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OPTION PRICING WITH TRANSACTION COSTS AND
STOCHASTIC VOLATILITY

IONUŢ FLORESCU, MARIA C. MARIANI, INDRANIL SENGUPTA

Abstract. In a realistic market with transaction costs, the option pricing

problem is known to lead to solving nonlinear partial differential equations
even in the simplest model. The nonlinear term in these partial differential

equations (PDE) reflects the presence of transaction costs. In this article we
consider an underlying general stochastic volatility model. In this case the

market is incomplete and the option price is not unique. Under a particular

market completion assumption where we use a traded proxy for the volatility,
we obtain a non-linear PDE whose solution provides the option price in the

presence of transaction costs. This PDE is studied and under suitable regu-

larity conditions, we prove the existence of strong solutions of the problem.

1. Introduction

In this work we consider a market model in which trading the asset requires
paying transaction fees which are proportional to the quantity and the value of the
asset traded. In this market we study the problem of finding option prices when
the underlying asset may be approximated using a stochastic volatility model.

This is a problem with a long history in mathematical finance. In a complete fric-
tionless (i.e., without transaction costs) financial market, the Black-Scholes model
(1973) [1] provides a hedging strategy for any European type contingent claim. One
needs to trade continuously to re-balance the hedging portfolio and therefore, such
an operation tends to be infinitely expensive in a market with transaction costs.
For example, [25] shows that the best hedging strategy in this case is to simply buy
the asset and hold it for the duration of the call or put option. This is the reason
why the requirement of replicating the value of the option continuously and exactly
has to be relaxed.

As we feel best was described by Dewynne, Whalley and Wilmott (1994) [5], the
approaches taken were local in time and global in time. The former approach (which
is also the one taken in this paper) pioneered by Leland (1985) [19] (continued
e.g., [2, 13]), considers risk and return over a short interval of time. The later
approach pioneered by Hodges and Neuberger (1993) [12] (continued for example
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in [3]) adopts ’optimal strategies’, in which risk and return are considered over the
lifetime of the option.

In the seminal work [19] Leland introduces the idea of using expected transaction
costs for a small interval. The author assumes that the portfolio is rebalanced at
deterministic, discrete times, δt units apart, and that the transaction costs are
proportional to the value of the underlying. Specifically, the cost incurred is κ|ν|S,
where ν is the number of shares of the underlying asset bought (ν > 0) or sold (ν <
0) at price S, and κ is a proportionality constant characteristic to the individual
investor. Leland proposes a hedging strategy based on replicating an option with
an adjusted volatility

σ̂ = σ
(

1 +

√
2
π

κ

σ
√
δt

)1/2

.

Leland claimed in his paper that the hedging error approaches zero using this
strategy when the length of revision intervals goes to zero, a claim later disproved
by many, first being Kabanov and Safarian [16].

Notwithstanding the claim of the hedging error approaching zero for this mod-
ified strategy, the idea of using (conditional) expectations when calculating trans-
action costs proved valuable. This idea was continued by Boyle and Vorst [2] in
discrete time and by Hoggard, Whalley and Wilmott [13] (and further [5, 26]) in
continuous time. This later, influential line of work derives a nonlinear PDE whose
solution provides the option value. For the reader’s convenience we replicate their
derivation of the PDE using modern notation in section 1.1. This section is illus-
trating the idea of modeling transaction costs using conditional expectations in a
simple model and we advise the knowledgeable reader to skip this section.

The main contribution of the present paper is to extend the transaction costs
model when the asset price is approximated using stochastic volatility models. The
asset model used is presented in section 2. When working with stochastic volatility
models the market is incomplete and contingent claims do not have unique prices.
The classical approach is to “complete the market” by fixing a related tradeable
asset and deriving the option price in terms of this asset as well as the underlying
equity. In section 3 we take this approach and consider the case when we may be
able to find a traded asset serving as a proxy for the volatility (such as the case
when a volatility index is traded on the market). In this case we propose a market
completion solution. We form a portfolio using this asset as well as the underlying
and we derive a PDE which may explicitly give the price of options in the option
chain. However, the PDE is nonlinear with a very different nonlinear structure
from the classical market completion approach. This type of PDE is analyzed in
section 4 and we prove an existence result. The proof constructs an approximating
sequence which is demonstrated to converge to the strong solution of the PDE.
Finally, section 4.1 concludes the article.

1.1. Option price valuation in the geometric Brownian motion case with
transaction costs. Suppose Π is the value of the hedging portfolio and C(S, t)
is the value of the option. The asset follows a geometric Brownian motion. Using
a discrete time approximation, Hoggard, Whalley and Wilmott [13] assume the
underlying asset follows the process:

δS = µSδt+ σSΦ
√
δt, (1.1)
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where Φ is a standard normal random variable, µ is a measure of the average rate of
growth of the asset price also known as the drift, σ is a measure of the fluctuation
(risk) in the asset prices and corresponds to the diffusion coefficient. The quantities
involving δ denote the increment of processes over the timestep δt. If the portfolio
is given by Π = C −∆S, then the change in portfolio value is given by

δΠ = σS
(∂C
∂S
−∆

)
Φ
√
δt+

(1
2
σ2S2 ∂

2C

∂S2
+ µS

∂C

∂S
+
∂C

∂t
− µ∆S

)
δt− κS|ν|

To derive the portfolio change in the previous equation it looks like we assumed that
the quantity of shares ∆ is kept constant. This in fact should not be the case, and
in the derivation above ∆ is in fact stochastic. Nevertheless, the derivation above is
correct. To obtain the expression we use the fact that the constructed portfolio Π is
self financing. That is, at all time steps when the portfolio is re-balanced no extra
funds are added to the portfolio or consumed from the portfolio value. The basic
derivation when the asset follows a geometric Brownian motion and the pricing of
vanilla option is desired may be found in [24]. In the appendix at the end of this
article we provide a generalization of this result under any dynamics for the stock
price. In fact, the same rule applies for a portfolio constructed using any number
of assets Si.

The dynamic above leads to the delta hedging strategy. Specifically, let the
quantity of asset held short at time t, ∆ = ∂C

∂S (S, t). The timestep is assumed to
be small, thus the number of assets traded after a time δt is

ν =
∂C

∂S
(S + δS, t+ δt)− ∂C

∂S
(S, t) = δS

∂2C

∂S2
+ δt

∂2C

∂t∂S
+ . . .

