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SOLVABILITY OF AN OPTIMAL CONTROL PROBLEM IN
COEFFICIENTS FOR ILL-POSED ELLIPTIC

BOUNDARY-VALUE PROBLEMS

CIRO D’APICE, UMBERTO DE MAIO, PETER I. KOGUT, ROSANNA MANZO

Abstract. We study an optimal control problem (OCP) associated to a lin-

ear elliptic equation − div(A(x)∇y + C(x)∇y) = f . The characteristic feature

of this control object is the fact that the matrix C(x) is skew-symmetric and
belongs to L2-space (rather than L∞). We adopt a symmetric positive de-

fined matrix A(x) as control in L∞(Ω; RN×N ). In spite of the fact that the

equations of this type can exhibit non-uniqueness of weak solutions, we prove
that the corresponding OCP, under rather general assumptions on the class of

admissible controls, is well-posed and admits a nonempty set of solutions. The

main trick we apply to the proof of the existence result is the approximation
of the original OCP by regularized OCPs in perforated domains with fictitious

boundary controls on the holes.

1. Introduction

In this article we study the following optimal control problem (OCP) for a linear
elliptic equation with unbounded coefficients in the main part of the elliptic operator

Minimize I(A, y) = ‖y − yd‖2H1(Ω)

subject to the constraints

−div
(
A(x)∇y + C(x)∇y

)
= f in Ω,

y = 0 on ∂Ω,

(1.1)

where a symmetric matrix A ∈ L∞(Ω; SNsym) is adopted as a control, yd ∈ H1(Ω)
and f ∈ H−1(Ω) are given distributions, and C ∈ L2(Ω; SNskew) is a given skew-
symmetric matrix. We define a class of admissible controls Aad as the set of uni-
formly coercive and uniformly bounded symmetric matrices with H−1-bounded di-
vergence of their columns. The optimal control problem is to minimize the discrep-
ancy between a given distribution yd ∈ H1(Ω) and the solution of a Dirichlet prob-
lem (1.1)2–(1.1)3 choosing an appropriate matrix of coefficients A ∈ L∞(Ω; SNsym).

This kind of problems naturally appears in the optimal design theory for lin-
earized elliptic boundary-value problems. Their characteristic feature is that the
matrix C(x) = [cij(x)]i,j=1,...,N is skew-symmetric, cij(x) = −cji(x), measurable,
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and belongs to L2-space (rather than L∞). As a result, the existence, uniqueness,
and variational properties of the weak solution to (1.1) usually are drastically dif-
ferent from the corresponding properties of solutions to the elliptic equations with
L∞-matrices in coefficients. In most cases, the situation can change dramatically
for the matrices C with unremovable singularities. Typically, in such cases, the
boundary-value problem may admit many or even infinitely many weak solutions
[9, 22]. Usually, such solutions may have a character of non-variational solutions
[22], singular solutions [2, 8, 13, 14, 23], pathological solutions [18, 21] and others.

The aim of this work is to study the existence of optimal controls to problem (1.1)
and propose a scheme of their approximation. Since the range of optimal control
problems in coefficients is very wide, including as well optimal shape design prob-
lems, some problems originating in mechanics and others, this topic has been widely
studied by many authors. (see, for instance, [17], Pironneau [19]). However, most
of the existing results and methods rely on linear PDEs with bounded coefficients in
the main part of elliptic operators, while only very few articles deal with nonlinear
problems with unbounded and degenerate coefficients, see [8, 13, 14, 15, 16].

As was pointed earlier, the principal feature of OCP (1.1) is that the correspond-
ing boundary-value problem (1.1)2–(1.1)3 is ill-posedness and the class of admissible
controls A ∈ Aad belongs neither to the Sobolev space W 1,∞(Ω; ; SNsym) nor to the
space of matrices with bounded variation BV (Ω; RN×N ). In fact, we consider in
this paper the OCP (1.1) subject to the control constraints: A ∈ Aad if and only
if αI ≤ A(x) ≤ βI a.e. in Ω and divA ∈ Q, where Q is a given compact subset
of H−1(Ω)N . We note that these assumptions on the class of admissible controls
together with L2-properties of the skew-symmetric matrix C are essentially weaker
than they usually are in the literature. We give the precise definition of such
controls in Section 3 and, using the direct method in the Calculus of variations,
we show that a set of optimal pairs to the above problem is nonempty provided
two conditions holds — the so-called non-triviality condition and the condition of
closedness of the set of admissible solutions.

The non-triviality condition is closely related with the existence of weak solu-
tions to the boundary-value problem (1.1)2–(1.1)3. We show in Section 4 that this
condition can be satisfied due to the approximation approach. As for the condition
of closedness of the set of admissible solutions, we provide its substantiation in Sec-
tion 5. With that in mind we construct a special sequence of OCPs in perforated
domains with fictitious boundary controls on the holes. As a result, we show that
the set of admissible solutions to the problem (1.1) is the limit in the sense of Ku-
ratowski of the sequences of admissible solutions to the regularized OCPs. Hence,
due to the main properties of Kuratowski convergence, it gives that the limit set is
sequentially closed.

2. Notation and Preliminaries

Let Ω be a bounded open connected subset of RN (N ≥ 2) with Lipschitz
boundary ∂Ω. Let LN (E) be the N -dimensional Lebesgue measure of E ⊂ RN .
The spaces D′(Ω) of distributions in Ω is the dual of the space C∞0 (Ω). By
H1

0 (Ω) we denote the closure of C∞0 (Ω)-functions in the Sobolev space H1(Ω),
while H−1(Ω) is the dual space of H1

0 (Ω). The norm in H1
0 (Ω) is defined by

‖y‖H1
0 (Ω) =

(∫
Ω
‖∇y‖2RN dx

)1/2. Let Γ be a part of the boundary ∂Ω with positive
(N − 1)-dimensional measures. Let C∞0 (RN ; Γ) = {ϕ ∈ C∞0 (RN ) : ϕ = 0 on Γ}.
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We define the Banach space H1
0 (Ω; Γ) as the closure of C∞0 (RN ; Γ) with respect to

the norm ‖y‖ =
(∫

Ω
‖∇y‖2RN dx

)1/2.
Skew-Symmetric Matrices. Let MN be the set of all squared N × N matrices.

We denote by SNskew the set of all skew-symmetric matrices C = [cij ]Ni,j=1, i.e., C is
a square matrix with cij = −cji and, hence, cii = 0. Therefore, the set SNskew can
be identified with the Euclidean space R

N(N−1)
2 .

Let L2(Ω)
N(N−1)

2 = L2
(
Ω; SNskew

)
be the space of measurable square-integrable

functions whose values are skew-symmetric matrices. For each C ∈ L2
(
Ω; SNskew

)
we have the bilinear form ϕ(y, v)C =

∫
Ω

(
∇v, C(x)∇y

)
RN dx, for all y, v ∈ C1

0 (Ω).
It is easy to see that, in general, this form is unbounded on H1

0 (Ω). This motivates
the introduction of the following set.

Definition 2.1. Let C ∈ L2
(
Ω; SNskew

)
be a given matrix. We say that an element

y ∈ H1
0 (Ω) belongs to the set D(C) if∣∣ ∫

Ω

(
∇ϕ,C∇y

)
RN dx

∣∣ ≤ c(y)
(∫

Ω

|∇ϕ|2RN dx
)1/2

, ∀ϕ ∈ C∞0 (Ω) (2.1)

with some constant c depending on y.

As a result, having set [y, ϕ]C =
∫

Ω

(
∇ϕ,C(x)∇y

)
RN dx, for all y ∈ D(C), and

all ϕ ∈ C∞0 (Ω), we see that the form [y, ϕ]C can be defined for all ϕ ∈ H1
0 (Ω) using

the standard rule
[y, ϕ]C = lim

ε→0
[y, ϕε]C , (2.2)

where {ϕε}ε>0 ⊂ C∞0 (Ω) and ϕε → ϕ strongly in H1
0 (Ω). In this case the value

[v, v]C is finite for every v ∈ D(C), although the “integrand”
(
∇v(x), C(x)∇v(x)

)
RN

need not be integrable, in general.
Skew-symmetric matrices C ∈ L2

(
Ω; SNskew

)
of the F-type. Let ε be a small pa-

rameter. Assume that the parameter ε varies within a strictly decreasing sequence
of positive real numbers which converge to 0. For a given sequence {ε > 0}, we
define the cut-off operators Tε : SNskew → SNskew as follows Tε(C) = [Tε(cij)]

N
i,j=1 for

every ε > 0 and C ∈ L2
(
Ω; SNskew

)
, where Tε(s) = max{min{s, ε−1},−ε−1}. The

following property of Tε is well known (see [11]):

Tε(C) ∈ L∞(Ω; SNskew), ∀ε > 0 and Tε(C)→ C strongly in L2(Ω; SNskew). (2.3)

In what follows, for every ε > 0, we associate with operator Tε the perforated
domain

Ωε = Ω \Qε, ∀ε > 0, (2.4)

where
Qε = closure{x ∈ Ω : ‖C(x)‖SN

skew
:= max

1≤i<j≤N
|cij(x)| ≥ ε−1}. (2.5)

Definition 2.2. We say that a matrix C ∈ L2
(
Ω; SNskew

)
is of the F-type, if there

exists a strictly decreasing sequence of positive real numbers {ε} converging to 0
such that the corresponding collection of sets {Ωε}ε>0, defined by (2.4), possesses
the following properties:

(i) Ωε are open connected subsets of Ω with Lipschitz boundaries for which
there exists a positive value δ > 0 such that ∂Ω ⊂ ∂Ωε and dist(Γε, ∂Ω) > δ
for all ε > 0.
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(ii) The surface measure of the boundaries of holes Qε = Ω\Ωε is small enough
in the following sense:

HN−1(Γε) = o(ε) and
εHN−1(Γε)
|Ω \ Ωε|

= O(1), ∀ε > 0. (2.6)

(iii) For each element h ∈ D(C), there is a constant c = c(h) depending on h
and independent of ε such that∣∣ ∫
Ω\Ωε

(
∇ϕ,C∇h

)
RN dx

∣∣ ≤ c(h)

√
|Ω \ Ωε|

ε

(∫
Ω\Ωε

|∇ϕ|2RN dx
)1/2

(2.7)

for all ϕ ∈ C∞0 (RN ).

