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ALMOST PERIODIC SOLUTIONS OF ANISOTROPIC
ELLIPTIC-PARABOLIC EQUATIONS WITH VARIABLE

EXPONENTS OF NONLINEARITY

MYKOLA BOKALO

Abstract. We prove the well-posedness of Fourier problems for anisotropic
elliptic-parabolic equations with variable exponents of nonlinearity without

any restrictions at infinity. We obtain estimates of the weak solutions and con-

ditions for the existence of periodic and almost periodic solutions. In addition,
some properties of the weak solutions of the Fourier problem are considered.

1. Introduction

We examine the question of well-posedness of the Fourier problem (the problem
without initial conditions) for anisotropic second order elliptic-parabolic equations
with variable exponents of nonlinearity. These equations are defined on unbounded
cylindrical domains which are the Cartesian products of bounded space domains
and the whole time axis. Also the existence conditions of periodic and almost
periodic solutions are investigated. Moreover, we examine the conditions on input
data that guarantee the specific behavior of the solutions at infinity.

The Fourier problem for evolution equations are examined in many papers; see,
e.g., [2, 3, 4, 5, 6, 13, 17, 18, 20, 21, 24]. A fairly good survey of results concerning
these problems can be found in [2]. It is worth to mention that Fourier problem for
linear and a plenty of nonlinear evolution equations are correct only under some
restrictions on the growth of solutions and input data as the time variable converges
to −∞, in addition to boundary conditions [2, 13, 17, 18, 20, 21, 24]. However, there
are the nonlinear parabolic equations for which the Fourier problem are uniquely
solvable with no conditions at infinity [3] – [6]. This case for anisotropic elliptic-
parabolic equations with variable exponents of nonlinearity is considered here.

It is known that the problem to find time periodic and almost periodic solutions
of evolution equations is close to Fourier problem for this equations [5, 8, 10, 12,
14, 18, 25]. Note that the degenerated parabolic equations, in particular, including
elliptic-parabolic are examined in [5, 6, 21, 22, 23] and other. Differential equations
with variable exponents of nonlinearity are considered in many papers. Solutions
of this equations belong to the generalized Lebesgue and Sobolev spaces. More
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information on these spaces and its applications can be received from [1, 4, 9, 11,
15, 16, 19].

This article can be viewed as a natural continuation of the paper [5] for the case
of equations with variable exponents of nonlinearity. It consists of three parts: in
the first part the formulation of problem and main results are presented, the second
part encloses the auxiliary statements while the proofs of main results are in the
third part.

2. Setting of the problem and main results

Let Ω be a bounded domain in Rn with the piecewise smooth boundary ∂Ω.
Suppose that ∂Ω is divided into two subsets Γ0 and Γ1, where Γ0 is closed. The
cases Γ0 = ∅ and Γ0 = ∂Ω are also possible. We denote by ν = (ν1, . . . , νn) the unit
outward pointing normal vector on ∂Ω. Set Q := Ω×R, Σ0 := Γ0×R, Σ1 := Γ1×R,
and Qt1,t2 := Ω × (t1, t2) for arbitrary real t1 and t2. Here and subsequently, we
assume that t1 < t2.

Consider the problem of finding a function u : Q→ R satisfying (in some sense)
the equation

(b(x)u)t −
n∑
i=1

(
ai(x, t)|uxi

|pi(x)−2uxi

)
xi

+ a0(x, t)|u|p0(x)−2u = f(x, t), (2.1)

for (x, t) ∈ Q, and the boundary conditions

u
∣∣
Σ0

= 0,
∂u

∂νa

∣∣
Σ1

= 0, (2.2)

where ∂u(x, t)/∂νa :=
∑n
i=1 ai(x, t)|uxi

|pi(x)−2uxi
νi(x) is the “conormal” deriva-

tive on Σ1, and the functions b : Ω → [0,+∞), pj : Ω → (1,∞), aj : Q → (0,∞)
(j = 0, . . . , n), f : Q→ R are given.

Next we are going to define a weak solution of the problem (2.1), (2.2) and
formulate the main result of our paper. For this, we need some functional spaces
and classes of input data of the given problem.