Since δS = σSΦ
√
δt+O(δt), keeping only the leading term yields

ν ' ∂2C

∂S2
σSΦ

√
δt.

Thus, the expected transaction cost over a timestep is

E[κS|ν|] =

√
2
π
κσS2|∂

2C

∂S2
|
√
δt,

where
√

2/π is the expected value of |Φ|. Therefore, the expected change in the
value of the portfolio is

E(δΠ) =
(∂C
∂t

+
1
2
σ2S2 ∂

2C

∂S2
− κσS2

√
2
πδt
|∂

2C

∂S2
|
)
δt.

The authors then use standard no arbitrage arguments to deduce that the portfolio
will earn the riskfree interest rate r,

E(δΠ) = r
(
C − S ∂C

∂S

)
δt.

The authors derive the PDE for option pricing with transaction costs as:

∂C

∂t
+

1
2
σ2S2 ∂

2C

∂2S
+ rS

∂C

∂S
− rC − κσS2

√
2
πδt
|∂

2C

∂S2
| = 0, (1.2)

on the domain (S, T ) ∈ (0,∞)× (0, T ) with terminal condition

C(S, T ) = max(S − E, 0), S ∈ (0,∞) (1.3)

for European call options with strike price E, and a suitable terminal condition for
European puts.
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The portfolio is considered to be revised every δt where δt is a non-infinitesimal
fixed time-step not to be taken δt → 0. This approach is now classified into the
so-called local in time hedging strategy. The equation (1.2) is claimed as one of
the first nonlinear PDE’s in finance [13]. It also is one of the most studied in
Finance, we refer to [15] for analytical solution and numerical implementation, and
to [26] for asymptotic analysis for this model and two other models in the presence of

transaction costs. Theorem 1 in [15] proves that under the condition 2κ
√

2
σ2πδt < 1,

equation (1.2) has a solution for any option V with payoff V (S, T ) ≈ αS when
S →∞. All option types used in practice have this kind of payoff.

2. Stochastic volatility model with transaction costs

A basic assumption in modeling the equity using a geometric Brownian motion
as described above is that the volatility is constant. Much of the literature today
shows this is an unrealistic assumption. Any model where the volatility is random
is called a stochastic volatility model. A possible alternative approach to stochastic
volatility models is to use jump diffusion processes or more general Lévy processes.
We do not consider jumps in this work as they will lead to nonlinear PDE’s with
an integral term, which are very hard to work with.

In this work we consider the stochastic volatility model

dSt = µ(St)dt+ σtStdX1(t), (2.1)

dσt = α(σt)dt+ βσtdX2(t). (2.2)

where the two Brownian motions X1(t) and X2(t) are correlated with correlation
coefficient ρ:

E(dX1(t)dX2(t)) = ρ dt (2.3)

The stochastic volatility model considered is a modified Hull-White process [14, 27],
to contain general drift terms in S and σ. These general drift terms do not influence
the PDE derivation. We note that the process above may also be viewed as a
generalization of the SABR process [9] which is the stochastic volatility model
most used in the financial industry.

The market is arbitrage free and incomplete when using stochastic volatility
models. The fundamental theorem of asset pricing [10, 4] guarantees no-arbitrage
if an equivalent martingale measure exists, and completeness of the market if the
equivalent martingale measure is unique.

In the case of stochastic volatility models (with the exception of the trivial case
when the Brownian motions are perfectly correlated ρ = ±1) there exist an infinite
number of equivalent martingale measures [7] and therefore the market is arbitrage
free but not complete. This means that the traded asset price does not uniquely
determine the derivative prices.

In our previous work we have fixed the price of a particular derivative as a given
asset and express all the other derivative prices in terms of the price of the given
derivative. For the present work an alternative is discussed in Section 3. This is
the case when the volatility is a traded asset, e.g., for S&P500 and its associated
volatility index VIX. In this case one may read the volatility information (e.g., VIX)
from the market and produce the entire chain of option values.
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3. The PDE derivation when the volatility is a traded asset

The results in this section are applicable when there exists a proxy for the sto-
chastic volatility which is actively traded. An example of such a case in today’s
financial derivative market is the Standard and Poor 500 equity index (in fact the
exchange traded fund that replicates it: either SPX or SPY), and the associated
volatility index (VIX). The VIX is a traded asset, supposed to represent the im-
plied volatility of an option with strike price exactly at the money (equal with the
spot value of SPX) and with maturity exactly one month from the current date.
The VIX is calculated using an interpolating formula from the (out-of-money) op-
tions available and traded on the market. In our setting we view the VIX as a
traded asset, a proxy for the value of the stochastic volatility process in the model
we propose here. Using the traded volatility index as a proxy provides a further
advantage. The problem of parameter estimation in the stochastic volatility speci-
fication (2.2) is much simpler since the volatility process becomes observable. The
volatility distribution may be further estimated using a filtering methodology as
described for example in [7].

In the future, it is possible that more volatility indices will be traded on the
market, and we denote in what follows S as the spot equity price and with σ the
matching spot volatility. It is important that this σ be traded (sold and bought).
In the present section we are considering the volatility index σ as a perfect proxy
for the stochastic volatility. In depth analysis about the appropriateness of this
assumption is beyond the scope of the current paper.

We consider a portfolio Π that contains one option, with value V (S, σ, t), and
quantities ∆ and ∆1 of S and σ respectively. That is,

Π = V −∆S −∆1σ. (3.1)

We apply Itô’s formula to get the dynamics of V . A derivation to find the portfolio
dynamics is presented in the Appendix 5. Applying this derivation we obtain the
change in value of the portfolio Π as,

dΠ =
(∂V
∂t

+
1
2
σ2S2 ∂

2V

∂S2
+

1
2
β2σ2 ∂

2V

∂σ2
+ ρσ2βS

∂2V

∂S∂σ

)
dt

+
(∂V
∂S
−∆

)
dS +

(∂V
∂σ
−∆1

)
dσ − κS|ν| − κ1σ|ν1|,

where κS|ν| and κ1σ|ν1| represent the transaction cost associated with trading ν
of the main asset S and ν1 of the volatility index σ during the time step δt. It is
important to note (see the Appendix) that this equation is an approximation to the
exact dynamics of the portfolio. Nevertheless, even though ∆ and ∆1 are treated
as constants this derivation is correct and based on the self financing property of
the portfolio.