Remark 2.3. As immediately follows from Definition 2.2, if C ∈ L2
(
Ω; SNskew

)
is

of the F-type then each of the sets Ωε is locally located on one side of its Lipschitz
boundary ∂Ωε and the boundary ∂Ωε can be divided into two parts ∂Ωε = ∂Ω∪Γε.
Besides, the sequence of perforated domains {Ωε}ε>0 is monotonically expanding,
i.e., Ωεk

⊂ Ωεk+1 for all εk > εk+1, and perimeters of Qε tend to zero as ε → 0.
Moreover, in view of the structure of subdomains Qε (see (2.5)) and L2-property
of the matrix C, we have
|Ω \ Ωε|
ε2

≤
∫

Ω\Ωε

‖C(x)‖2SN
skew

dx, ∀ε > 0 and lim
ε→0
‖C‖L2(Ω\Ωε;SN

skew) = 0.

Hence, |Ω \ Ωε| = o(ε2) and, therefore, limε→0 |Ωε| = |Ω|.
It is easy to see also that if C ∈ L2

(
Ω; SNskew

)
is of the F-type, then conditions

(1)–(ii) of Definition 2.2 and Sobolev Trace Theorem [1] imply the inequality

‖ϕ‖L2(Γε) ≤
M√

HN−1(Γε)
‖ϕ‖H1

0 (Ωε;∂Ω), ∀ϕ ∈ C∞0 (Ω), (2.8)

which holds for ε small enough with a constant M = M(Ω) independent of ε.

Symmetric Matrices. Let SNsym be the set of all N×N symmetric matrices, which
are obviously determined by N(N + 1)/2 scalars. Let α and β be two fix constants
such that 0 < α ≤ β < +∞. We define Mβ

α (Ω) as a set of all matrices A = [ai j ] in
L∞(Ω; SNsym) such that

αI ≤ A(x) ≤ βI, a.e. in Ω. (2.9)

In (2.9) I stands for the identity matrix in MN , and the above inequalities are in
the sense of the quadratic forms defined by (Aξ, ξ)RN for ξ ∈ RN .

Solenoidal vector fields. For any vector field v ∈ L2(Ω; RN ), the divergence of v
is an element div v of the space H−1(Ω) defined by the formula

〈div v, ϕ〉H−1(Ω);H1
0 (Ω) = −

∫
Ω

(v,∇ϕ)RN dx, ∀ϕ ∈ C∞0 (Ω), (2.10)

where 〈·, ·〉H−1(Ω);H1
0 (Ω) denotes the duality pairing between H−1(Ω) and H1

0 (Ω),
and (·, ·)RN stands for the scalar product in RN .

We define the divergence divA of a matrix A ∈ L2
(
Ω; SNsym

)
as a vector-valued

distribution d ∈ H−1(Ω; RN ) by the following rule

〈di, ϕ〉H−1(Ω);H1
0 (Ω) = −

∫
Ω

(ai,∇ϕ)RN dx, ∀ϕ ∈ C∞0 (Ω), ∀i ∈ {1, . . . , N}, (2.11)

where ai stands for the i-th row of the matrix A.
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Variational convergence of optimal control problems. Throughout the paper ε
denotes a small parameter which varies within a strictly decreasing sequence of
positive numbers converging to 0. When we write ε > 0, we consider only the
elements of this sequence, in the case ε ≥ 0 we also consider its limit ε = 0.

Let Iε : Uε × Yε → R be a cost functional, Yε be a space of states, and Uε be a
space of controls. Let min{Iε(u, y) : (u, y) ∈ Ξε} be a parameterized OCP, where

Ξε ⊂ {(uε, yε) ∈ Uε × Yε : uε ∈ Uε, F (uε, yε) = 0, Iε(uε, yε) < +∞}

is the set of all admissible pairs linked by some state equation F (uε, yε) = 0.
Hereinafter, we always associate to such OCP the corresponding constrained mini-
mization problem:

(CMPε) :
〈

inf
(u,y)∈Ξε

Iε(u, y)
〉
. (2.12)

Since the sequence of constrained minimization problems (2.12) lives in variable
spaces Uε × Yε, we assume that there exists a Banach space U × Y such that a
convergence in the scale {Uε × Yε}ε>0 is well defined. Following the scheme of
the direct variational convergence [12] (see also [4, 5, 6]), we adopt the following
definition for the convergence of minimization problems in variable spaces.

Definition 2.4. A problem 〈inf(u,y)∈Ξ I(u, y)〉 is the variational limit of the se-
quence (2.12) as ε→ 0. in symbols,〈

inf
(u,y)∈Ξε

Iε(u, y)
〉 Var−−−→
ε→0

〈
inf

(u,y)∈Ξ
I(u, y)

〉
if and only if the following conditions are satisfied:

(d) The space U×Y possesses the strong approximation property with respect
to the scale of spaces {Uε × Yε}ε>0, that is, for every pair (u, y) ∈ U× Y,
there exists a sequence {(uε, yε) ∈ Uε ×Yε}ε>0 such that (uε, yε)→ (u, y).

(dd) If sequences {εk}k∈N and {(uk, yk)}k∈N are such that εk → 0 as k → ∞,
(uk, yk) ∈ Ξεk

for all k ∈ N, and (uk, yk) → (u, y), then (u, y) ∈ Ξ and
I(u, y) ≤ lim infk→∞ Iεk

(uk, yk).
(ddd) For every (u, y) ∈ Ξ ⊂ U × Y, there are a constant ε0 > 0 and a sequence

{(uε, yε)}ε>0 (called a Γ-realizing sequence) such that

(uε, yε) ∈ Ξε, ∀ε ≤ ε0, (uε, yε)→ (u, y), (2.13)

I(u, y) ≥ lim sup
ε→0

Iε(uε, yε). (2.14)

3. Setting of the Optimal Control Problem

Let f ∈ H−1(Ω) be a given distribution. The optimal control problem we con-
sider in this paper is to minimize the discrepancy (tracking error) between a given
distribution yd ∈ H1(Ω) and a solution y of the Dirichlet boundary-value problem
for the linear elliptic equation

−div
(
A(x)∇y + C(x)∇y

)
= f in Ω, (3.1)

y = 0 on ∂Ω (3.2)
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by choosing an appropriate control A ∈ L∞(Ω; SNsym). Here, C ∈ L2(Ω; SNskew) is a
given matrix. More precisely, we are concerned with the OCP

Minimize I(A, y) = ‖y − yd‖2H1(Ω) :=
∫

Ω

(y − yd)2 dx+
∫

Ω

‖∇y −∇yd‖2RN dx

(3.3)

subject to the constraints

(A, y) are related by (3.1)–(3.2), (3.4)

y ∈ H1
0 (Ω), A ∈ Aad ⊂ L∞(Ω; SNsym), (3.5)

where, by analogy with [7], we define the class of admissible controls Aad as follows:

Aad = {A = [a1, . . . , aN ] ∈Mβ
α (Ω)|div ai ∈ Qi, ∀i = 1, . . . , N}. (3.6)

Here, {Q1, . . . , QN} is a given collection of nonempty compact subsets of H−1(Ω).
In view of the compactness of the embedding L2(Ω) ↪→ H−1(Ω), we can consider
{Q1, . . . , QN} as a collection of bounded closed subsets of L2(Ω). Hereinafter, we
assume that Aad ⊂ L∞(Ω; SNsym) is a nonempty subset of L∞(Ω; SNsym).

For our further analysis, we use the following obvious result.

Proposition 3.1. The set Aad is sequentially compact with respect to the weak-∗
topology of L∞(Ω; SNsym).