First we introduce some functional spaces. Suppose that either G = Ω or G :=
Ω×S, where S is an interval in R. Consider a function r ∈ L∞(Ω) such that r(x) ≥ 1
for almost each x ∈ Ω. Denote by Lr(·)(G) the generalized Lebesgue space consisting
of the functions v ∈ L1(G) such that ρG,r(v) <∞, where ρG,r(v) :=

∫
Ω
|v(x)|r(x) dx

for G = Ω, ρG,r(v) :=
∫
G
|v(x, t)|r(x) dx dt for G = Ω × S. The space is equipped

with the norm
‖v‖Lr(·)(G) := inf{λ > 0 : ρG,r(v/λ) ≤ 1}

[11, p. 599]. If ess infx∈Ω r(x) > 1, then the dual space [Lr(·)(G)]′ can be identified
with Lr′(·)(G), where r′ is the function defined by the equality 1

r(x) + 1
r′(x) = 1 for

almost each x ∈ Ω.
Let G = Ω× S, where S is an unbounded interval in R or S = R. We denote by

Lr(·),loc(G) the space of measurable functions g : G→ R such that the restriction of
g on Qt1,t2 belongs to Lr(·)(Qt1,t2) for each t1, t2 ∈ S. This space is complete locally
convex with respect to the family of seminorms

{
‖ · ‖Lr(·)(Qt1,t2 ) | t1, t2 ∈ S

}
. A se-

quence {gm} is said to be convergent strongly (resp., weakly) in Lr(·),loc(G) provided
the sequences of restrictions {gm|Qt1,t2

} are convergent strongly (resp., weakly) in
Lr(·)(Qt1,t2) for all t1, t2 ∈ S. Similarly we can define the space L∞,loc(G).
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Let B be a linear space with a norm or a seminorm ‖ · ‖B . Let us denote
by C(S;B) the space of functions v : S → B such that the restriction of v on
any interval [t1, t2] ⊂ S belongs to C([t1, t2];B). The space C(S;B) is com-
plete locally convex with respect to the family of seminorms

{
‖v‖C([t1,t2];B) :=

maxt∈[t1,t2] ‖v(t)‖B
∣∣ t1, t2 ∈ S}. Therefore a sequence {gm} converges in C(S;B)

provided the sequences of restrictions {gm|[t1,t2]} converge in C([t1, t2];B) for each
t1, t2 ∈ S.

Let p = (p0, . . . , pn) : Ω → R1+n be a vector-function satisfying the following
condition:

(P) the function pj : Ω→ R are measurable for all j = 0, 1, . . . , n,

p−0 := ess infx∈Ω p0(x) > 2, p−i := ess infx∈Ω pi(x) ≥ 2 for i = 1, . . . , n,

p+
j := ess supx∈Ω pj(x) < +∞ for j = 0, 1, . . . , n.

We also denote by p′ := (p0
′, . . . , pn

′) the vector-function whose components are
given by the equalities 1/pj(x) + 1/pj ′(x) = 1 for almost each x ∈ Ω.

Let W 1
p(·)(Ω) be the generalized Sobolev space consisting of the functions v ∈

Lp0(·)(Ω) such that vxi
∈ Lpi(·)(Ω) for all i = 1, . . . , n. The space is equipped with

the norm

‖v‖W 1
p(·)(Ω) := ‖v‖Lp0(·)(Ω) +

n∑
i=1

‖vxi‖Lpi(·)(Ω).

We denote by W̃ 1
p(·)(Ω) the closure of the set {v ∈ C1(Ω) | v|Γ0 = 0

}
in the space

W 1
p(·)(Ω).

Next, for arbitrary t1, t2 ∈ R, we denote by W 1,0
p(·)(Qt1,t2) the set of functions

w ∈ Lp0(·)(Qt1,t2) such that wxi
∈ Lpi(·)(Qt1,t2) for all i = 1, . . . , n. We define the

norm

‖w‖W 1,0
p(·)(Qt1,t2 ) := ‖w‖Lp0(·)(Qt1,t2 ) +

n∑
i=1

‖wxi
‖Lpi(·)(Qt1,t2 ).

We denote by W̃ 1,0
p(·)(Qt1,t2) the subspace of W 1,0

p(·)(Qt1,t2) consisting of functions v

such that v(·, t) ∈ W̃ 1
p(·)(Ω) for a. e. t ∈ [t1, t2].

Let G = Ω × S, where S is either an unbounded R interval or the R axis. Let
us denote by W̃ 1,0

p(·),loc(G) the linear space of measurable functions such that their

restrictions on Qt1,t2 belong to W̃ 1,0
p(·)(Qt1,t2) for all t1, t2 ∈ S. This space is complete

locally convex with respect to the family of seminorms
{
‖·‖W 1,0

p(·)(Qt1,t2 )

∣∣ t1, t2 ∈ R
}

.
The following assumption on the function b will be needed throughout the paper.

(B) b : Ω→ R is measurable and bounded, b(x) ≥ 0 for a.e. x ∈ Ω.

For each x ∈ Ω we define b̃(x) = b(x) if b(x) > 0, and b̃(x) = 1 if b(x) = 0.
We denote by H̃b(Ω) the linear space of functions of the form w = b̃−1/2v, where
v ∈ L2(Ω). We introduce a seminorm on H̃b(Ω) by |||w||| := ‖b1/2w‖L2(Ω). It is easy
to check that H̃b(Ω) is the completion of W̃ 1

p(·)(Ω) with respect to the seminorm
||| · ||| (see [21, III.6, p. 141]).