The costs for trading S and σ are different and proportional with quantity trans-
acted. We use k, k1 to denote cost and ν and ν1 to denote quantity transacted
respectively for S and σ. We choose ∆ and ∆1 which are the quantities of stock
respectively volatility to be owned every time portfolio re-balancing is performed
as the solutions of: (∂V

∂S
−∆

)
= 0,

and (∂V
∂σ
−∆1

)
= 0.
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This choice once again eliminates the drift terms and the portfolio dynamics
become

dΠ =
(∂V
∂t

+
1
2
σ2S2 ∂

2V

∂S2
+

1
2
β2σ2 ∂

2V

∂σ2
+ρσ2βS

∂2V

∂S∂σ

)
dt−κS|ν|−κ1σ|ν1|. (3.2)

3.1. What is the cost of transaction? We investigate the costs associated with
trading both assets present in the market. We perform a detailed analysis of the
cost associated with trading S. We state the costs associated with trading σ while
noting that the derivation is similar. This section is concerned with finding an
approximate value for the quantities traded ν and ν1.

If the number of assets held short at time t is

∆t =
∂V

∂S
(S, σ, t), (3.3)

after a time step δt and re-hedging, the number of assets we hold short is

∆t+δt =
∂V

∂S
(S + δS, σ + δσ, t+ δt).

Since the time step δt is assumed small, the changes in asset and the volatility are
also small, and applying the Taylor’s formula to expand ∆t+δt yields

∆t+δt '
∂V

∂S
(S, σ, t) + δt

∂2V

∂t∂S
(S, σ, t) + δS

∂2V

∂S2
(S, σ, t) + δσ

∂2V

∂σ∂S
(S, σ, t) + . . .

Since δS = σSδX1 +O(δt) and δσ = βσδX2 +O(δt),

∆t+δt '
∂V

∂S
+ σSδX1

∂2V

∂S2
+ βσδX2

∂2V

∂σ∂S
. (3.4)

Subtracting (3.3) from (3.4), we find the number of assets traded during a time
step:

ν = σSδX1
∂2V

∂S2
+ βσδX2

∂2V

∂σ∂S
. (3.5)

Note that ν is a random variable. We base our estimation of quantity traded on
the expectation of this variable and we use it to calculate the expected transaction
cost. Since X1 and X2 are correlated Brownian motions, we consider Z1 and Z2

two independent normal variables with mean 0 and variance 1 and thus we may
write the distribution of X1, X2 as

δX1 = Z1

√
δt

δX2 = ρZ1

√
δt+

√
1− ρ2Z2

√
δt.

Substituting these expressions in ν and denoting

α1 = σS
√
δt
∂2V

∂S2
+ βσρ

√
δt
∂2V

∂σ∂S

β1 = βσ
√

1− ρ2
√
δt
∂2V

∂σ∂S
,

(3.6)

we write the change in the number of shares over a time step δt as

ν = α1Z1 + β1Z2.

We calculate the expected value of the transaction costs associated with trading
the asset S:

E[κS|ν| | S] =

√
2
π
κS
√
α2

1 + β2
1 .
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Analyzing the transaction costs associated with trading the volatility index σ
proceeds in an entirely similar way and produces a similar formula to (3.5):

ν1 = σSδX1
∂2V

∂S∂σ
+ βσδX2

∂2V

∂σ2
. (3.7)

Therefore (3.2) leads to the nonlinear PDE

∂V

∂t
+

1
2
σ2S2 ∂

2V

∂S2
+

1
2
β2σ2 ∂

2V

∂σ2
+ ρσ2βS

∂2V

∂S∂σ
+ rS

∂V

∂S
+ rσ

∂V

∂σ
− rV

− κS
√

2
πδt

√
σ2S2

(∂2V

∂S2

)2 + 2ρβσ2S
∂2V

∂S2

∂2V

∂S∂σ
+ β2σ2

( ∂2V

∂S∂σ

)2
− κ1σ

√
2
πδt

√
σ2S2

( ∂2V

∂S∂σ

)2 + 2ρβσ2S
∂2V

∂S∂σ

∂2V

∂σ2
+ β2σ2

(∂2V

∂σ2

)2 = 0.

(3.8)

The two final radical terms in the resulting PDE above are coming from transaction
costs. As noted in section 1, in this equation δt is a non-infinitesimal fixed time-step
not to be taken δt→ 0. It is the time period for re-balancing and again if it is too
small this term will explode the solution of the equation.

As is the case of all PDE’s in finance this is a terminal value problem. The
specific boundary condition depends on the particular type of option priced but in
all cases is expressed at t = T the maturity of the option. For example, for an
European Call the condition is V (S, σ, T ) = max(S − K, 0) for all σ, where K is
the particular option’s strike. The general treatment presented in the next section
is applicable to any option with boundary condition at T a function of ST and T
only. In fact the theorems stated apply to options whose payoff value is a function
of σT as well. This is very valuable for certain types of non-vanilla options such as
variance swaps.

The next section is devoted to the study of this type of nonlinear equations.
In the next section we transform the final value boundary problem (FVBP) to an
initial value boundary problem (IVBP) by changing the time variable from t to
τ = T − t. Note that this change will only modify the time derivative ∂V/∂t which
becomes negative in the IVBP. Theorem 4.8 is the key result which is then extended
in Theorem 4.9 to the full domain characterizing the PDE (3.8).

4. The analysis of the resulting nonlinear PDE

We need the full PDE treatment to prove the existence of a solution for (3.8).
The proof we give in the following lemmas and the final theorems 4.8 and 4.9 is
constructive and hidden within the proof is the approximating solution of the PDE.
Please note that the equation (3.8) has two very similar nonlinear terms, which will
be treated in a similar way.

We use the following change of variables

S = ex, σ = ey, t = T − τ, V (S, σ, t) = v(x, y, τ).