The distinguishing feature of optimal control problem (3.3)–(3.5) is the fact
that the skew-symmetric matrix C is merely measurable and belongs to the space
L2
(
Ω; SNskew

)
(rather than the space of bounded matrices L∞

(
Ω; SNskew

)
). As a rule

this entails a number of pathologies with respect to the standard properties of opti-
mal control problems for the classical elliptic equations, even if f in the right-hand
has “good” properties. In particular, the unboundedness of the skew-symmetric
matrix C may lead to the non-uniqueness of weak solutions to the corresponding
boundary-value problem.

Definition 3.2. We say that a function y = y(A,C, f) is a weak solution to
the boundary-value problem (3.1)–(3.2) for given matrices A ∈ Aad and C ∈
L2
(
Ω; SNskew

)
and a given distribution f ∈ H−1(Ω), if y ∈ H1

0 (Ω) and the inte-
gral identity ∫

Ω

(
∇ϕ,A∇y + C∇y

)
RN dx = 〈f, ϕ〉H−1(Ω);H1

0 (Ω) (3.7)

holds for every ϕ ∈ C∞0 (Ω).

Proposition 3.3. Let A ∈ Aad be a given control. Let y ∈ H1
0 (Ω) be a weak

solution to the boundary-value problem (3.1)–(3.2) in the sense of Definition 3.2.
Then y ∈ D(C).

Proof. To verify the validity of this assertion it is enough to rewrite the integral
identity (3.7) in the form

[y, ϕ]C = −
∫

Ω

(
A∇y,∇ϕ

)
RN dx+ 〈f, ϕ〉H−1(Ω);H1

0 (Ω) (3.8)

and apply Hölder’s inequality to the right-hand side of (3.8). As a result, we arrive
at the relation∣∣∣[y, ϕ]C

∣∣∣ ≤ (‖A‖L∞(Ω;SN
sym)‖∇y‖L2(Ω;RN ) + ‖f‖H−1(Ω)

)
‖ϕ‖H1

0 (Ω),
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which leads us immediately to estimate (2.1). The proof is complete. �

Remark 3.4. Due to Proposition 3.3, Definition 3.2 can be reformulated as follows:
y is a weak solution to the problem (3.1)–(3.2) for a given control A ∈ Aad, if and
only if y ∈ D(C) and∫

Ω

(
A∇y,∇ϕ

)
RN dx+ [y, ϕ]C = 〈f, ϕ〉H−1(Ω);H1

0 (Ω), ∀ϕ ∈ H1
0 (Ω). (3.9)

Moreover, as immediately follows from (2.2) and (3.9), every weak solution y ∈
D(C) to the problem (3.1)–(3.2) satisfies the energy equality∫

Ω

(
A∇y,∇y

)
RN dx+ [y, y]C = 〈f, y〉H−1(Ω);H1

0 (Ω). (3.10)

It is well known that boundary-value problem (3.1)–(3.2) is ill-posed, in general
(see, for instance, [9, 18, 20, 21, 22]). It means that there exists a matrix C ∈
L2
(
Ω; SNskew

)
such that the corresponding state y ∈ H1

0 (Ω) may be not unique.

Definition 3.5. We say that (A, y) is an admissible pair to the OCP (3.3)–(3.4) if
A ∈ Aad ⊂ L∞

(
Ω; SNsym

)
, y ∈ D(C) ⊂ H1

0 (Ω), and the pair (A, y) is related by the
integral identity (3.9).

We denote by Ξ the set of all admissible pairs for the OCP (3.3)–(3.4). Let τ be
the topology on the set Ξ ⊂ L∞

(
Ω; SNsym

)
×H1

0 (Ω) which we define as the product
of the weak-∗ topology of L2

(
Ω; SNsym

)
and the weak topology of H1

0 (Ω). We say
that a pair (A0, y0) ∈ L∞

(
Ω; SNsym

)
×D(C) is optimal for problem (3.3)–(3.4) if

(A0, y0) ∈ Ξ and I(A0, y0) = inf
(A,y)∈Ξ

I(A, y).

Remark 3.6. As follows from the definition of the form [y, ϕ]C , the value [y, y]C is
not of constant sign for all y ∈ D(C). It means that, for a given C ∈ L2

(
Ω; SNskew

)
,

we can admit the existence of elements y∗ ∈ D(C) and y] ∈ D(C) such that y∗ 6= y],
[y∗, y∗]C > 0, and [y], y]]C < 0, whereas [y, y]C = 0 for all y ∈ H1

0 (Ω) provided
C ∈ L∞

(
Ω; SNskew

)
(for the details, we refer to Zhikov [22]). Hence, the energy

equality (3.10) does not allow us to derive a reasonable a priory estimate for the
weak solutions of boundary-value problem (3.1)–(3.2) with respect to H1

0 -norm.
Moreover, the monotonicity properties of operator −div

(
A∇ + C∇

)
: D(C) →

H−1(Ω) for each admissible A ∈ Aad remain an open problem for the time being.
Hence, it is unknown whether the set of admissible pairs Ξ is closed with respect
to the τ -topology on L∞

(
Ω; SNsym

)
×H1

0 (Ω).

In view of these remarks, use the following Hypotheses.
(H1) OCP (3.3)–(3.5) is regular in the following sense: there exists at least one

pair (A, y) ∈ L∞
(
Ω; SNsym

)
×H1

0 (Ω) such that (A, y) ∈ Ξ.
(H2) The set of admissible solutions Ξ to OCP (3.3)–(3.5) is sequentially closed

with respect to the τ -topology.
Then, following standard techniques (see, for instance, [10]), it is easy to prove

the existence of optimal pairs to OCP (3.3)–(3.5).

Theorem 3.7. If Hypotheses (H1) and (H2) are valid, then, for each f ∈ H−1(Ω)
and yd ∈ H1(Ω), optimal control problem (3.3)–(3.5) admits at least one solution

(Aopt, yopt) ∈ Ξ ⊂ L∞(Ω; SNsym)×H1
0 (Ω).
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4. Substantiation of Hypothesis (H1)

The question we are going to discuss in this section is to show that Hypoth-
esis (H1) on the regularity property of OCP (3.3)–(3.5) in Theorem 3.7 can be
eliminated due to the approximation approach. It is clear that condition C ∈
L2(Ω; SNskew) ensures the existence of the sequence of skew-symmetric matrices
{Ck}k∈N ⊂ L∞(Ω; SNskew) such that Ck → C strongly in L2(Ω; SNskew).

Theorem 4.1. Let yd ∈ H1(Ω) and f ∈ H−1(Ω) be given distributions. Then
the set of admissible solutions Ξ to OCP (3.3)–(3.5) is nonempty. Moreover, for
each admissible control A ∈ Aad, there exists a weak solution y(A) ∈ H1

0 (Ω) to the
problem (3.1)–(3.2) such that

[ŷ, ŷ]C ≥ 0. (4.1)

Proof. Let A ∈ Aad be a given admissible control. Let {Ck}k∈N ⊂ L∞(Ω; SNskew)
be an arbitrary L2-approximation of the matrix C ∈ L2(Ω; SNskew). Then, for each
k ∈ N, the corresponding form [y, ϕ]Ck

=
∫

Ω

(
∇ϕ,Ck∇y

)
RN dx is bounded on

H1
0 (Ω)×H1

0 (Ω) and satisfies the identity∫
Ω

(
∇ϕ,Ck∇y

)
RN dx = −

∫
Ω

(
∇y, Ck∇ϕ

)
RN dx.

Therefore, ∫
Ω

(
∇v, Ck(x)∇v

)
RN dx = 0, ∀v ∈ H1

0 (Ω) (4.2)

and, hence, by the Lax-Milgram lemma the boundary-value problem

−div
(
A∇y + Ck∇y

)
= f in Ω, (4.3)

y = 0 on ∂Ω (4.4)

has a unique solution yk ∈ H1
0 (Ω) for each Ck ∈ L∞(Ω; SNskew) such that∫

Ω

(
∇ϕ,A∇yk + Ck∇yk

)
RN dx = 〈f, ϕ〉H−1(Ω);H1

0 (Ω), ∀ϕ ∈ C∞0 (Ω), (4.5)∫
Ω

(
∇yk, A∇yk

)
RN dx = 〈f, yk〉H−1(Ω);H1

0 (Ω). (4.6)

Thus, ‖yk‖H1
0 (Ω) ≤ α−1‖f‖H−1(Ω) and we can assume that the sequence {yk}k∈N

is weakly convergent: yk ⇀ ŷ in H1
0 (Ω). Since, ∇yk ⇀ ∇ŷ in L2(Ω; RN ) and

Ck∇ϕ→ C∇ϕ in L2(Ω; RN ) for all ϕ ∈ C∞0 (Ω), we can pass to the limit in (4.5).
As a result, we have∫

Ω

(
∇ϕ,A∇ŷ + C∇ŷ

)
RN dx = 〈f, ϕ〉H−1(Ω);H1

0 (Ω), ∀ϕ ∈ C∞0 (Ω).

Thus, ŷ is a weak solution to the original boundary-value problem (3.1)–(3.2), and,
hence, ŷ ∈ D(C) by Proposition 3.3. This yields: (A, ŷ) ∈ Ξ.