Set
Vp := W̃ 1

p(·)(Ω), U b
p,loc := W̃ 1,0

p(·),loc(Q) ∩ C(R; H̃b(Ω)).
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The space U b
p,loc is a complete linear local convex space with respect to the family

of seminorms {
‖w‖W 1,0

p(·)(Qt1,t2 ) + max
t∈[t1,t2]

‖w(·, t)‖L2(Ω)

∣∣ t1, t2 ∈ R
}
.

For an interval I we consider the space C1
0 (I) of C1(I)-functions of compact support.

Let us denote by A the set of ordered arrays of functions (a0, a1, . . . , an) satisfying
the condition

(A) for each j ∈ {0, 1, . . . , n} the function aj belongs to the space L∞,loc(Q)
and the following holds

aj(x, t) ≥ K1 for almost each (x, t) ∈ Q (2.3)

with some constant K1 > 0 being dependent on (a0, a1, . . . , an).

Definition 2.1. Suppose that b, p satisfy conditions (B), (P), respectively, (a0, a1,
. . . , an) ∈ A, and f ∈ Lp0′(·),loc(Q). A function u is called a weak solution of (2.1),
(2.2) provided u ∈ Ubp,loc and the following integral identity holds∫∫

Q

{ n∑
i=1

(
ai|uxi |pi(x)−2uxiψxi +a0|u|p0(x)−2uψ

)
ϕ−buψϕ′

}
dx dt =

∫∫
Q

fψϕdx dt

(2.4)
for all ψ ∈ Vp, ϕ ∈ C1

0 (R).

We say that the weak solution of (2.1), (2.2) continuously depends on input
data, if for each sequence {fk}∞k=1 ⊂ Lp0′(·),loc(Q) such that fk → f as k → ∞ in
Lp0′(·),loc(Q) we have uk → u as k →∞ in Ubp,loc. Here uk and u are weak solutions
of (2.1), (2.2) with the right-hand sides fk and f , respectively.

Theorem 2.2. Suppose that b and p satisfy conditions (B) and (P), respectively,
(a0, a1, . . . , an) ∈ A, and f ∈ Lp0′(·),loc(Q). Then there exists a unique weak solu-
tion of (2.1), (2.2), and it continuously depends on the input data. In addition, the
estimate

max
t∈[t0−R0,t0]

∫
Ω

b(x)|u(x, t)|2 dx+
∫ t0

t0−R0

∫
Ω

[ n∑
i=1

|uxi(x, t)|pi(x) + |u(x, t)|p0(x)
]
dx dt

≤ C1

{
R−2/(p+0 −2) +

∫ t0

t0−R

∫
Ω

|f(x, t)|p0
′(x) dx dt

}
(2.5)

holds for each R, R0 such that R ≥ 1, 0 < R0 < R/2, and t0 ∈ R. Here C1 is a
positive constant which depends on K1 and p±j (j = 0, . . . , n) only.

Remark 2.3. Note that Theorem 2.2 has no conditions imposed on the behaviour
of the solution and the growth of the functions aj (j = 0, . . . , n) as well as on the
behaviour of f as t → −∞. However, the theorem is not true for the case when
p0(x) = p1(x) = · · · = pn(x) = 2 for almost each x ∈ Ω (see, for example, [2]).
Therefore the condition (P) is essential.

A solution u of (2.1), (2.2) is called bounded, if supt∈R
∫

Ω
b(x)|u(x, t)|2 dx <∞.



EJDE-2014/169 ALMOST PERIODIC SOLUTIONS 5

Corollary 2.4. Under the assumptions of Theorem 2.2, if f ∈ Lp0′(·)(Q) then the
weak solution of (2.1), (2.2) is bounded; it belongs to W̃ 1,0

p(·)(Q) and the estimate

sup
t∈R

∫
Ω

b(x)|u(x, t)|2 dx+
∫∫

Q

[ n∑
i=1

|uxi
(x, t)|pi(x) + |u(x, t)|p0(x)

]
dx dt

≤ C1

∫∫
Q

|f(x, t)|p0
′(x) dx dt

(2.6)

holds.

Corollary 2.5. Under the assumptions of Theorem 2.2, if

sup
τ∈R

∫ τ

τ−1

∫
Ω

|f(x, t)|p0
′(x) dx dt ≤ C2

for some positive constant C2, then the weak solution u of (2.1), (2.2) is bounded.
In addition,

sup
τ∈R

∫ τ

τ−1

∫
Ω

[ n∑
i=1

|uxi
(x, t)|pi(x) + |u(x, t)|p0(x)

]
dx dt ≤ C3

with some positive constant C3 being dependent on K1, p
±
j (j = 0, . . . , n) and C2

only.