Since S, σ ∈ [0,∞) this transformation gives x, y ∈ (−∞,∞). The PDE (3.8) is
transformed into the forward PDE

− ∂v

∂τ
+

1
2
e2y
(∂2v

∂x2
− ∂v

∂x

)
+

1
2
β2
(∂2v

∂y2
− ∂v

∂y

)
+ ρeyβ

∂2v

∂x∂y
+ r

∂v

∂x
+ r

∂v

∂y
− rv

− κ
√

2
πδt

√
e2y
(∂2v

∂x2
− ∂v

∂x

)2

+ 2ρβey
(∂2v

∂x2
− ∂v

∂x

) ∂2v

∂x∂y
+ β2

( ∂2v

∂x∂y

)2
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− κ1

√
2
πδt

√
β2
(∂2v

∂y2
− ∂v

∂y

)2

+ 2ρβey
(∂2v

∂y2
− ∂v

∂y

) ∂2v

∂x∂y
+ e2y

( ∂2v

∂x∂y

)2

= 0.

or,

− ∂v

∂τ
+

1
2
e2y ∂

2v

∂x2
+

1
2
β2 ∂

2v

∂y2
+ ρeyβ

∂2v

∂x∂y
+ (r − 1

2
e2y)

∂v

∂x
+ (r − 1

2
β2)

∂v

∂y
− rv

= F1

(
y,
∂v

∂x
,
∂2v

∂x2
,
∂2v

∂x∂y

)
+ F2

(
y,
∂v

∂y
,
∂2v

∂y2
,
∂2v

∂x∂y

)
,

(4.1)
where we use the notation

F1

(
y,
∂v

∂x
,
∂2v

∂x2
,
∂2v

∂x∂y

)
= κ

√
2
πδt

√
e2y
(∂2v

∂x2
− ∂v

∂x

)2

+ 2ρβey
(∂2v

∂x2
− ∂v

∂x

) ∂2v

∂x∂y
+ β2

( ∂2v

∂x∂y

)2

,

and

F2

(
y,
∂v

∂y
,
∂2v

∂y2
,
∂2v

∂x∂y

)
= κ1

√
2
πδt

√
β2
(∂2v

∂y2
− ∂v

∂y

)2

+ 2ρβey
(∂2v

∂y2
− ∂v

∂y

) ∂2v

∂x∂y
+ e2y

( ∂2v

∂x∂y

)2

.

for the two nonlinear terms.

Lemma 4.1. There exists a constant C∗ > 0, independent of variables in F1 and
F2 such that ∣∣F1

(
y,
∂v

∂x
,
∂2v

∂x2
,
∂2v

∂x∂y

)
+ F2

(
y,
∂v

∂y
,
∂2v

∂y2
,
∂2v

∂x∂y

)∣∣
≤ C∗e|y|

(
|∂v
∂x
|+ |∂v

∂y
|+ |∂

2v

∂x2
|+ |∂

2v

∂y2
|+ 2| ∂

2v

∂x∂y
|
)
.

Proof. We analyze the two terms in a similar way. For the first term we have∣∣F1

(
y,
∂v

∂x
,
∂2v

∂x2
,
∂2v

∂x∂y

)∣∣
=
∣∣κ√ 2

πδt

√
e2y
(∂2v

∂x2
− ∂v

∂x

)2

+ 2eyρβ
(∂2v

∂x2
− ∂v

∂x

) ∂2v

∂x∂y
+ β2

( ∂2v

∂x∂y

)2∣∣
≤
∣∣κ√ 2

πδt

∣∣√(ey|∂2v

∂x2
− ∂v

∂x
|+ |ρβ ∂2v

∂x∂y
|+ |β

√
1− ρ2

∂2v

∂x∂y
|
)2

≤
∣∣κ√ 2

πδt

∣∣(ey|∂2v

∂x2
|+ ey|∂v

∂x
|+ (|ρβ|+ |β

√
1− ρ2|)| ∂

2v

∂x∂y
|
)

≤
∣∣κ√ 2

πδt

∣∣(e|y||∂2v

∂x2
|+ e|y||∂v

∂x
|+ e|y|(|ρβ|+ |β

√
1− ρ2|)| ∂

2v

∂x∂y
|
)
.

Therefore, there exists C1 > 0 such that∣∣F1

(
y,
∂v

∂x
,
∂2v

∂x2
,
∂2v

∂x∂y

)∣∣ ≤ C1e
|y|
(
|∂v
∂x
|+ |∂

2v

∂x2
|+ | ∂

2v

∂x∂y
|
)
.
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The second term F2 produces a similar expression with some different constant C2.
Taking C∗ = max{C1, C2} we will obtain the stated result. �

Lemma 4.2. Suppose |ρ| < 1. Then the equation (4.1) is of parabolic type.

Proof. For (vi, vj) ∈ R2 and θ > 0, we have

(σ2 − θ)vivi + (β2 − θ)vjvj + 2ρσβvivj

=
[(√

σ2 − θvi +
ρσβ√
σ2 − θ

vj

)2

+ v2
j

(
β2(1− ρ2σ2

σ2 − θ
)− θ

)]
Therefore,

lim
θ→0

(
β2(1− ρ2σ2

σ2 − θ
)− θ

)
= β2(1− ρ2).

Since |ρ| < 1 and β 6= 0 we have

lim
θ→0

(
β2(1− ρ2σ2

σ2 − θ
)− θ

)
> 0.

Thus there exists θ1 > 0 in the neighborhood of 0 such that(
β2(1− ρ2σ2

σ2 − θ1
)− θ1

)
> 0.

Therefore with this θ1, for all (vi, vj) ∈ R2,(
σ2vivi + β2vjvj + 2ρσβvivj

)
> θ1(|vi|2 + |vj |2).

This proves that equation (4.1) is parabolic. �

4.1. Solution of (4.1). To analyze the main PDE (4.1) we need the following
definitions related to spaces with classical derivatives, known as Hölder spaces. We
define Ckloc(Ω) to be the set of all real-valued functions u = u(x) with continuous
classical derivatives Dαu in Ω, where 0 ≤ |α| ≤ k. Next, we set

|u|0;Ω = [u]0;Ω = sup
Ω
|u|,

[u]k;Ω = max
|α|=k

|Dαu|0;Ω.

Definition 4.3. The space Ck(Ω) is the set of all functions u ∈ Ckloc(Ω) such that
the norm

|u|k;Ω =
k∑
j=0

[u]j;Ω

is finite. With this norm, it can be shown that Ck(Ω) is a Banach space.