To proof property (4.1), it remains to pass to the limit in the energy equality
(4.6) using the lower semicontinuity of the norm ‖ · ‖L2(Ω;RN ) with respect to the
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weak convergence ∇yk ⇀ ∇ŷ in L2(Ω; RN ). We obtain

〈f, ŷ 〉H−1(Ω);H1
0 (Ω) = lim

k→∞

∫
Ω

(∇yk, A∇yk)RN dx

= lim
k→∞

∫
Ω

‖A1/2∇yk‖2RN dx

≥
∫

Ω

‖A1/2∇ŷ‖2RN dx =
∫

Ω

(∇ŷ, A∇ŷ)RN dx.

(4.7)

Thus, the desired inequality (4.1) obviously follows from (3.10) and (4.7). �

Remark 4.2. As Theorem 4.1 proves, for any approximation {Ck}k∈N of the ma-
trix C ∈ L2

(
Ω; SNskew

)
with properties {Ck}k∈N ⊂ L∞(Ω; SNskew) and Ck → C

strongly in L2(Ω; SNskew), the corresponding solutions to the regularized boundary-
value problem (4.3)–(4.4) always lead in the limit to some weak solution ŷ of the
original problem (3.1)–(3.2). However, this solution can depend on the choice of
the approximative sequence {Ck}k∈N.

Definition 4.3. We say that a pair (Â, ŷ ) ∈ L∞(Ω; SNsym) × H1
0 (Ω) is a varia-

tional solution to OCP (3.3)–(3.5) if there exists an L2-approximation {Ck}k∈N ⊂
L∞(Ω; SNskew) of the matrix C ∈ L2

(
Ω; SNskew

)
such that (Â, ŷ ) ∈ Ξ and

A0
k
∗
⇀ Â in L∞(Ω; SNsym), (4.8)

y0
k ⇀ ŷ in H1

0 (Ω), (4.9)

I(A0
k, y

0
k) −−−−→

k→∞
I(Â, ŷ) = inf

(A,y)∈Ξ
I(A, y), (4.10)

where (A0
k, y

0
k) is an optimal pair to the approximate problem (3.3),(3.5),(4.3),(4.4).

As a direct consequence of Definition 4.3 and Theorem 4.1, we have the following
characteristic property of variational solutions.

Proposition 4.4. Let (Â, ŷ ) ∈ L∞(Ω; SNsym)×H1
0 (Ω) be a variational solution to

OCP (3.3)–(3.5) in the sense of Definition 4.3. Then [ŷ, ŷ]C = 0.

Proof. Let {(A0
k, y

0
k)}k∈N be a sequence of optimal pairs to approximate problems

(3.3), (3.5), (4.3), (4.4). In view of the property (4.10), we have

inf
(A,y)∈Ξ

I(A, y) = I
(
Â, ŷ

)
:= ‖ŷ−yd‖2H1(Ω) = lim

k→∞
I(A0

k, y
0
k) = lim

k→∞
‖y0
k−yd‖2H1(Ω).

(4.11)
Hence, in addition to (4.9), y0

k → ŷ strongly in H1
0 (Ω). As a result, we finally get

0
by (4.2)

= lim
k→∞

[y0
k, y

0
k]Ck

by (4.6)
= − lim

k→∞

∫
Ω

(
∇y0

k, A
0
k∇y0

k

)
RN dx+ lim

k→∞
〈f, y0

k〉H−1(Ω);H1
0 (Ω)

by (4.8), (4.11)
= −

∫
Ω

(
∇ŷ, Â∇ŷ

)
RN

dx+ 〈f, ŷ 〉H−1(Ω);H1
0 (Ω)

by (3.10)
= [ŷ, ŷ]C .

�

Since, for some matrices C ∈ L2
(
Ω; SNskew

)
, the weak solutions to the boundary-

value problem (3.1)–(3.2) are not unique in general, it follows that even if the OCP
(3.3)–(3.4) has a unique solution (A0, y0) and even if this solution possesses the
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property [y0, y0]C ≥ 0, it does not ensure that the pair (A0, y0) is the variational
solution to the above problem in the sense of Definition 4.3.

5. Substantiation of Hypothesis (H2)

Let us consider the following sequence of regularized OCPs associated with per-
forated domains Ωε,

{
〈

inf
(A,v,y)∈Ξε

Iε(A, v, y)
〉
, ε→ 0}, (5.1)

where

Iε(A, v, y) := ‖y − yd‖2H1(Ωε) +
1
εσ
‖v‖2H−1/2(Γε), (5.2)

Ξε =
{

(A, v, y) : −div
(
A∇y + C∇y

)
= fε in Ωε, y = 0 on ∂Ω,

∂y/∂νA+C = v on Γε, v ∈ H−1/2(Γε),

y ∈ H1
0 (Ωε; ∂Ω), A ∈ Aad ⊂ L∞(Ω; SNsym)

}
.

(5.3)

Here, yd ∈ H1(Ω) and fε ∈ L2(Ω) are given functions, {ε} is a strictly decreasing
sequence of positive real numbers converging to 0, the sets {Ωε}ε>0 are defined by
(2.4), ν is the outward normal unit vector at Γε to Ωε, v ∈ H−1/2(Γε) is a fictitious
control, σ is a positive number, and Γε = ∂Ωε \ ∂Ω.

To begin, we show that each of the regularized OCPs (5.1)–(5.3) is solvable.
With that in mind, we use the following version of the Compensated Compactness
Lemma.

Lemma 5.1. Let ε > 0 be a given value. Let {fk}k∈N ⊂ L2(Ωε; RN ) and {gk}k∈N ⊂
L2(Ωε; RN ) be sequences of vector-valued functions such that fk ⇀ f0 and gk ⇀ g0

in L2(Ωε; RN ). Assume that

{div fk}k∈N is compact with respect to the strong topology of H−1(Ωε), (5.4)

and curl gk = 0, ∀k ∈ N. (5.5)

Then
lim
k→∞

∫
Ωε

φ(fk, gk)RN dx =
∫

Ωε

φ
(
f0, g0

)
RN dx, ∀φ ∈ C∞0 (Ωε). (5.6)

For the proof of this lemma, we refer to [7].

Theorem 5.2. For every ε > 0 the constrained minimization problem〈
inf

(A,v,y)∈Ξε

Iε(A, v, y)
〉
, (5.7)

where Iε and Ξε are defined by (5.2)–(5.3), admits at least one minimizer (A0
ε, v

0
ε , y

0
ε)

in Ξε.

Proof. By analogy with the proof of Theorem 3.7, we can infer the existence
of minimizing sequence {(Ak,ε, vk,ε, yk,ε)}k∈N ⊂ Ξε for problem (5.7) such that
supk∈N Iε(Ak,ε, vk,ε, yk,ε) ≤ ĉ, where the constant ĉ is independent of k. Using the
fact that Iε(Ak,ε, vk,ε, yk,ε) ≥ 0, we obtain

sup
k∈N
‖yk,ε‖2H1

0 (Ωε;∂Ω) ≤ 4‖yd‖2H1(Ω) + 2 sup
k∈N

Iε(Ak,ε, vk,ε, yk,ε) ≤ 4‖yd‖2H1(Ω) + 2ĉ,

sup
k∈N
‖vk,ε‖2H−1/2(Γε) ≤ ε

σ ĉ.
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Due to this estimate and Proposition 3.1, we may suppose that, up to a subsequence,
there exists a triplet (A0

ε, v
0
ε , y

0
ε) ∈ Aad ×H−1/2(Γε)×H1

0 (Ωε; ∂Ω) such that

Ak,ε
∗
⇀ A0

ε in L∞(Ωε; SNsym), (5.8)

yk,ε ⇀ y0
ε in H1

0 (Ωε; ∂Ω), (5.9)

vk,ε ⇀ v0
ε in H−1/2(Γε), (5.10)

Iε(A0
ε, v

0
ε , y

0
ε) < +∞. (5.11)

Our next aim is to prove that (A0
ε, v

0
ε , y

0
ε) ∈ Ξε. With that in mind we note

that C ∈ L∞(Ωε; SNskew) for every ε > 0, and {ξk := Ak,ε∇yk,ε}k∈N is the bounded
sequence in L2(Ωε; RN ). So, passing to a subsequence, we may assume the existence
of a vector-function ξ ∈ L2(Ωε; RN ) such that ξk ⇀ ξ and (C∇yk,ε) ⇀

(
C∇y0

ε

)
in

L2(Ωε; RN ). Since, for each k ∈ N, the integral identity∫
Ωε

(
∇ϕ,Ak,ε∇yk,ε + C∇yk,ε

)
RN dx =

∫
Ωε

fεϕdx+ 〈vk,ε, ϕ〉H−1/2(Γε);H1/2(Γε)

(5.12)

holds for all ϕ ∈ C∞0 (Ωε; ∂Ω), we can pass to the limit in (5.12) as k → ∞. As a
result, we obtain∫

Ωε

(
∇ϕ, ξ + C∇y0

ε

)
RN dx =

∫
Ωε

fεϕdx+ 〈v0
ε , ϕ〉H−1/2(Γε);H1/2(Γε), (5.13)

for all ϕ ∈ C∞0 (Ωε; ∂Ω). It remains to show only that ξ = A0
ε∇y0

ε . With this aim,
we consider the scalar function v(x) = (z, x)RN , where z is a fixed element of RN .
Since the operator

