x). Therefore,

|J′(un, vn) · (φ, ψ)| ≤ 1
n
‖
(
π′2(zn) · φ, τ ′2(wn) · ψ

)
‖X0(x), ∀(φ, ψ) ∈ X0(x).

The space X0(x) is equipped with the cartesian norm ‖·‖X0(x) = ‖·‖1,p(x)+‖·‖1,q(x).
Then the following estimate holds

|J′(un, vn) · (φ, ψ)| ≤ 1
n

(
‖(π′2(zn) · φ‖1,p(x) + ‖τ ′2(wn) · ψ)‖1,q(x)

)
. (5.28)

To simplify notation, we set δ̃n = δ(zn). So, from the definition of π2, we check
that

π′2(zn) · φ =
φ

δ̃n
−
zn
∫

Ω
p(x) 1

δ̃
p(x)
n

|∇zn|p(x)−2∇zn · ∇φdx
1
δ̃ n

∫
Ω
p(x) 1

δ̃
p(x)
n

|∇zn|p(x)dx
.

Thus,

‖π′2(zn) · φ‖1,p(x) ≤
‖φ‖1,p(x)

δ̃n
+
‖zn‖1,p(x)|

∫
Ω
p(x) 1

δ̃
p(x)
n

|∇zn|p(x)−2∇zn · ∇φdx|
1
δ̃ n

∫
Ω
p(x) 1

δ̃
p(x)
n

|∇zn|p(x)dx
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≤
‖φ‖1,p(x)

δ̃n
+
|
∫

Ω
p(x) 1

δ̃
p(x)
n

|∇zn|p(x)−2∇zn · ∇φdx|∫
Ω
p(x) 1

δ̃
p(x)
n

|∇zn|p(x)dx
.

Particularly, applying successively the Hölder inequality for p(x)-Lebesgue space
[30, 31, 19], we find∣∣ ∫

Ω

p(x)
|∇zn|p(x)−2

z
p(x)−2
n

∇zn
δ̃n
· ∇φ
δ̃n

dx
∣∣ ≤ p+

∣∣ |∇zn|p(x)−1

δ̃
p(x)−1
n

∣∣
L

p(x)
p(x)−1 (Ω)

‖φ‖1,p(x)

δ̃n

= p+ ‖φ‖1,p(x)

δ̃n
.

(5.29)

∫
Ω

p(x)
1

δ̃
p(x)
n

|∇zn|p(x)dx ≥ p−
∫

Ω

1

δ̃
p(x)
n

|∇zn|p(x)dx ≥ p−. (5.30)

The above remarks allow us to obtain the new estimate:

‖π′2(zn) · φ‖1,p(x) ≤
(
1 +

p+
p−
)‖φ‖1,p(x)

δ̃n
.

From the properties on the spaces Lp(x)(Ω) and W 1,p(x)(Ω) spaces (see for instance
[19]), and because

∫
Ω
|∇zn|p(x)

δ̃
p(x)
n

dx = 1 and
∫

Ω
|∇zn|p(x)dx = 1, we have ‖zn‖1,p(x) =

δ̃n = 1. Therefore

‖π′2(zn) · φ‖1,p(x) ≤
(
1 +

p+

p−
)
‖φ‖1,p(x).

Similarly,

‖τ ′2(wn) · ψ‖1,q(x) ≤
(
1 +

q+

q−
)
‖ψ‖1,q(x).

Taking into account the estimate (5.28), we conclude that

lim
n→+∞

‖J′(un, vn)‖X∗0 (x) = 0.

This completes the proof. �

Lemma 5.16. Assume that (5.6) holds. Let (zn, wn) be a minimizing sequence of
J on the manifold E. The sequence (un, vn) = (t(zn, wn)1/p+

zn, t(zn, wn)1/q+
wn)

is bounded in X0(x).

Proof. Since un = t(zn, wn)1/p+
zn, vn = t(zn, wn)1/q+

wn, by the characterization
(5.11), it follows that∫

Ω

|∇un|p(x)dx+
∫

Ω

|∇vn|q(x)dx− 2
∫

Ω

c(x)|un|α+1|vn|β+1dx = 0. (5.31)

On the other hand, because (zn, wn) is a minimizing sequence for inf(z,w)∈E J (z, w),
we have

m ≤ (α+1)
∫

Ω

1
p(x)
|∇un|p(x)dx+(β+1)

∫
Ω

1
q(x)
|∇vn|q(x)dx−C(un, vn) < m+

1
n
.

(5.32)
Combining (5.31) and (5.32), one concludes that

m ≤
∫

Ω

(α+ 1
p(x)

− 1
)
|∇un|p(x)dx+

∫
Ω

(β + 1
q(x)

− 1
)
|∇vn|q(x)dx+C(un, vn) < m+

1
n
.
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Recall that∫
Ω

|∇un|p(x)dx =
∫

Ω

|∇vn|q(x)dx =
∫

Ω

c(x)|un|α+1|vn|β+1dx,

hence

m ≤
∫

Ω

α+ 1
p(x)

|∇un|p(x)dx+
∫

Ω

(β + 1
q(x)

− 1
)
|∇vn|q(x)dx < m+

1
n
.