If the seminorm

[u]δ;Ω = sup
x,y∈Ω, x 6=y

|u(x)− u(y)|
|x− y|δ

is finite, then we say the real-valued function u is Hölder continuous in Ω with
exponent δ. For a k-times differentiable function, we will set

[u]k+δ;Ω = max
|α|=k

[Dαu]δ;Ω .
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Definition 4.4. The Hölder space Ck+δ(Ω) is the set of all functions u ∈ Ck(Ω)
such that the norm

|u|k+δ;Ω = |u|k;Ω + [u]k+δ;Ω

is finite. With this norm, it can be shown that Ck+δ(Ω) is a Banach space.

For any two points P1 = (x1, t1), P2 = (x2, y2) ∈ QT , we define the parabolic
distance between them as

d(P1, P2) =
(
|x1 − x2|2 + |t1 − t2|

)1/2
.

For a real-valued function u = u(x, t) on QT , let us define the semi-norm

[u]δ,δ/2;QT
= sup
P1,P2∈QT , P1 6=P2

|u(x1, t1)− u(x2, t2)|
dδ(P1, P2)

.

If this semi-norm is finite for some u, then we say u is Hölder continuous with
exponent δ. The maximum norm of u is given by

|u|0;QT
= sup

(x,t)∈QT

|u(x, t)|.

Definition 4.5. The space Cδ,δ/2(QT ) is the set of all functions u ∈ QT such that
the norm

|u|δ,δ/2;QT
= |u|0;QT

+ [u]δ,δ/2;QT

is finite. Furthermore, we define

C2k+δ,k+δ/2(QT ) = {u : Dα∂ρt u ∈ Cδ,δ/2(QT ), 0 ≤ |α|+ 2ρ ≤ 2k}.

We define a semi-norm on C2k+δ,k+δ/2(QT ) by

[u]2k+δ,k+δ/2;QT
=

∑
|α|+2ρ=2k

[Dα∂ρt u]δ,δ/2;QT
,

and a norm by

|u|2k+δ,k+δ/2;QT
=

∑
0≤|α|+2ρ≤2k

|Dα∂ρt u|δ,δ/2;QT
.

Using this norm, it can be shown that C2k+δ,k+δ/2(QT ) is a Banach space.
With these tools in place, we prove the existence of a classical solution for (4.1).

Let us denote

Lu =
1
2
e2y ∂

2u

∂x2
+

1
2
β2 ∂

2u

∂y2
+ ρeyβ

∂2u

∂x∂y
+ (r − 1

2
e2y)

∂u

∂x
+ (r − 1

2
β2)

∂u

∂y
− ru.

We first consider the following initial-boundary value problem in a bounded para-
bolic domain QT = Ω× (0, T ), T > 0, where Ω is a bounded domain in R2.

−uτ + Lu = F1

(
y,
∂u

∂x
,
∂2u

∂x2
,
∂2u

∂x∂y

)
+ F2

(
y,
∂u

∂x
,
∂2u

∂x2
,
∂2u

∂x∂y

)
in QT ,

u(x, y, 0) = u0(x, y) on Ω,

u(x, y, τ) = g(x, y, τ) on ∂Ω× (0, T ).

(4.2)

Then, we extend our results to the corresponding initial-value problem in the un-
bounded domain R2+1

T = R2 × (0, T ):

−uτ + Lu = F1

(
y,
∂u

∂x
,
∂2u

∂x2
,
∂2u

∂x∂y

)
+ F2

(
y,
∂u

∂x
,
∂2u

∂x2
,
∂2u

∂x∂y

)
in R2+1

T ,

u(x, y, 0) = u0(x, y) on R2.

(4.3)
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Throughout this section, we impose the following assumptions. These assump-
tions are reasonable for smooth terminal conditions. However, if the terminal con-
ditions are not smooth then they may be approximated by smooth functions for
which the following assumptions are true. They are same assumptions as observed
in a different problem in [21].

(A1) The coefficients of L belong to the Hölder space Cδ,δ/2(QT );
(A2) The value of |ρ| < 1;
(A3) u0(x, y) and g(x, y, t) belong to the Hölder spaces C2+δ(R2) and

C2+δ,1+δ/2(QT ) respectively;
(A4) The two consistency conditions

g(x, y, 0) = u0(x, y),

gτ (x, y, 0)− Lu0(x, y) = 0

are satisfied for all x ∈ ∂Ω.

We shall prove the existence of a solution to (4.1) using an iterative argument.
We will do this by providing estimates based on a Green’s function. Afterwards,
we will use a standard argument to show that our solution can be extended to a
solution to the initial-value problem in R2+1

T .
Let us define the function space C1+1,0+1(QT ) to be the set of all u ∈ C1,0(QT )∩

W 2,1
∞ (QT ). We will say u ∈ C1+1,0+1(QT ) is a strong solution to the parabolic

initial-boundary value problem (4.1) provided that u satisfies the parabolic equation
almost everywhere in QT and the initial-boundary conditions in the classical sense.
The following lemma follows immediately from [17, Theorem 10.4.1].

Lemma 4.6. There exists a unique solution ϕ ∈ C2+δ,1+δ/2(QT ) to the problem

−uτ + Lu = 0 in QT ,

u(x, y, 0) = u0(x, y) on Ω,

u(x, y, τ) = g(x, y, τ) on ∂Ω× (0, T ).
(4.4)

For completeness we include (below) [17, Theorem 10.4.1].

Theorem 4.7. Let Ω = Rd or Ω = Rd+ and take a k ∈ {1, 2, . . . }. Let p ∈ [1,∞),
m ∈ {0, . . . , k} and q ∈ (0,∞) be constants such that

k − d

p
= m− d

q
. (4.5)

Then q ≥ p and for any u ∈W k
p (Ω) we have

[u]Wm
q (Ω) ≤ N [u]Wk

p (Ω), (4.6)

with N independent of u. In particular, if,

1− d

p
= −d

q
,

That is, (4.5) is satisfied with k = 1 and m = 0, then

‖u‖Lq(Ω) ≤ N‖ux‖Lq(Ω). (4.7)

We next state and prove our main theorem.
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Theorem 4.8. There exists a strong solution u ∈ C1+1,0+1(QT ) to the problem

−uτ + Lu = F1

(
y,
∂u

∂x
,
∂2u

∂x2
,
∂2u

∂x∂y

)
+ F2

(
y,
∂u

∂x
,
∂2u

∂x2
,
∂2u

∂x∂y

)
in QT ,

u(x, y, 0) = u0(x, y) on Ω,

u(x, y, τ) = g(x, y, τ) on ∂Ω× (0, T ).