A := − div(A∇y + C∇y) : H1
0 (Ωε; ∂Ω)→ H−1(Ωε; ∂Ω)

is strictly monotone (because C ∈ L∞(Ωε; SNskew) for every ε > 0), it follows that,
for every z ∈ RN and every positive function φ ∈ C∞0 (Ωε), we have∫

Ωε

φ(x) (Ak,ε∇(yk,ε − v) + C∇(yk,ε − v),∇(yk,ε − v))RN dx

by C ∈ L∞(Ωε; SN
skew)

=
∫

Ωε

φ(x) (A∇(yk,ε − v),∇(yk,ε − v))RN dx ≥ 0,

or, taking into account the definition of function v = v(x), this inequality can be
rewritten as ∫

Ωε

φ(x) ((Ak,ε + C) (∇yk,ε − z) ,∇yk,ε − z)RN dx ≥ 0. (5.14)

Our next intention is to pass to the limit in (5.14) as k → ∞ using Lemma 5.1.
Since

−div ((Ak,ε + C)∇yk,ε)→ f strongly in H−1(Ωε),

curv (∇yk,ε − z) = curv∇yk,ε = 0, ∀k ∈ N,
(5.15)

it remains to show that the sequence {div (Ak,εz + Cz)}k∈N is compact with respect
to the strong topology of H−1(Ωε).
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Indeed, for every φ ∈ C∞0 (Ωε), we have

〈− div (Ak,εz + Cz) , φ〉H−1(Ωε);H1
0 (Ωε)

=
∫

Ωε

(Ak,εz,∇φ)RN dx+
∫

Ωε

(Cz,∇φ)RN dx,
(5.16)

and ∫
Ωε

(
Ak,ε(x)z,∇φ

)
RN dx

=
∫

Ωε

(Ak,ε(x)z,∇φ) dx =
∫

Ωε

((a1
k,ε(x), z)RN

. . .
(aNk,ε(x), z)RN

 ,∇φ)
RN

dx

=
∫

Ωε

N∑
i=1

(
aik,ε(x), z

)
RN

∂φ

∂xi
dx =

∫
Ωε

N∑
i=1

N∑
j=1

a
(i,j)
k,ε (x)

∂φ

∂xi
zj dx

=
N∑
j=1

zj

∫
Ωε

(ajk,ε(x),∇φ)RN dx =
N∑
j=1

zj

∫
Ω

(ajk,ε(x),∇φ̃)RN dx

= −
N∑
j=1

zj〈div ajk,ε, φ̃〉H−1(Ω);H1
0 (Ω) = Jk.

(5.17)

Here, by φ̃ we denote the zero-extension of ψ to RN . Then, in view of the definition
of the class of admissible controls, we obtain

lim
k→∞

Jk =
N∑
j=1

zj lim
k→∞

〈− div ajk,ε, φ̃〉H−1(Ω);H1
0 (Ω)

=
N∑
j=1

zj〈− div aj0,ε, φ̃〉H−1(Ω);H1
0 (Ω),

(5.18)

where aj0,ε denotes the j-th column of matrix A0
ε ∈ Aad. Making the converse

transformations with (5.18), as we did it in (5.17), we come to the relation

lim
k→∞

〈
− div

(
Ak,εz + Cz

)
, φ
〉
>H−1(Ωε);H1

0 (Ωε)

=
∫

Ωε

(Cz,∇φ)RN dx+ lim
k→∞

N∑
j=1

zj〈− div aj0,ε, φ̃〉H−1(Ω);H1
0 (Ω)

=
∫

Ωε

(Cz,∇φ)RN dx+
∫

Ωε

(
A0
ε(x)z,∇φ

)
RN dx

= 〈− div
(
A0
εz + Cz

)
, φ〉H−1(Ωε);H1

0 (Ωε).

(5.19)

Since for every i = 1, . . . , N the sequences {div ajk,ε}k∈N are strongly convergent in
H−1(Ω), from (5.17)–(5.19) it follows that

lim
k→∞

〈−div
(
Ak,εz + Cz

)
, φk〉H−1(Ωε);H1

0 (Ωε)

= 〈− div
(
A0
εz + Cz

)
, φ〉H−1(Ωε);H1

0 (Ωε)

(5.20)
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for each sequence {φk}k∈N ⊂ C∞0 (Ωε) such that φk ⇀ φ in H−1(Ωε). Thus,
summing up the above results, we obtain

div
(
Ak,εz + Cz

)
→ div

(
A0
εz + Cz

)
strongly in H−1(Ωε). (5.21)

As a result, combining properties (5.15) and (5.21), it has been shown that all
suppositions of Lemma 5.1 are fulfilled. So, taking into account (5.15), (5.21), and
passing to the limit in inequality (5.14) as k →∞, we obtain∫

Ωε

φ(x)
(
ξ + C∇y0

ε −A0
εz − Cz,∇y0

ε − z
)

RN dx

=
∫

Ωε

φ(x)
(
ξ −A0

εz,∇y0
ε − z

)
RN dx+

∫
Ωε

φ(x)
(
C∇y0

ε − Cz,∇y0
ε − z

)
RN dx

(by the skew-symmetry property of C)

=
∫

Ωε

φ(x)
(
ξ −A0

εz,∇y0
ε − z

)
RN dx ≥ 0, ∀z ∈ RN

for all positive φ ∈ C∞0 (Ω). After localization, we have (ξ − A0
εz,∇y0

ε − z)RN ≥
0, ∀z ∈ RN . Since the operator −div(A0

ε∇y) : H1
0 (Ωε) → H−1(Ωε) is strictly

monotone, it follows that ξ = A0
ε∇y0

ε . Therefore, integral identity (5.13) takes the
form ∫

Ωε

(
∇ϕ,A0

ε∇y0
ε + C∇y0

ε

)
RN dx =

∫
Ωε

fεϕdx+ 〈v0
ε , ϕ〉H−1/2(Γε);H1/2(Γε),

for all ϕ ∈ C∞0 (Ωε; ∂Ω). Hence, the triplet (A0
ε, v

0
ε , y

0
ε) belongs to the set Ξε and,

therefore, it is admissible to optimal control problem (5.1)–(5.3).
To show that (A0

ε, v
0
ε , y

0
ε) is an optimal solution, it is enough to use the lower

semicontinuity of the cost functional Iε with respect to the convergence (5.8)–(5.10):

Iε(A0
ε, v

0
ε , y

0
ε) ≤ lim inf

k→∞

[
‖yk,ε−yd‖2H1(Ωε) +

‖vk,ε‖2H−1/2(Γε)

εσ

]
= inf

(A,v,y)∈Ξε

Iε(A, v, y).

The proof is complete. �

The main goal of this section is to show that Hypothesis (H2) is valid. With
that in mind we show that if the skew-symmetric matrices C ∈ L2

(
Ω; SNskew

)
is of

the F-type, then the set of admissible pairs Ξ to OCP (3.3)–(3.5) is a limit in the
sense of Kuratowski of the sequence {Ξε ⊂ Aad×H−1/2(Γε)×H1

0 (Ωε; ∂Ω)}ε>0 with
respect to an appropriate convergence in variable spaces L∞(Ω; SNsym)×H−1/2(Γε)×
H1

0 (Ωε; ∂Ω). As a result, due to the main properties of Kuratowski convergence [12],
it is easy to conclude that the limit set is sequentially closed.

It is easy to see that monotonicity property of {χΩε}ε>0 leads us to the following
obvious conclusion.

Proposition 5.3. Assume that C ∈ L2
(
Ω; SNskew

)
is of the F-type. Let {Ωε}ε>0

be a sequence of perforated domains of Ω given by (2.5), and let {χΩε
}ε>0 be the

corresponding sequence of characteristic functions. Then

χΩε
→ χΩ strongly in L2(Ω). (5.22)

For our further analysis, we need to formalize the convergence concept in the
scale of variable spaces {L∞(Ω; SNsym)×H−1/2(Γε)×H1

0 (Ωε; ∂Ω)}ε>0.
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Definition 5.4. We say that a sequence {yε ∈ H1
0 (Ωε; ∂Ω)}ε>0 weakly converges

to an element y ∈ H1
0 (Ω) in variable space H1

0 (Ωε; ∂Ω) (in symbols, yε ⇀ y in
H1

0 (Ωε; ∂Ω)), if

lim
ε→0

∫
Ωε

(∇yε,∇ϕ)RN dx =
∫

Ω

(∇y,∇ϕ)RN dx, ∀ϕ ∈ C∞0 (Ω).

Remark 5.5. Since χΩε → χΩ strongly in L1(Ω), it follows that F-property of
the skew-symmetric matrix C implies the so-called strong connectedness of the sets
{Ωε}ε>0 (see [3]). Hence, there exist extension operators Pε from H1

0 (Ωε; ∂Ω) to
H1

0 (Ω) such that, for some positive constant M independent of ε,

‖∇ (Pεy) ‖L2(Ω;RN ) ≤M‖∇y‖L2(Ωε;RN ), ∀y ∈ H1
0 (Ωε; ∂Ω). (5.23)

Let y∗ ∈ H1
0 (Ω) be a weak limit in H1

0 (Ω) of the sequence {Pεyε ∈ H1
0 (Ω)}ε>0.