Corollary 2.6. Under the assumptions of Theorem 2.2, if moreover

lim
τ→±∞

∫ τ

τ−1

∫
Ω

|f(x, t)|p0
′(x) dx dt = 0,

then for the weak solution u of problem (2.1), (2.2) the following relations hold:

lim
t→±∞

‖b(·)u(·, t)‖L2(Ω) = 0,

lim
τ→±∞

∫ τ

τ−1

∫
Ω

[ n∑
i=1

|uxi(x, t)|pi(x) + |u(x, t)|p0(x)
]
dx dt = 0.

Theorem 2.7. Under the assumptions of Theorem 2.2, if f , a0,. . . ,an are periodic
in time with period σ > 0, then the weak solution of (2.1), (2.2) is also σ-periodic
in time.

A set X ⊂ R is called relatively dense, if there exists a positive l such that the
interval [a, a + l] contains at least one element of the set X for any a ∈ R, i.e.
X ∩ [a, a+ l] 6= ∅.

Let B be a linear space with a norm or a seminorm ‖·‖B . A function v ∈ C(R;B)
is Borh almost periodic , if for each ε > 0 the set {σ | supt∈R ‖v(t+σ)−v(t)‖B ≤ ε}
is relatively dense. A function f ∈ Lp0(·),loc(Q) is Stepanov almost periodic provided
the set {σ | supτ∈R

∫ τ
τ−1

∫
Ω
|f(x, t + σ) − f(x, t)|p0(x) dx dt ≤ ε} is relatively dense

for each positive ε. We say that w ∈ W̃ 1,0
p(·),loc(Q) is Stepanov almost periodic, if

for each ε > 0 the set {σ : supτ∈R
∫ τ
τ−1

∫
Ω

[∑n
i=1 |wxi

(x, t + σ) − wxi
(x, t)|pi(x)

+|w(x, t + σ) − w(x, t)|p0(x)
]
dx dt ≤ ε} is relatively dense. We refer to [8, 12, 18]

for the detailed information on the theory of almost periodic functions.
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Theorem 2.8. Let the hypotheses of Theorem 2.2 hold. In addition, suppose that
a0, . . . , an are Borh almost periodic functions in C(R;L∞(Ω)). Assume also that f
is Stepanov almost periodic in Lp0(·),loc(Q). Moreover, the set

Fε :=
{
σ : sup

τ∈R

∫ τ

τ−1

∫
Ω

|f(x, t+ σ)− f(x, t)|p
′
0(x) dx dt ≤ ε,

max
j∈{0,...,n}

sup
t∈R
‖aj(·, t+ σ)− aj(·, t)‖L∞(Ω) ≤ ε

}
is relatively dense for each ε > 0. Then the (unique) weak solution of (2.1), (2.2) is
Borh almost periodic in C(R; H̃b(Ω)) and Stepanov almost periodic in W̃ 1,0

p(·),loc(Q).

3. Auxiliary statements

We start with some auxiliary results, which will be used below.

Lemma 3.1. Suppose that b, p satisfy conditions (B), (P), respectively. Given
t1, t2 ∈ R, we assume that a function w ∈ W̃ 1,0

p(·)(Qt1,t2) satisfies the equality∫ t2

t1

∫
Ω

{( n∑
i=1

giψxi
+ g0ψ

)
ϕ− bwψϕ′

}
dx dt = 0, ψ ∈ Vp, ϕ ∈ C1

0 (t1, t2), (3.1)

for some functions gj ∈ Lpj
′(·)
(
Qt1,t2

)
(j = 0, . . . , n). Then w ∈ C([t1, t2]; H̃b(Ω))

and the equality

θ(t)
∫

Ω

b(x)|w(x, t)|2 dx
∣∣∣t=τ2
t=τ1
−
∫ τ2

τ1

∫
Ω

b|w|2θ′ dx dt

+ 2
∫ τ2

τ1

∫
Ω

( n∑
i=1

giwxi + g0w
)
θ dx dt = 0

(3.2)

holds for all τ1, τ2 ∈ [t1, t2] (τ1 < τ2), θ ∈ C1([t1, t2]).

This statement can be proved similarly to [4, Lemma 1].