(4.8)

Proof. Let ϕ be defined as in Lemma 4.6. We choose g = ϕ and introduce a change
of variables to transform our problem into a problem with zero boundary condition.
If we let

v(x, y, τ) = u(x, y, τ)− ϕ(x, y, τ),

v0(x, y) = u0(x, y)− ϕ(x, y, 0) = 0,

then v will satisfy the initial-boundary value problem

−vτ + Lv = F1

(
y,
∂(v + ϕ)
∂x

,
∂2(v + ϕ)
∂x2

,
∂2(v + ϕ)
∂x∂y

)
+ F2

(
y,
∂(v + ϕ)
∂x

,
∂2(v + ϕ)
∂x2

,
∂2(v + ϕ)
∂x∂y

)
in QT ,

v(x, y, 0) = 0 on Ω,

v(x, y, τ) = 0 on ∂Ω× (0, T )

(4.9)

If the problem (4.9) has a strong solution, then (4.8) will have a strong solution
as well since u = v+ϕ. We use an iteration procedure to construct the solution to
(4.9). Consider the problem

−βτ + Lβ = F1

(
y,
∂(α+ ϕ)

∂x
,
∂2(α+ ϕ)

∂x2
,
∂2(α+ ϕ)
∂x∂y

)
+ F2

(
y,
∂(α+ ϕ)

∂x
,
∂2(α+ ϕ)

∂x2
,
∂2(α+ ϕ)
∂x∂y

)
in QT ,

β(x, y, 0) = 0 on Ω,

β(x, y, τ) = 0 on ∂Ω× (0, T ),

(4.10)

where α ∈ C2+δ,1+δ/2(QT ) is arbitrary. We can show that (with arguments in [17]):

F1

(
y,
∂(α+ ϕ)

∂x
,
∂2(α+ ϕ)

∂x2
,
∂2(α+ ϕ)
∂x∂y

)
+ F2

(
y,
∂(α+ ϕ)

∂x
,
∂2(α+ ϕ)

∂x2
,
∂2(α+ ϕ)
∂x∂y

)
∈ Cδ,δ/2(QT ).

Thus, by [17, Theorem 10.4.1], there exists a unique solution β ∈ C2+δ,1+δ/2(QT )
to problem (4.10).

Using this result, we can now define vn ∈ C2+δ,1+δ/2(QT ), n ≥ 1, the unique solu-
tion to the linearized problem (suppressing the arguments y, ∂(vn−1+ϕ)

∂x , ∂
2(vn−1+ϕ)

∂x2 ,
∂2(vn−1+ϕ)

∂x∂y for F1 and F2)

−∂τvn + Lvn = F1 + F2 in QT ,

vn(x, 0) = 0 on Ω,

vn(x, τ) = 0 on ∂Ω× (0, T ),
(4.11)
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where v0 = v0(x) = 0 ∈ C2+δ,1+δ/2(QT ). To prove the existence of a solution to
problem (4.9), we will show that this sequence converges.

From [18, Chapter IV.16], there exists a Green’s function G(x, y, τ, τ ′) for prob-
lem (4.11). For n ≥ 1, the solution vn can be written as

vn(x, y, τ) =
∫ τ

0

∫
Ω

G(x, y, z, w, τ, τ ′)(F1 + F2) dz dw dτ ′

+
∫

Ω

G(x, y, z, w, τ, 0)v0(z, w) dz dw

=
∫ τ

0

∫
Ω

G(x, y, z, w, τ, τ ′)(F1 + F2) dz dw dτ ′,

because v0(z, w) = 0. Also, due to [18, Theorem 16.3] we have several estimates of
the Green’s function (see [18, page 413 and 414]). For convenience, we will write

Fn−1(z, w, τ ′)

= F1

(
w,

∂(vn−1 + ϕ)
∂z

(z, w, τ ′),
∂2(vn−1 + ϕ)

∂z2
(z, w, τ ′),

∂2(vn−1 + ϕ)
∂z∂w

(z, w, τ ′)
)

+ F2

(
w,

∂(vn−1 + ϕ)
∂z

(z, w, τ ′),
∂2(vn−1 + ϕ)

∂z2
(z, w, τ ′),

∂2(vn−1 + ϕ)
∂z∂w

(z, w, τ ′)
)
.

Now we take the first and second derivatives of vn(x, y, τ) with respect to x and y.
For convenience, we use subscripts x1 = x and x2 = y to write derivatives.

vnxi
(x, y, τ) =

∫ τ

0

∫
Ω

Gxi(x, y, z, w, τ, τ
′)Fn−1(z, w, τ ′) dz dw dτ ′,

vnxixj
(x, y, τ) =

∫ τ

0

∫
Ω

Gxixj
(x, y, z, w, τ, τ ′)Fn−1(z, w, τ ′) dz dw dτ ′.

with i, j ∈ {1, 2}.
Using the same procedure as obtained in [22], we have

‖vn(·, ·, τ)‖W 2
∞(Ω) (4.12)

≤ C(T, γ) + C

∫ τ

0

(
A+B(τ − τ ′)− 1

2 +D(τ − τ ′)−γ
)
‖vn−1(·, ·, τ ′)‖W 2

∞(Ω) dτ
′.

(4.13)

Observe that there exist an upper bound (ε) of the integral∫ τ

0

(
A+B(τ − τ ′)− 1

2 +D(τ − τ ′)−γ
)
dτ ′,

for τ ∈ [0, T1], with T1 ≤ T , so that |εC| < 1. This is possible as C does not depend
on T . We choose this T1 to be the initial time for the next time step. We will
follow exactly same computation as below to obtain a solution in the interval and
we move on to the next interval (until we reach T ). When we solve the problem in
the interval [0, T1] by the method described below we will find a solution given by
v. v(T1) will denote the initial value of the same problem in the next interval. If
v(T1) 6= 0, in order to get (4.9) we need to use v − v(T1) as the new variable. This
will lead to a constant term in the right hand side of the first equation in (4.9).
But that will not change any other subsequent derivations.