Since
∫

Ωε
(∇yε,∇ϕ)RN dx =

∫
Ω

(∇ (Pεyε) ,∇ϕ)RN χΩε
dx for all ε > 0, it follows

that∫
Ω

(∇y,∇ϕ)RN dx = lim
ε→0

∫
Ωε

(∇yε,∇ϕ)RN dx = lim
ε→0

∫
Ω

(∇ (Pεyε) ,∇ϕ)RN χΩε dx

by (5.22), (5.23)
=

∫
Ω

(∇y∗,∇ϕ)RN dx, ∀ϕ ∈ C∞0 (Ω).

Hence, the weak limit in the sense of Definition 5.4 does not depend on the choice
of extension operators Pε : H1

0 (Ωε; ∂Ω)→ H1
0 (Ω) with properties (5.23). Therefore,

hereinafter, we suppose that functions yε of H1
0 (Ωε, ∂Ω), by default, are extended

by operators Pε outside of Ωε.

Definition 5.6. We say that a sequence {(Aε, vε, yε) ∈ Ξε}ε>0 converges weakly
to a pair (A, y) ∈ Aad ×H1

0 (Ω) in the scale of spaces

{L∞(Ω; SNsym)×H−1/2(Γε)×H1
0 (Ωε; ∂Ω)}ε>0, (5.24)

(in symbols, (Aε, vε, yε)
w→ (A, y)), if

Aε
∗
⇀ A in L∞(Ω; SNsym), (5.25)

yε ⇀ y in variable H1
0 (Ωε; ∂Ω), (5.26)

sup
ε>0

1
HN−1(Γε)

‖vε‖2H−1/2(Γε) < +∞. (5.27)

We are now in a position to state the main result of this section.

Theorem 5.7. Assume that the matrix C ∈ L2
(
Ω; SNskew

)
is of the F-type. Let

{Ωε}ε>0 be a sequence of perforated subdomains of Ω associated with matrix C. Let
f ∈ H−1(Ω) and yd ∈ H1(Ω) be given distributions. Let {fε ∈ L2(Ω)}ε>0 be a
sequence such that χΩε

fε → f strongly in H−1(Ω). Assume that the parameter σ
in (5.1) satisfies condition

ε−σHN−1(Γε)→ 0 as ε→ 0 (see (2.6)). (5.28)

Then the optimal control problem 〈inf(A,y)∈Ξ I(A, y)〉 is the variational limit of the
sequence (5.1)–(5.3) (in the sense of Definition 2.4) as the parameter ε tends to
zero.
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Proof. Since each of the optimization problems 〈inf(A,v,y)∈Ξε
Iε(A, v, y)〉 lives in the

corresponding space Aad ×H−1/2(Γε)×H1
0 (Ωε; ∂Ω), we have to show that in this

case all conditions of Definition 2.1 hold. To do so, we divide this proof into three
steps.
Step 1. We show that the set Aad × H1

0 (Ω) possesses the strong approximation
property with respect to the w-convergence in the scale of spaces (5.24). Indeed,
let (A, y) ∈ Aad×H1

0 (Ω) be an arbitrary pair. We define h as an element of C∞0 (Ω)
such that

div (A∇h+ C∇h) ∈ L2(Ω). (5.29)
Hence, h ∈ D(A). As a result, we construct the sequence

{(Aε, vε, yε) ∈ L∞(Ω; SNsym)×H−1/2(Γε)×H1
0 (Ωε; ∂Ω)}ε>0

as follows Aε = A, vε = ∂h
∂νA+C

on Γε, and yε = y, ∀ε > 0. Here,

∂h

∂νA+C
=

N∑
i,j=1

(
aij(x) + cij(x)

) ∂h
∂xj

cos(ν, xi),

cos(n, xi) is the i-th directing cosine of ν, and ν is the outward unit normal vector
at Γε to Ωε. By Proposition 5.3, we have

lim
ε→0

∫
Ωε

(∇ϕ,∇yε)RN dx = lim
ε→0

∫
Ω

(∇ϕ,∇y)RN χΩε
dx =

∫
Ω

(∇ϕ,∇y)RN dx

for every ϕ ∈ C∞0 (Ω). Hence, yε ⇀ y in variable H1
0 (Ωε; ∂Ω) as ε→ 0.

It remains to show that the sequence {vε ∈ H−1/2(Γε)}ε>0 is bounded in the
sense of Definition 5.6. Following Green’s identity, for an arbitrary ϕ ∈ C∞0 (Ω), we
obtain∣∣〈 ∂h

∂νA+C
, ϕ
〉
H−1/2(Γε);H1/2(Γε)

∣∣
≤
∣∣ ∫
Qε

div (A(x)∇h+ C(x)∇h)ϕdx
∣∣+
∣∣ ∫
Qε

(∇ϕ,A(x)∇h+ C(x)∇h)RN dx
∣∣

≤
(∫

Qε

|div (A(x)∇h+ C(x)∇h) |2 dx
)1/2

‖ϕ‖L2(Qε)

+ β‖∇h‖L2(Qε;RN )‖∇ϕ‖L2(Qε;RN )

by (2.7)
+ c(h)

√
|Ω \ Ωε|

ε

(∫
Ω\Ωε

|∇ϕ|2RN dx
)1/2

≤ (I1 + I2 + I3) ‖ϕ‖H1(Ω\Ωε).

Since |Ω \ Ωε| = o(ε2) by the F-type properties of C, it follows that there exist a
suitable change of variables and a constant M > 0 independent of ε such that

I2 = β‖∇h‖L2(Qε;RN )

= β
(
M
|Ω \ Ωε|

ε

∫
Ω\Ω1

‖∇h(y)‖2RN dy
)1/2

by (2.6)2
≤ M1

√
HN−1(Γε)‖h‖H1(Ω).

(5.30)

Following similar arguments, in view of (5.29), we obtain

I1 = ‖div (A(x)∇h+ C(x)∇h) ‖L2(Qε) ≤M2(h)
√
HN−1(Γε).
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As a result, summing up the previous inequalities, we come to the following con-
clusion: there exists a constant M = M(h) independent of ε such that

1√
HN−1(Γε)

〈 ∂h

∂νA+C
, ϕ
〉
H−1/2(Γε);H1/2(Γε)

≤M(h)‖ϕ‖H1(Ω\Ωε), ∀ϕ ∈ C∞0 (Ω).

Hence,

sup
ε>0

( 1√
HN−1(Γε)

‖ ∂h

∂νA+C
‖H−1/2(Γε)

)
≤M. (5.31)

Thus, the weak approximation property is proved.
Step 2. We show that condition (ddd) of Definition 2.1 holds. Let (A, y) ∈ Ξ
be an arbitrary admissible pair to the original OCP (3.3)–(3.4) and let L(C) be a
subspace of H1

0 (Ω) such that

L(C) = {h ∈ D(C) :
∫

Ω

(
∇ϕ,A∇h+ C∇h

)
RN dx = 0 ∀ϕ ∈ C∞0 (RN )}, (5.32)

i.e., L(C) is the set of all weak solutions of the homogeneous problem

− div
(
A∇y + C∇y

)
= 0 in Ω, y = 0 on ∂Ω. (5.33)

We distinguish two cases.
Case 1. The set L(C) is a singleton. It means that h ≡ 0 is a unique solution of

homogeneous problem (5.33);
Case 2. The set L(C) is not a singleton. So, we suppose that the set L(C)

is a linear subspace of H1
0 (Ω) and it contains at least one non-trivial element of

D(C) ⊂ H1
0 (Ω).

We start with the Case 2. Let h ∈ D(C) be an element of the set L(C) such that
h is a non-trivial solution of homogeneous problem (5.33). In the sequel, the choice
of element h ∈ L(C) will be specified (see (5.50)). Then we construct a Γ-realizing
sequence {(Aε, vε, yε) ∈ Ξε}ε>0 in the following way:

(j) Aε = A for all ε > 0. In view of definition of the set Aad, we obviously have
that {Aε ∈ Aad ⊂ L2(Ω; SNsym)}ε>0 is a sequence of admissible controls to
the problems (5.1). Note that in this case the property (5.25) is obviously
true for the sequence {Aε}ε>0.