Lemma 3.2. Suppose that b and p satisfy conditions (B) and (P), respectively.
Given t1, t2 ∈ R such that t2 − t1 ≥ 1 and a ∈ A, we suppose that functions u1 and
u2 from W̃ 1,0

p(·)(Qt1,t2) ∩ C([t1, t2]; H̃b(Ω)) satisfy the equality∫ t2

t1

∫
Ω

{( n∑
i=1

ai|ul,xi |pi(x)−2ul,xiψxi + a0|ul|p0(x)−2ulψ
)
ϕ− bulψϕ′

}
dx dt

=
∫ t2

t1

∫
Ω

( n∑
i=1

fi,lψxi + f0,lψ
)
ϕdx dt, ψ ∈ Vp, ϕ ∈ C1

0 (t1, t2)

(3.3)

with the functions fj,l ∈ Lpj
′(·)(Qt1,t2) (j = 0, . . . , n; l = 1, 2), respectively. Then

the inequality

max
t∈[t0−R0,t0]

∫
Ω

b(x)|u1(x, t)− u2(x, t)|2 dx

+
∫ t0

t0−R0

∫
Ω

( n∑
i=1

|u1,xi
− u2,xi

|pi(x) + |u1 − u2|p0(x)
)
dx dt

≤ C4

{
R−2/(p+0 −2) +

∫ t0

t0−R

∫
Ω

n∑
j=0

|fj,1(x, t)− fj,2(x, t)|pj
′(x) dx dt

} (3.4)
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holds for each R, R0 and t0 such that R ≥ 1, 0 < R0 < R/2, and t1 ≤ t0 − R <
t0 ≤ t2. Here C4 is a positive constant which depends on K1 and p±j (j = 0, . . . , n)
only.

Proof. Let R,R0, t0 be such as in the formulation of the lemma, and η(t) := t −
t0 +R, t ∈ R (see [7]). For given ψ ∈ Vp, ϕ ∈ C1

0 (t1, t2) we subtract equality (3.3)
when l = 1, and the same equality when l = 2. Then, putting

u12(x, t) := u1(x, t)− u2(x, t), fj,12(x, t) := fj,1(x, t)− fj,2(x, t),

a0,12(x, t) := a0(x, t)
(
|u1(x, t)|p0(x)−2u1(x, t)− |u2(x, t)|p0(x)−2u2(x, t)

)
,

ai,12(x, t) := ai(x, t)
(
|u1,xi(x, t)|pi(x)−2u1,xi(x, t)− |u2,xi(x, t)|pi(x)−2u2,xi(x, t)

)
(i = 1, . . . , n; j = 0, . . . , n; (x, t) ∈ Q),

we have an equality. From this equality using Lemma 3.1 with w = u12, gj =
aj,12−fj,12 (j = 0, . . . , n), θ = ηs, s := p−0 /(p

−
0 −2), τ1 = t0−R, τ2 = τ ∈ (t0−R, t0],

we obtain the equality

ηs(τ)
∫

Ω

b(x)|u12(x, τ)|2dx+ 2
∫ τ

t0−R

∫
Ω

{ n∑
i=1

ai,12(u12)xi + a0,12u12

}
ηs dx dt

= s

∫ τ

t0−R

∫
Ω

b|u12|2ηs−1 dx dt+ 2
∫ τ

t0−R

∫
Ω

( n∑
i=1

fi,12(u12)xi + f0,12u12

)
ηs dx dt.

(3.5)
We make the corresponding estimates of the integrals of equality (3.5). First we
note if r ∈ L∞(Ω) and ess infx∈Ω r(x) ≥ 2, then on the basis of [3, Lemma 1.2] we
have the inequality

(|s1|r(x)−2s1 − |s2|r(x)−2s2)(s1 − s2) ≥ 22−r+ |s1 − s2|r(x)

for each s1, s2 ∈ R and for almost each x ∈ Ω (here r+ := ess supx∈Ω r(x)). Using
this inequality we obtain∫ τ

t0−R

∫
Ω

{ n∑
i=1

ai,12(u12)xi
+ a0,12 u12

}
ηsdx dt

≥ C5

∫ τ

t0−R

∫
Ω

( n∑
i=1

|(u12)xi
|pi(x) + |u12|p0(x)

)
ηs dx dt,

(3.6)

where C5 > 0 is a constant depending only on K1 and p+
j (j = 0, . . . , n).

Further we need the inequality

a c ≤ ε|a|q + ε−1/(q−1) |c| q
′
, a, c ∈ R, q > 1, 1/q + 1/q′ = 1, ε > 0, (3.7)

which is a corollary from standard Young’s inequality: a c ≤ |a|q/q + |c|q′/q′.
Putting (for almost each x ∈ Ω) q = p0(x)/2, q′ = p0(x)/(p0(x) − 2), a =

|u12|2ηs/q, c = bηs/q
′−1, ε = ε1 > 0, under (3.7) we obtain∫ τ

t0−R

∫
Ω

b|u12|2ηs−1dx dt

≤ ε1

∫ τ

t0−R

∫
Ω

|u12|p0(x)ηs dx dt+ ε
−2/(p−0 −2)
1

×
(

ess supx∈Ω |b(x)|p0(x)/(p0(x)−2)
)∫ τ

t0−R

∫
Ω

ηs−p0(x)/(p0(x)−2) dx dt,

(3.8)
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where ε1 ∈ (0, 1) is an arbitrary number.
Again using inequality (3.7), we obtain