Thus by dividing the interval [0, T ] properly we can obtain the required solution.
Next, we present the proof of obtaining a solution for the interval τ ∈ [0, T1].
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We observe from (4.13) that

‖vn(·, ·, τ)‖W 2
∞(Ω) ≤ C(T, γ)

(
1 + Cε+ · · ·+ Cn−1εn−1

)
.

Since |εC| < 1, we obtain ‖vn(·, ·, τ)‖W 2
∞(Ω) ≤ C(T,γ)

1−εC , where n = 0, 1, 2, . . . . Conse-
quently ‖vn(·, ·, τ)‖W 2

∞(Ω) is uniformly bounded on the closed interval [0, T1]. Using
this result along with (4.9), we can easily show that ‖vnτ (·, ·, τ)‖L∞(Ω) is also uni-
formly bounded on [0, T ].

Since ‖vn(·, ·, τ)‖W 2
∞(Ω) and ‖vnτ (·, ·, τ)‖L∞(Ω) are continuous functions of τ on

the closed interval [0, T1], it follows that |vn|, |vnxi
|, |vnxixj

| and |vnt | are uniformly
bounded on Q[0,T1]. Thus vn(·, ·, τ) is equicontinuous in C(Q[0,T1]). By the Arzelà-
Ascoli theorem, there exists a subsequence {vnk}∞k=0 such that as k →∞,

vnk → v ∈ C(Q[0,T1]),

vnk
xi
→ vxi ∈ C(Q[0,T1]) ,

where the convergence is uniform. Furthermore, by [6, Theorem 3 in Appendix D],

vnk
xixj
→ vxixj ∈ L∞(Q[0,T1]),

vnk
τ → vτ ∈ L∞(Q[0,T1]),

as k → ∞. Here, the convergence is in the weak sense. Therefore, vnk con-
verges uniformly on the compact set Q[0,T1] to a function v ∈ C1+1,0+1(Q[0,T1]). As
mentioned earlier we can extend the solution to v ∈ C1+1,0+1(QT ) by taking into
account all the solutions that we are getting for different (finitely many) sufficiently
small intervals in [0, T ]. By a standard argument (see [8, Section 7.4, on page 201]),
we have that v satisfies the parabolic equation in (4.9) almost everywhere and the
initial-boundary conditions in the classical sense. Hence, v is a strong solution to
problem (4.9). Consequently, u is a strong solution to (4.8). �

Now, we show that we can extend this solution to give us a classical solution on
the unbounded domain R2+1

T = R2 × (0, T ).

Theorem 4.9. There exists a classical solution u ∈ C2,1(R2+1
T ) to the problem

−uτ + Lu = F1

(
y,
∂u

∂x
,
∂2u

∂x2
,
∂2u

∂x∂y

)
+ F2

(
y,
∂u

∂x
,
∂2u

∂x2
,
∂2u

∂x∂y

)
in R2+1

T

u(x, y, 0) = u0(x, y) on R2

(4.14)

such that the solution u(x, y, t)→ g(x, y, t) as
√
x2 + y2 →∞.

Proof. We approximate the domain R2 by a non-decreasing sequence {ΩN}∞N=1 of
bounded smooth sub-domains of Ω. For simplicity, we will let ΩN = B(0, N) be the
open ball in R2 centered at the origin with radius N . Also, we let VN = ΩN×(0, T ).

Using the previous theorem, we let uM ∈ C2,1(VM ) be a solution to the problem

−uτ + Lu = F1

(
y,
∂u

∂x
,
∂2u

∂x2
,
∂2u

∂x∂y

)
+ F2

(
y,
∂u

∂x
,
∂2u

∂x2
,
∂2u

∂x∂y

)
in VM

u(x, y, 0) = u0(x, y) on ΩM
u(x, y, t) = g(x, y, t) on ∂ΩM × (0, T ).

(4.15)

Since M ≥ 1 is arbitrary, we can use a standard diagonal argument (for details see
[23, Theorem 2.1]) to extract a subsequence that converges to a solution u to the
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problem on the whole unbounded space R2+1
T . Clearly, u(x, y, 0) = u0(x, y) and

u(x, y, t)→ g(x, y, t) as
√
x2 + y2 →∞. �

We would like to remark that the existence proof provided is constructive. The
sequence used in the proof to show convergence to a solution may also be used to
approximate the solution numerically. Specifically, the sequence (4.11) started from
the boundary condition will converge to the solution of the nonlinear PDE (4.1).

Conclusions

In this article we analyze a market model where the assets are driven by sto-
chastic volatility models and trading assets involves paying proportional transaction
costs. We show that the price of an option written on this type of equity may be
obtained as a solution to a partial differential equation. We obtain the option pric-
ing PDE for the scenario when the volatility (or a proxy for volatility) is a traded
asset. In this case all option prices may be found as solutions to the resulting non-
linear PDE. Furthermore, hidden within this scenario is the case when the option
depends on two separate assets and the assets are correlated in the same form as S
and σ are in the current paper. The treatment of the option in this case is entirely
equivalent with the case discussed in this article.

5. Appendix: Derivation of the option value PDE’s in arbitrage free
and complete markets

In this appendix we present the correct derivation of portfolio dynamics used
when deriving the PDE’s (3.2) and (3.8). Suppose that we want to price a claim V
which at time t is dependent on S, σ and t. We note that the same approach works
if the contingent claim V is contingent on any set of n traded assets S1(t), . . . , Sn(t),
but for clarity we use the specific case presented in this paper.

The market contains two traded assets S(t) and σ(t) which have some specific
dynamics irrelevant to this derivation, as well as a risk free account that earns the
risk free interest rate r. This risk-free account is available from the moment t = 0
when the portfolio is constructed. Specifically, one share of this money market
account solves:

dM(t) = rM(t)dt or M(t) = ert

Suppose we form a portfolio (any portfolio) containing shares in these assets and
in the money account. Divide the interval [0, t] into intervals with endpoints 0 =
t0 < t1 < · · · < tN = T and for simplicity assume that the times are equally spaced
at intervals δt wide. Suppose that at one of these times tk our portfolio has value:

X(k) = ∆(k)S(k) + ∆1(k)σ(k) + Γ(k)M(k),

where ∆(k) and ∆1(k) are the number of shares of respective assets, while Γ(k) is
the number of shares of the riskless asset we own.