After making some easy calculations, we obtain∫
Ω

|∇un|p(x)dx <
m+ 1
γ+ − 1

.

Arguing similarly, we find that∫
Ω

|∇vn|q(x)dx <
m+ 1
γ+ − 1

.

We have proved that the sequence is bounded in X0(x). �

Lemma 5.17. Under hypothesis (5.7), problem (5.20) possesses at least one solu-
tion.

Proof. We divide the proof in three steps.
Step 1: Weak convergence of un and vn. Let (zn, wn) ∈ E be a minimiz-
ing sequence. From Lemma 5.15, it is known that limn→+∞ J(un, vn) = m and
limn→+∞ ‖J′(un, vn)‖X∗0 (x) = 0 and that (un, vn)is bounded in X0(x). Extracting
if necessary to a subsequence, there exists a pair (u∗, v∗) in X0(x) such that

un ⇀ u∗ in W
1.p(x)
0 (Ω),

vn ⇀ v∗ in W
1.q(x)
0 (Ω).

Step 2: Strong convergence of un and vn in W
1,p(x)
0 (Ω) (resp. W

1,q(x)
0 (Ω)). To

do this, we establish that un and vn are two Cauchy sequences. Firstly, easy
calculations ensure that for any m ∈ N and l ∈ N,[

J′(um, vm)− J′(ul, vl)
]
(um − ul, 0)

= (α+ 1)
∫

Ω

(|∇um|p(x)−2∇um − |∇ul|p(x)−2∇ul)(∇um − ul)dx

− (α+ 1)
∫

Ω

c(x)
[
|vm|(β+1|um|α−1um − |vl|(β+1|ul|α−1ul

]
(um − ul)dx.

Thus, after making a suitable rearrangement, we obtain∫
Ω

(|∇um|p(x)−2∇um − |∇ul|p(x)−2∇ul)(∇um − ul)dx

=
1

α+ 1
[
J′(um, vm)− J′(ul, vl)

]
(um − ul, 0)dx

+
∫

Ω

c(x)
[
|vm|β+1|um|α−1um − |vl|β+1|ul|α−1ul

]
(um − ul)dx.

We claim that∫
Ω

c(x)
[
|vm|(β+1|um|α−1um − |vl|(β+1|ul|α−1ul

]
(um − ul)dx→ 0, (5.33)
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as m, l→ +∞. Indeed in view of (5.33) and according to Remarks 5.1 and 5.2 (the
notation used remains the same), we observe that∣∣ ∫

Ω

c(x)
[
|vm|β+1|um|α−1vm − |vl|β+1|ul|α−1ul

]
(um − ul)dx

∣∣
≤
∫

Ω

c(x)|vm|β+1|um|α|um − ul|dx+
∫

Ω

c(x)|vl|β+1|ul|α|um − ul|dx

≤ ‖c‖∞‖vm‖β+1
Lq̂(Ω)

‖um‖αLp̂(Ω)‖um − ul‖Lp̂(Ω)

+ ‖c‖∞‖vl‖β+1
Lq̂(Ω)

‖ul‖αLp̂(Ω)‖um − ul‖Lp̂(Ω)

≤ C‖um − ul‖Lp̂(Ω).

(5.34)

Before continuing, we recall a fundamental convergence property. It is well known
that the imbedding W

1.p(x)
0 (Ω) ↪→ Lδ(x)(Ω) (resp W

1.q(x)
0 (Ω) ↪→ Lγ(x)(Ω)) with

δ(x) < Np(x)
N−p(x) (resp. γ(x) < Nq(x)

N−q(x) ) is compact (see [19]).
Choose γ(x) = p̂, it follows that un converges strongly to u∗ in Lp̂(Ω) and so on,

un is a Cauchy sequence in sense of the Lp̂(Ω) norm. Consequently, (5.34) occurs.
Furthermore, following [30], there exist constants C1, C2, C3, C4 such that

〈F (∇um)− F (∇ul), um − ul〉 ≥


C1‖um − ul‖21,p(x), if 1 < p(x) < 2,

C2‖um − ul‖
2p0,1/p1,1

1,p(x) , if 1 < p(x) < 2,
C3‖um − ul‖

p0,2

1,p(x), if 2 ≥ p(x),
C4‖um − ul‖

p1,2

1,p(x), if 2 ≥ p(x),

(5.35)

where F (ξ) = |ξ|p(x)−2ξ for all ξ ∈ IN ; p0,j = infx∈Ωj p(x) and p1,j = supx∈Ωj p(x)
for j = 1, 2; Ω1 = {x ∈ Ω; 1 < p(x) < 2}; and Ω2 = {x ∈ Ω; 2 ≥ p(x)}.