∫ τ

t0−R

∫
Ω

( n∑
i=1

fi,12(u12)xi
+ f0,12u12

)
ηsdx dt

≤ ε2

∫ τ

t0−R

∫
Ω

( n∑
i=1

|(u12)xi
|pi(x) + |u12|p0(x)

)
ηs dx dt

+
∫ τ

t0−R

∫
Ω

( n∑
j=0

ε
−1/(p−j −1)

2 |fj,12|pj
′(x)
)
ηsdx dt,

(3.9)

where ε2 ∈ (0, 1) is an arbitrary number.
From (3.5) using (3.6), (3.8), (3.9), if ε1 and ε2 are sufficiently small, we obtain

ηs(τ)
∫

ΩR

b(x)|u12(x, τ)|2 dx+
∫ τ

t0−R

∫
Ω

{ n∑
i=1

|(u12)xi
|pi(x) + |u12|p0(x)

}
ηs dx dt

≤ C6

[ ∫ τ

t0−R

∫
Ω

ηs−p0(x)/(p0(x)−2) dx dt+
∫ τ

t0−R

∫
Ω

( n∑
j=0

|fj,12|pj
′(x)
)
ηs dx dt

]
,

(3.10)
where C6 is a positive constant depending only on K1 and p±j (j = 0, . . . , n).

Note that 0 ≤ η(t) ≤ R, if t ∈ [t0 −R, t0], and η(t) ≥ R−R0, if t ∈ [t0 −R0, t0],
where R0 ∈ (0, R) is an arbitrary number. Using this and that R ≥ max{1; 2R0}
(then, in particular, we have R/(R−R0) = 1 +R0/(R−R0) ≤ 2), from (3.10) we
obtain the required statement. �

4. Proof of the main results

Proof of Theorem 2.2. First we prove that there exists at most one weak solution of
problem (2.1), (2.2). Assume the contrary. Let u1, u2 be (distinct) weak solutions
of this problem. Using Lemma 3.2 we obtain∫ t0

t0−R0

∫
Ω

|u1 − u2|p0(x) dx dt ≤ C4R
−2/(p+0 −2), (4.1)

where R, R0, t0 are arbitrary numbers such that R ≥ 1, 0 < R0 < R/2, t0 ∈ R.
We fix arbitrary numbers R0 > 0, t0 ∈ R, and take the limit when R → +∞ in

(4.1). As a result we receive that u1 = u2 almost everywhere on Qt0−R0,t0 . Since
R0 and t0 are arbitrary numbers, we obtain u1 = u2 almost everywhere on Q. The
obtained contradiction proves our statement.

Now we are turn to the proof of the existence of a weak solution of problem
(2.1), (2.2). For each m ∈ N we consider an initial-boundary value problem for
equation (2.1) in the domain Qm = Ω × (−m,+∞) with a homogeneous initial
condition and boundary conditions (2.2), namely: we are searching a function
um ∈ W̃ 1,0

p(·),loc(Qm) ∩ C([−m,+∞); H̃b(Ω)) which satisfies the initial condition:
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b1/2um|t=−m = 0 and the integral equality∫∫
Qm

{( n∑
i=1

ai|um,xi |pi(x)−2um,xiψxi + a0|um|p0(x)−2umψ
)
ϕ− bumψϕ′

}
dx dt

=
∫∫

Qm

fmψϕdx dt

(4.2)
for each ψ ∈ Vp, ϕ ∈ C1

0 (−m,+∞), where fm(x, t) := f(x, t) if (x, t) ∈ Qm, and
fm(x, t) := 0 if (x, t) ∈ Q \Qm. The existence and uniqueness of the function um
follows from a well-known fact (see, for example, [9]).

We extend um on Q by zero and this extension is denoted by um again. Further
we prove that the sequence {um} converges in Ubp,loc to a weak solution of problem
(2.1), (2.2). Indeed, note that for each m ∈ N the fuction um is a weak solution
of the problem which differs from problem (2.1), (2.2) in fm instead of f . Using
Lemma 3.2 for each natural numbers m and k we have

max
t∈[t0,t0−R0]

∫
Ω

b(x)|um(x, t)− uk(x, t)|2dx

+
∫ t0

t0−R0

∫
Ω

[ n∑
i=1

|um,xi − uk,xi |pi(x) + |um − uk|p0(x)
]
dx dt

≤ C4

{
R−2/(p+0 −2) +

∫ t0

t0−R

∫
Ω

|fm − fk|p0(x) dx dt
}
,

(4.3)

where R,R0, t0 are arbitrary numbers such that t0 ∈ R, R ≥ 1, 0 < R0 < R/2.
We show that for fixed t0 and R0 the left side of inequality (4.3) converges to

zero when m, k → +∞. Actually, let ε > 0 be an arbitrary small number. We
choose R ≥ max{1, 2R0} to be big enough such that the following inequality holds