(jj) Fictitious controls {vε ∈ H−1/2(Γε)}ε>0 are defined as follows

vε := wε +
∂h

∂νAε+C
, ∀ε > 0, (5.34)

where distributions wε are such that

sup
ε>0

( 1√
HN−1(Γε)

‖wε‖H−1/2(Γε)

)
≤M (5.35)

with some constant M independent of ε.
(jjj) {yε ∈ H1

0 (Ωε; ∂Ω)}ε>0 is the sequence of weak solutions to the correspond-
ing boundary-value problems

−div
(
A∇yε + C∇yε

)
= fε in Ωε, (5.36)

yε = 0 on ∂Ω, ∂yε/∂νA+C = vε on Γε. (5.37)

Since C = Tε(C) whenever x ∈ Ωε for every ε > 0, it means that C ∈ L∞(Ωε; MN ).
Hence, due to the Lax-Milgram lemma, the sequence {yε ∈ H1

0 (Ωε; ∂Ω)}ε>0 is
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defined in a unique way and for every ε > 0 we have the following decomposition
yε = yε,1 + yε,2, where yε,1 and yε,2 are elements of H1

0 (Ωε) such that∫
Ω

(
∇ϕ,A∇yε,1 + C∇yε,1

)
RNχΩε

dx =
∫

Ω

fεχΩε
ϕdx+ 〈wε, ϕ〉H−1/2(Γε);H1/2(Γε),

(5.38)∫
Ω

(
∇ϕ,A∇yε,2 + C∇yε,2

)
RNχΩε dx = 〈 ∂h

∂νA+C
, ϕ〉H−1/2(Γε);H1/2(Γε),

∀ϕ ∈ C∞0 (Ω; ∂Ω).
(5.39)

By the skew-symmetry property of C ∈ L∞(Ωε; SNskew), we have∫
Ωε

(
∇yε,i, C∇yε,i

)
RN dx = 0, for i = 1, 2.

Then (5.38)–(5.39) lead us to the energy equalities∫
Ω

(
∇yε,1, A∇yε,1

)
RNχΩε dx =

∫
Ω

fεχΩεyε,1 dx+ 〈wε, yε,1〉H−1/2(Γε);H1/2(Γε),

(5.40)∫
Ω

(
∇yε,2, A∇yε,2

)
RNχΩε

dx = 〈 ∂h

∂νA+C
, yε,2〉H−1/2(Γε);H1/2(Γε). (5.41)

By the initial assumptions, we have h ∈ L(C). Then the condition (iii) of Defini-
tion 2.2 implies that (for the details we refer to (5.30))

|〈 ∂h

∂νA+C
, ϕ〉H−1/2(Γε);H1/2(Γε)| = |

∫
Ω\Ωε

(
∇ϕ,A∇h+ C∇h

)
RN dx|

≤
√
|Ω \ Ωε|

ε
(M1(h) +M2(h)) ‖ϕ‖H1(Ω\Ωε)

by (2.6)

≤ M(h)
√
HN−1(Γε)‖ϕ‖H1(Ω\Ωε),

for all ϕ ∈ H1
0 (Ω), with some constant M(h) independent of ε. Hence,

sup
ε>0

(
HN−1(Γε)

)−1 ‖ ∂h

∂νA+C
‖2H−1/2(Γε) < M(h) < +∞. (5.42)

Thus, using the continuity of the embedding H1/2(Γε) ↪→ L2(Γε) and Sobolev Trace
Theorem, we obtain∣∣〈wε, yε,1〉H−1/2(Γε);H1/2(Γε)

∣∣ by (5.35)

≤ C‖yε,1‖L2(Γε)

(
HN−1(Γε)

)1/2
by (2.8)

≤ C1 ‖yε,1‖H1
0 (Ωε;∂Ω),

(5.43)

∣∣〈 ∂h

∂νA+C
, yε,2〉H−1/2(Γε);H1/2(Γε)

∣∣ ≤ C‖yε,2‖L2(Γε)

(
HN−1(Γε)

)1/2
by (2.8)

≤ C1‖yε,2‖H1
0 (Ωε;∂Ω).

(5.44)

As a result, we arrive at the a priori estimates(∫
Ω

∥∥∇yε,1∥∥2

RNχΩε dx
)1/2

≤ α−1
(
‖fεχΩε‖H−1(Ω) +M

)
, (5.45)
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Ω

∥∥∇yε,2∥∥2

RNχΩε
dx
)1/2

≤Mα−1. (5.46)

Hence, the sequences {yε,1 ∈ H1
0 (Ωε; ∂Ω)}ε>0 and {yε,2 ∈ H1

0 (Ωε; ∂Ω)}ε>0 are
weakly compact with respect to the weak convergence in variable spaces [12], i.e.,
we may assume that there exists a couple of functions ŷ1 and ŷ2 in H1

0 (Ω) such that

lim
ε→0

∫
Ω

(
∇ϕ,∇yε,i

)
RNχΩε

dx =
∫

Ω

(
∇ϕ,∇ŷi

)
RN dx, (5.47)

for all ϕ ∈ C∞0 (Ω) and i = 1, 2.
Now we can pass to the limit in integral identities (5.38)–(5.39) as ε→ 0. Using

(5.35), (5.47), (5.42), L∞-property of A ∈ Aad, and the fact that χΩεfε → f
strongly in H−1(Ω), we finally obtain∫

Ω

(
∇ϕ,A∇ŷ1 + C∇ŷ1

)
RN dx = 〈f, ϕ〉H−1(Ω);H1

0 (Ω) (5.48)∫
Ω

(
∇ϕ,A∇ŷ2 + C∇ŷ2

)
RN dx = 0 (5.49)

for every ϕ ∈ C∞0 (Ω). Hence, ŷ1 and ŷ2 are weak solutions to the boundary-value
problem (3.1)–(3.2) and (5.33), respectively. Hence, ŷ2 ∈ L(C) and ŷ1 ∈ D(C) by
Proposition 3.3. As a result, we arrive at the conclusion: the pair (A, ŷ1+h) belongs
to the set Ξ, for every h ∈ L(C). Since by the initial assumptions (A, y) ∈ Ξ, it
follows that having set in (5.34)

h = y − ŷ1, (5.50)

we obtain

h ∈ L(C) and yε = yε,1 + yε,2 ⇀ y in H1
0 (Ωε; ∂Ω) as ε→ 0. (5.51)

Therefore, in view of (5.51), (5.42), and (5.35), we see that (Aε, vε, yε)
w→ (A, y) in

the sense of Definition 5.6. Thus, the properties (2.13) hold.
It is worth to notice that in the Case 1, we can give the same conclusion, because

we originally have h ≡ 0. Hence, the solutions to boundary-value problems (5.48)–
(5.49) are unique and, therefore, we can claim that y = ŷ1, ŷ2 = 0, and h = 0.

It remains to prove the inequality (2.14). To do so, it is sufficient to show that

I(A, y) := ‖y − yd‖2H1(Ω) = lim
ε→0

Iε(Aε, vε, yε)

= lim
ε→0

[
‖yε − yd‖2H1(Ωε) +

1
εσ
‖vε‖2H−1/2(Γε)

]
,

(5.52)

where the sequence {(Aε, vε, yε) ∈ Ξε}ε>0 is defined by (5.34) and (5.50).
In view of this, we use the following relations

‖vε‖2H−1/2(Γε) ≤ 2‖wε‖2H−1/2(Γε) + 2‖ ∂h

∂νA+C
‖2H−1/2(Γε) < +∞,

lim
ε→0

1
εσ
‖wε‖2H−1/2(Γε)

by (5.35)

≤ M lim
ε→0

HN−1(Γε)
εσ

= 0,

lim
ε→0

1
εσ
‖ ∂h

∂νA+C
‖2H−1/2(Γε)

by (5.42)

≤ M lim
ε→0

HN−1(Γε)
εσ

= 0,

lim
ε→0
‖yε − yd‖2L2(Ωε)

by (5.22) and (5.51)
= ‖y − yd‖2L2(Ω).

(5.53)
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To prove the convergence

lim
ε→0
‖∇yε −∇yd‖2L2(Ωε;RN ) = ‖∇y −∇yd‖2L2(Ω;RN ), (5.54)

we will show, in fact, that

lim
ε→0

∫
Ωε

(∇yε, A∇yε)RN dx =
∫

Ω

(∇y,A∇y)RN dx. (5.55)

In view of the coerciveness property of matrix A ∈ Aad, it is equivalent to the norm
convergence ‖∇yε‖2L2(Ωε;RN ) → ‖∇y‖

2
L2(Ω;RN ) that implies relation (5.54) due to

the weak convergence (5.51).
To prove (5.55), we apply the energy equality∫

Ω

(∇y,A∇y)RN dx = −[y, y]C + 〈f, y〉H−1(Ω);H1
0 (Ω), (5.56)

which comes from the condition (A, y) ∈ Ξ. It is easy to see that the integral identity
for the weak solutions yε to boundary-value problems (5.3) can be represented in
the so-called extended form∫

Ω

(
∇ϕ,A∇yε + C∇yε

)
RNχΩε

dx

=
∫

Ω

fεχΩεϕdx+ 〈wε, ϕ〉H−1/2(Γε);H1/2(Γε) + 〈 ∂h

∂νA+C
, ϕ〉H−1/2(Γε);H1/2(Γε)

−
∫

Ω

(
∇ψ,A∇h∗

)
RN dx− [h∗, ψ]C , ∀ϕ,ψ ∈ C∞0 (Ω),

(5.57)
where h∗ is an arbitrary element of L(C). Indeed, because of the equality∫