Then, from (5.27), (5.33) and (5.35), we conclude that un converges strongly to
u∗ in W

1,p(x)
0 (Ω). Similar argues allow to prove that the sequence vn converges to

v∗ strongly in W
1,q(x)
0 (Ω).

Step 3: (u∗, v∗) is a solution of (1.1) involving a fibering decomposition. We show
that u∗ = r̄z̄ and v∗ = ρ̄w̄ involve a solution of (1.1) via the fibering method. Let
us recall that z̄ and w̄ are respectively the weak limit of zn and wn is the weak limit
of wn. The sequence tn = t(zn, wn) is defined as in (5.11). To simplify notation,
we set rn = t

1/p+

n and ρn = t
1/q+

n . Moreover, using (5.12) and (5.13), by extracting
subsequences, if necessary, we can assume that tn converges in I. We designate as
t̄ = limn→+∞ tn. So, it follows rn → t̄1/p

+
and ρn → t̄1/q

+
when n tends to +∞.

We set r̄ = t̄1/p
+

and ρ̄ = t̄1/q
+

.
Because of the formulation

1
rn
un −

1
r̄
u∗ =

1
rnr̄

[(r̄ − rn)u∗ + r̄(un − u∗)],

and the convergence results announced above, it is clear that

‖un
rn
− u∗

r̄
‖1,p(x) → 0, as n tends to +∞.

In other words, since un
rn

= zn, we deduce that zn converges strongly to u∗

r̄ in

W
1,p(x)
0 (Ω).
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Thus, since zn converges weakly to z̄ in W
1,p(x)
0 (Ω), we deduce from above and

also from uniqueness z̄ = u∗

r̄ . On the other hand

‖u∗‖1,p(x) ≤ lim inf
n
‖un‖1,p(x) ≤ lim sup

n
‖un‖1,p(x).

So

‖z̄‖1,p(x)r̄ ≤ lim inf
n
‖un‖1,p(x) ≤ lim sup

n
‖un‖1,p(x)

thus

‖z̄‖1,p(x)r ≤ lim inf
n

rn‖zn‖ ≤ lim sup
n
‖un‖1,p(x).

Since ‖zn‖1,p(x) = 1 and ‖un‖1,p(x) ≤ ‖un − u∗‖1,p(x) + ‖u∗‖1,p(x),
we obtain

‖z̄‖1,p(x)r̄ ≤ r̄ ≤ ‖z̄‖1,p(x)r̄

thus after dividing by r̄ > 0, it occurs ‖z̄‖1,p(x) = 1. In the same manner, we obtain
‖w̄‖1,q(x) = 1. We can conclude that (z̄, w̄) is solution of the conditional problem
(5.20). Furthermore, since ‖z̄‖1,p(x) = ‖w̄‖1,q(x) = 1, using [19], we deduce the
second part of the Theorem 3.2. The proof is complete. �

The material needed to prove Theorem 3.2 is complete. Next, we establish that
the boundary value problem (1.1) admits at least one solution.

5.3. Proof of Theorem 3.2. Existence of a critical point for J.

Proof. The previous lemmas imply that (z̄, w̄) is a conditional critical point for J .
From the Euler-Lagrange characterization, we deduce that there is a pair (m1,m2)
in I2 such that for any (h, k) ∈ X0(x),

∇J (z̄, w̄) · (h, k) = m1∇A(z̄, w̄) · (h, k) +m2∇B(z̄, w̄) · (h, k). (5.36)

In (5.36), we choose h = z̄, k = w̄, we obtain

J ′(z̄, w̄)(z̄, w̄) = 0. (5.37)

Combining (5.36) and (5.37), we obtain

m1A
(1) · (z̄, w̄) +m2B

(1) · (z̄, w̄) = 0

m1A
(2) · (z̄, w̄) +m2B

(2) · (z̄, w̄) = 0.

Here, A(1), B(1) (resp. A(2) and B(2)) denote the first derivatives with respect to z
(resp. w). Note taht

det
(
A(1) · (z̄, w̄) B(1) · (z̄, w̄)
A(2) · (z̄, w̄) B(2) · (z̄, w̄)

)
≥ p−q−A(z̄)B(w̄) = p−q− > 0.

It follows that m1 = m2 = 0. Consequently, J ′(z̄, w̄) = 0, or again,

J′(r̄z̄, ρ̄w̄) = 0

Finally, we can conclude that (u∗, v∗) = (r̄z̄, ρ̄w̄) is a critical point of J. �
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[44] J. Vélin; On an existence result for a class of (p, q)-gradient elliptic systems via a fibering

method, Nonlinear Analysis T.M.A 75 (2012), 6009-6033.
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