C4R
−2/(p+0 −2) < ε. (4.4)

This is possible as p+
0 − 2 > 0. Under (4.4) for arbitrary m, k ∈ N such that

max{−m,−k} ≤ t0 − R (then fm = fk almost everywhere on Ω × (t0 − R, t0))
the right side of inequality (4.3) is less than ε. From this it follows that the re-
striction of the terms of the sequence {um} on Qt0−R0,t0 is a Cauchy sequence in
W̃ 1,0
p(·)(Qt0−R0,t0)∩C([t0−R0, t0]; H̃b(Ω)). Therefore, since t0 and R0 are arbitrary,

it follows that there exists a function u ∈ Ubp,loc such that um → u in Ubp,loc. As-
suming that in (4.2) the integration on Qm can be replaced by integration on Q, we
take the limit of this equality for m→∞. As a result we obtain (2.4) for all ψ ∈ Vp
and ϕ ∈ C1

0 (R). It means that the function u is a weak solution of problem (2.1),
(2.2). Estimate (2.5) directly follows from Lemma 3.2 putting u1 = u, u2 = 0,
f0,1 = f , fi,1 = 0 (i = 1, . . . , n), fj,2 = 0 (j = 0, . . . , n). Continuous dependence of
a weak solution of problem (2.1), (2.2) on input data is easily proved using Lemma
3.2 with uk and fk instead of u1 and f0,1 respectively, and also u and f instead of
u2 and f0,2 respectively, putting fi,1 = fi,2 = 0 (i = 1, . . . , n). �

The Proofs of Corollaries 2.4–2.6 follow from estimate (2.5).

Proof of Theorem 2.7. Let u denote a weak solution of problem (2.1), (2.2). Put
u(µ)(x, t) := u(x, t+µ), f (µ)(x, t) := f(x, t+µ), a(µ)

j (x, t) := aj(x, t+µ), (x, t) ∈ Q,
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where µ ∈ R. Replace variable t by t + µ (µ ∈ R is arbitrary at present) in (2.4).
As a result we obtain an identity which we will write in the form∫∫

Q

{( n∑
i=1

a
(0)
i |u

(µ)
xi
|pi(x)−2u(µ)

xi
ψxi

+ a
(0)
0 |u(µ)|p0(x)−2u(µ)ψ

)
ϕ

− bu(µ)ψϕ′
}
dx dt

=
∫∫

Q

( n∑
i=1

(a(0)
i − a

(µ)
i )|u(µ)

xi
|pi(x)−2u(µ)

xi
ψxi

+ (a(0)
0 − a

(µ)
0 )|u(µ)|p0(x)−2u(µ)ψ

)
ϕdx dt+

∫∫
Q

f (µ)ψϕdx dt

(4.5)

for all ψ ∈ Vp, ϕ ∈ C1
0 (R). From this, putting µ = σ and using periodicity of the

functions aj (j = 0, . . . , n) and f , we obtain that the function u(σ) is a weak solution
of problem (2.1), (2.2). Taking this into consideration and the fact of uniqueness of
a weak solution of the problem (2.1), (2.2), we get u(0) = u(σ) almost everywhere
on Q. Therefore the statement of Theorem 2.7 is proved. �

Proof of Theorem 2.8. Similarly as in the proof of Theorem 2.7 we arrive to equality
(4.5). Let δ∗ := min{1;K1/2} and σ ∈ Fδ∗ , where Fε is defined in the formulation
of given theorem. We consider the identity (4.5) at first for µ = 0 and afterwards for
µ = σ. Then using Lemma 3.2 with u1 = u(0), u2 = u(σ), aj = a

(0)
j (j = 0, . . . , n),

f0,1 = f (0), f0,2 = (a(0)
0 − a

(σ)
0 )|u(σ)|p0(x)−2u(σ) + f (σ), fi,1 = 0, fi,2 = (a(0)

i −
a

(σ)
i )|u(σ)

xi |pi(x)−2u
(σ)
xi , (i = 1, . . . , n), t0 = τ ∈ R, R0 = 1, R = l ∈ N (l ≥ 2), we

obtain

max
t∈[τ−1,τ ]

∫
Ω

b(x)|u(σ)(x, t)− u(0)(x, t)|2dx

+
∫ τ

τ−1

∫
Ω

[ n∑
i=1

|u(σ)
xi
− u(0)

xi
|pi(x) + |u(σ) − u(0)|p0(x)

]
dx dt

≤ C4

(
l−2/(p+0 −2) +

∫ τ

τ−l

∫
Ω

{(
|f (σ) − f (0)|+ |a(σ)

0 − a(0)
0 ||u(σ)|p0(x)−1

)p0′(x)

+
n∑
i=1

|a(σ)
i − a(0)

i |
pi
′(x) · |u(σ)

xi
|pi(x)

}
dx dt

)
.