Suppose that at the next time tk+1 we need to re-balance this portfolio to contain
exactly some other weights ∆(k + 1) and ∆1(k + 1). To this purpose, we need to
trade the assets and thus we pay transaction costs depending on the differences of
the type ∆(k + 1)−∆(k) as well as on the price of the specific asset traded.

Here we make the assumption that the portfolio is self financing. This means
that any extra or missing monetary value resulting from re-balancing the portfolio
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will be put or borrowed from the money account. Mathematically, we need to have
the following two quantities equal:

Xk+1 = ∆(k)S(k + 1) + ∆1(k)σ(k + 1) + Γ(k)M(k + 1)

X(k + 1) = ∆(k + 1)S(k + 1) + ∆1(k + 1)σ(k + 1) + Γ(k + 1)M(k + 1)

− ν(k + 1).

In this expression all transaction costs incurred at time tk+1 are lumped into the
term ν(k + 1). Setting the two quantities equal and rearranging the terms gives

(∆(k + 1)−∆(k))S(k + 1) + (∆1(k + 1)−∆1(k))σ(k + 1)

+ (Γ(k + 1)− Γ(k))M(k + 1)− ν(k + 1) = 0

In this equation we add and subtract S(k)(∆(k + 1) −∆(k)) and σ(k)(∆1(k +
1)−∆1(k)), which gives the following self-financing condition:

S(k)(∆(k + 1)−∆(k)) + (∆(k + 1)−∆(k))(S(k + 1)− S(k))

+ σ(k)(∆1(k + 1)−∆1(k)) + (∆1(k + 1)−∆1(k))(σ(k + 1)− σ(k))

+ (Γ(k + 1)− Γ(k))M(k) + (Γ(k + 1)− Γ(k))(M(k + 1)−M(k))− ν(k + 1) = 0
(5.1)

The next step requires some explanation. We plan to sum these expressions over
k and to take the mesh of partition maxk |tk+1 − tk| to converge to zero. However,
we need to deal with the transaction costs term. If the re-balancing length of the
interval goes to 0 then the transaction costs become infinite. This is why it is
important to realize that the actual re-balancing needs to be done at fixed points
in time length δt apart. Because of this, the limit is an approximation of the PDE
dynamic.

Taking the limit while at the same time bounding the transaction costs we obtain
stochastic integrals for all these expressions. Expressing the integrals in differential
form for compactness sake we obtain the continuous time self-financing condition

S(t)d∆(t) + d〈∆, S〉t + σ(t)d∆1(t) + d〈∆1, σ〉t +M(t)dΓ(t) + d〈Γ,M〉t − ν(δt) ≈ 0
(5.2)

For no transaction costs (last term zero), this condition is exact for any portfolio
which is self financing and for any stochastic dynamics of the weights and assets.
In the presence of transaction costs we need to bound the total transaction costs
over the interval δt when the subintervals length aproach 0. For this reason the
equation (5.2) is only approximately satisfied when dealing with transaction costs.
We used the notation ν(δt) to bound the transaction costs over the interval δt. The
expected value of this term will be calculated in the paper.

The condition 5.2 is valid for any self-financing portfolios. Next we form a specific
portfolio, one that will replicate the payoff of the contingent claim V at time T .
Such a portfolio involves stochastic weights and has the form

Π(t) = V (t)−∆(t)S(t)−∆1(t)σ(t),

since we replicate using only the underlying assets S and σ. The weights are
stochastic and they are suitably chosen to replicate the contingent claim V . The
dynamics of the portfolio Π(t) may be derived using the Itô’s lemma properly as

dΠ(t) = dV (t)−∆(t)dS(t)− S(t)d∆(t)− d〈∆, S〉t
−∆1(t)dσ(t)− σ(t)d∆1(t)− d〈∆1, σ〉t

(5.3)
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Now, the idea is that the later two terms will disappear when we use the self
financing condition and we will obtain the equations presented in the paper. More
specifically, since the suitable choices of ∆ terms allow us to replicate the option
value V (t), the amount in the money account at time t is exactly Π(t). Therefore,
the number of shares held in the money account at any time is Γ(t) = Π(t)

M(t) . The
last two troublesome terms in (5.3) are substituted using the self financing condition
(5.2). When we do so, note that we need to calculate the termsM(t)dΓ(t)+d〈Γ,M〉t
for this specific Γ(t) = Π(t)

M(t) . Here it pays to know that M(t) as well as 1/M(t) =
e−rt are deterministic and therefore the terms d〈Π/M,M〉t and d〈Π, 1/M〉t vanish
in the resulting expression. Furthermore:

M(t)dΓ(t) = M(t)d
Π(t)
M(t)

= dΠ(t) + Π(t)(−r)dt+M(t)d〈Π, 1
M
〉t,

and as mentioned the last term is zero. After we perform the calculations and we
cancel the terms which are the same we end up with the expression

dV (t)−
n∑
i=1

∆i(t)dSi(t)− rΠ(t)dt− ν(δt) = 0. (5.4)

This is the expression we use in this paper.
The next step, as presented in section 3, is to use suitable replicating weights

to make the stochastic integrals disappear by equating all the terms multiplying dt
which gives the PDE’s used in the article.

The derivation presented in the Appendix is clearly valid if we use discrete time.
However, the self-financing condition needs to hold at all times when we re-balance
the portfolio. At the same time we cannot re-balance at every continuous time
thus the resulting continuous time equation is questionable. In this appendix we
used the continuous time condition (5.2) instead of the discrete one (5.1) simply
due to the convenience of working with Itô’s lemma and thus vanishing quadratic
variations in (5.3), instead of higher dt terms in the Taylor expansion. However, if
we go the long route and replace (5.2) with its discrete counterpart from the proof
of Itô’s lemma the same terms as in the continuous version will also disappear in
the discrete time expression. However, since we do not re-balance inside intervals of
width δt there are no further transaction costs while taking sub partitions of these
original intervals. Therefore when the mesh of the sub partitions is converging to
0 we will obtain the final equation (5.4).
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