Ω

(
∇ψ,A∇h∗

)
RN dx+ [h∗, ψ]C

by (5.32)
= 0, ∀ψ ∈ C∞0 (Ω),

we have an equivalent identity to the classical definition of weak solutions of (5.3).
From (5.42), (5.51), and Sobolev Trace Theorem, it follows that the numerical

sequences

{〈wε, yε〉H−1/2(Γε);H1/2(Γε)}ε>0, {〈 ∂h

∂νA+C
, yε〉H−1/2(Γε);H1/2(Γε)}ε>0

are bounded. Therefore, we can assume, passing to a subsequence if necessary, that
there exists a value ξ1 ∈ R such that

〈wε, yε〉H−1/2(Γε);H1/2(Γε) + 〈 ∂h

∂νA+C
, yε〉H−1/2(Γε);H1/2(Γε) → ξ1 as ε→ 0. (5.58)

Since yε ⇀ y weakly in H1
0 (Ωε; ∂Ω) and y ∈ D(C), it follows that there exists

a sequence of smooth functions {ψε ∈ C∞0 (Ω)}ε>0 such that ψε → y strongly in
H1

0 (Ω). Therefore, following the extension rule (2.2), we have

lim
ε→0

∫
Ω

(
∇ψε, A∇h∗

)
RN dx =

∫
Ω

(
∇y,A∇h∗

)
RN dx, (5.59)

lim
ε→0

[h∗, ψε]C = [h∗, y]C . (5.60)

Since the matrix C ∈ L2
(
Ω; SNskew

)
is of the F-type, we can assume that the

element h∗ ∈ L(A) is such that [h∗, y]C +
∫

Ω

(
∇y,A∇h∗

)
RN dx 6= 0. Now we



20 C. D’APICE, U. DE MAIO, P. I. KOGUT, R. MANZO EJDE-2014/166

specify the choice of element h∗ ∈ L(C) as follows

ĥ∗ =
ξ1 + [y, y]C
ξ2 + ξ3

h∗, where ξ3 :=
∫

Ω

(
∇y,A∇h∗

)
RN dx, ξ2 := [h∗, y]C ,

or, in other words, we aim to ensure the condition ξ1 − ξ2 − ξ3 + [y, y]C = 0. As a
result, we have: ĥ∗ is an element of L(C) such that

lim
ε→0

∫
Ω

(
∇ψε,∇ĥ∗

)
RN dx = ξ2

ξ1 + [y, y]C
ξ2 + ξ3

, lim
ε→0

[ĥ∗, ψε]C = ξ3
ξ1 + [y, y]C
ξ2 + ξ3

.

(5.61)
Putting ϕ = yε and h∗ = ĥ∗ in (5.57) and using the fact that∫

Ω

(
∇yε, C∇yε

)
RNχΩε

dx = 0,

we arrive at the following energy equality for the boundary-value problem (5.3),∫
Ω

(
∇yε, A∇yε

)
RNχΩε

dx

=
∫

Ω

fεχΩε
yε dx+ 〈wε, yε〉H−1/2(Γε);H1/2(Γε) + 〈 ∂h

∂νA+C
, yε〉H−1/2(Γε);H1/2(Γε)

−
∫

Ω

(
∇ψε, A∇ĥ∗

)
RN dx− [ĥ∗, ψε]C .

(5.62)
As a result, taking into account the properties (5.22), (5.51), (5.61), we can pass to
the limit as ε→ 0 in (5.62). This yields

lim
ε→0

∫
Ω

(
∇yε, A∇yε

)
RNχΩε

dx

= lim
ε→0

∫
Ω

fεχΩε
yε dx+ lim

ε→0
〈wε, yε〉H−1/2(Γε);H1/2(Γε)

+ lim
ε→0
〈 ∂h

∂νA+C
, yε〉H−1/2(Γε);H1/2(Γε) − lim

ε→0

∫
Ω

(
∇ψε,∇ĥ∗

)
RN dx− lim

ε→0
[ĥ∗, ψε]C

by (5.61)
= 〈f, y〉H−1(Ω);H1

0 (Ω) − [y, y]C
by (5.56)

=
∫

Ω

(∇y,A∇y)RN dx.

(5.63)
Hence, turning back to (5.52), we see that this relation is a direct consequence of
(5.53) and (5.63). Thus, the sequence {(Aε, vε, yε) ∈ Ξε}ε>0, which is defined by
(5.34) and (5.50), is Γ-realizing. The property (ddd) is established.
Step 3. We prove the property (dd) of Definition 2.4. Let {(Ak, vk, yk)}k∈N be a
sequence such that (Ak, vk, yk) ∈ Ξεk

for some εk → 0 as k →∞,

Ak
∗
⇀ A in L∞(Ω; SNsym), yk ⇀ y in variable space H1

0 (Ωεk
; ∂Ω), (5.64)

and the sequence of fictitious controls {vk ∈ H−1/2(Γεk
)}k∈N satisfies inequality

(5.27). In view of Definition 5.6 it means that (Ak, vk, yk) w→ (A, y) as k →∞.
Our aim is to show that

(A, y) ∈ Ξ and I(A, y) ≤ lim inf
k→∞

Iεk
(Ak, vk, yk). (5.65)

Following the arguments of the proof of Theorem 4.1, it is easy to show that the
limit matrix A is an admissible control to OCP (3.3)–(3.4).
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Since the integral identity∫
Ω

(
∇ϕ,Ak∇yk + C∇yk

)
RNχΩεk

dx

=
∫

Ω

fεk
χΩεk

ϕdx+ 〈vk, ϕ〉H−1/2(Γεk
);H1/2(Γεk

), ∀ϕ ∈ C∞0 (Ω)
(5.66)

holds for every k ∈ N, we can pass to the limit in (5.66) as k →∞ using Definition
5.6 and estimate∣∣〈vk, ϕ〉H−1/2(Γεk

);H1/2(Γεk
)

∣∣ ≤ C(Ω) ‖ϕ‖H1
0 (Ω)

(
HN−1(Γεk

)
)1/2

, ∀ϕ ∈ C∞0 (Ω)

coming from inequality (5.27). Then proceeding as on the Step 2, it can easily
be shown that the limit pair (A, y) is admissible to OCP (3.3)–(3.4). Hence, the
condition (5.65)1 is valid.

As for the inequality (5.65)2, it immediately follows from the following reasoning.
Since χΩεk

∇yk ⇀ χΩ∇y in L2(Ω; RN ), it remains to apply the lower semicontinuity
ofH1-norm with respect to the weak convergence and take into account the estimate

1
(εk)σ

‖vk‖2H−1/2(Γεk
) ≤ C

HN−1(Γεk
)

(εk)σ
→ 0 as k →∞. (5.67)

The proof is complete. �

We are now in a position to show that Hypothesis (H2) is valid.

Theorem 5.8. Assume that the matrix C ∈ L2
(
Ω; SNskew

)
is of the F-type and

the parameter σ in (5.1) satisfies condition (5.28). Then for each f ∈ H−1(Ω)
and yd ∈ H1(Ω) the set of admissible solutions to OCP (3.3)–(3.5) is sequentially
τ -closed, i.e., Hypothesis (H2) is satisfied.

Proof. Let {(Ak, yk)}k∈N ⊂ Ξ ⊂ L∞(Ω; SNsym)×H1
0 (Ω) be an arbitrary τ -convergent

sequence of admissible pairs, and let (Â, ŷ) ∈ L∞(Ω; SNsym)×H1
0 (Ω) be its τ -limit,

i.e.
Ak

∗
⇀ Â in L∞(Ω; SNsym), yk ⇀ ŷ in H1

0 (Ω).

Then Â ∈ Aad by Proposition 3.1. The main point is to show that the limit pair
(Â, ŷ) is admissible to the problem (3.3)–(3.5).

Indeed, as follows from Theorem 5.7 (see also property (ddd) of Definition 2.4),
for each k ∈ N, there exists a Γ-realizing sequence {(Ak,m, vk,m, yk,m)}m∈N such that
(Ak,m, vk,m, yk,m) ∈ Ξεm with εm = 1/m for all m ∈ N and (Ak,m, vk,m, yk,m) w→
(Ak, yk) as m→∞, i.e.

Ak,m
∗
⇀ Ak in L∞(Ω; SNsym),

χΩ1/m
yk,m ⇀ yk in H1

0 (Ω),

sup
m∈N

1
HN−1(Γ1/m)

‖vk,m‖2H−1/2(Γ1/m) < +∞.

Since χΩ1/m
→ χΩ strongly in L2(Ω), by Cantor’s diagonal arguments, we conclude

that (Ak,k, vk,k, yk,k) w→ (Â, ŷ) as k → ∞. Hence, Theorem 5.7 (see also property
(dd) of Definition 2.4) implies (Â, ŷ) ∈ Ξ. The proof is complete. �

Taking into account this result, we can now specify the statement of Theorem 3.7
as follows.
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Theorem 5.9. If the matrix C ∈ L2
(
Ω; SNskew

)
is of the F-type and the parameter

σ in (5.1) satisfies condition (5.28), then, for each f ∈ H−1(Ω) and yd ∈ H1(Ω),
the optimal control problem (3.3)–(3.5) has a nonempty set of solutions.
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