(4.6)

From the inequality (a+ c)q ≤ 2q−1(aq + cq), a ≥ 0, c ≥ 0, q ≥ 1, we have∫ τ

τ−l

∫
Ω

(
|f (σ) − f (0)|+ |a(σ)

0 − a(0)
0 ||u(σ)|p0(x)−1

)p0′(x)
dx dt

≤ 21/(p−0 −1)

∫ τ

τ−l

∫
Ω

(
|f (σ) − f (0)|p0

′(x) + |a(σ)
0 − a(0)

0 |p0
′(x)|u(σ)|p0(x)

)
dx dt

≤ 21/(p−0 −1)

∫ τ

τ−l

∫
Ω

|f (σ) − f (0)|p0
′(x) dx dt

+
(

sup
t∈R
‖a(σ)

0 (·, t)− a(0)
0 (·, t)‖L∞(Ω)

)(p+0 )′
∫ τ

τ−l

∫
Ω

|u(σ)|p0(x) dx dt,

(4.7)
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τ−l

∫
Ω

( n∑
i=1

|a(σ)
i − a(0)

i |
pi
′(x) · |u(σ)

xi
|pi(x)

)
dx dt

≤ max
i∈{1,...,n}

(
sup
t∈R
‖a(σ)
i (·, t)− a(0)

i (·, t)‖L∞(Ω)

)(p+i )′
∫ τ

τ−l

∫
Ω

n∑
i=n

|u(σ)
xi
|pi(x) dx dt,

(4.8)
where (p+

j )′ := p+
j /(p

+
j − 1) (j = 0, . . . , n).

Since σ ∈ Fδ∗ and f is Stepanov almost periodic, it follows that a(σ)(x, t) ≥ K1/2
(j = 0, . . . , n) for a. e. (x, t) ∈ Q and sups∈R

∫ s
s−1

∫
Ω
|f (σ)(x, t)|p0(x) dx dt ≤ C6,

where C6 > 0 is a constant independent on σ. From this under Corollary 2.5 we
have

sup
s∈R

∫ s

s−1

∫
Ω

[
|u(σ)|p0(x) +

n∑
i=1

|u(σ)
xi
|pi(x)

]
dx dt ≤ C7, (4.9)

where C7 > 0 is a constant independent of σ. Thus, from (4.6) using (4.7) and
(4.8), we obtain∫

Ω

b(x)|u(σ)(x, τ)− u(0)(x, τ)|2dx

+
∫ τ

τ−1

∫
Ω

[ n∑
i=1

|u(σ)
xi
− u(0)

xi
|pi(x) + |u(σ) − u(0)|p0(x)

]
dx dt

≤ C8

{
l−2/(p+0 −2) +

l∑
k=1

∫ τ−k+1

τ−k

∫
Ω

|f (σ) − f (0)|p0
′(x) dx dt

+ max
j∈{0,...,n}

(
sup
t∈R
||a(σ)

j (·, t)− a(0)
j (·, t)||L∞(Ω)

)(p+j )′ l∑
k=1

∫ τ−k+1

τ−k

∫
Ω

[
|u(σ)|p0(x)

+
n∑
i=1

|u(σ)
xi
|pi(x)

]
dx dt

}
,

(4.10)
where C8 is a constant independent of τ, σ and l.

Let ε > 0 be an arbitrary small fixed number. We show that the set

Uε :=
{
σ ∈ R : sup

t∈R

∫
Ω

b(x)|u(x, t+ σ)− u(x, t)|2 dx ≤ ε,

sup
τ∈R

∫ τ

τ−1

∫
Ω

[ n∑
i=1

|uxi
(x, t+ σ)− uxi

(x, t)|pi(x)

+ |u(x, t+ σ)− u(x, t)|p0(x)|
]
dx dt ≤ ε

}
contains a set Fδ for some δ ∈ (0, δ∗] implying the relative density of the set Uε.
Indeed, choose big enough l ∈ N (l ≥ 2) satisfying the inequality

C8l
−2/(p+0 −2) ≤ ε/2, (4.11)

and fix this value l. Then take δ ∈ (0, δ∗] such that the following inequality remains
true

C8

(
δ + max

j∈{0,...,n}
δ(p+j )′C7

)
l ≤ ε/2. (4.12)
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Therefore, if δ ∈ Fδ, then the right side of the inequality (4.10) is less than or equal
to ε. This implies that Fδ ⊂ Uε, that is the fact we had to prove. �
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