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EXISTENCE OF MULTIPLE SOLUTIONS FOR QUASILINEAR
ELLIPTIC EQUATIONS IN RY

HONGHUI YIN, ZUODONG YANG

ABSTRACT. In this article, we establish the multiplicity of positive weak solu-
tion for the quasilinear elliptic equation

—Apu + MulP72u = f(@)|u|* " 2u+ h(z)|lu|""2u xRN,
u>0 z¢€ RN,
u e WHP(RN)

We show how the shape of the graph of f affects the number of positive solu-
tions. Our results extend the corresponding results in [21].

1. INTRODUCTION

In this article we consider the existence of solutions for the nonlinear quasilinear
problem

—Apu+ MulP2u = f(2)|ul*?u+ h(z)|u]"?u xRV,
u>0 xzecRY (1.1)
u € WHP(RY)

where l <r<p<s<p*, p<N,p"= A’;—ij denotes the critical Sobolev exponent,

A > 0 is a parameter, h € Lﬁ(RN)\{O} is nonnegative. For the function f, we
assume the following conditions:
(C1) f € C(RY) and is nonnegative in RY;
(C3) There exist some points 2!, z2, ..., z* in RY such that f(z?) are some strict
maxima and satisfy

e < f(2%) = fmax = max{f(z)|z € RV}
fori=1,2,...,k.
Associated with (|1.1)), we consider the energy functional

1 1 1
I(u) = 2;/RN [Vel? + Aufrdz — /RN (o)l de — - /RN h(@)|ul" da.
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It is well known that the functional Iy € C*(W1?(RY), R), and that the solutions
of (1.1)) are the critical points of the energy functional T.
When p =2 and h(z) = 0, Equation (|1.1)) becomes

—Au+du= f(x)|u?u xRV,
u>0 xecRY (1.2)
u e HY(RY).

It is known that the existence of positive solutions of is affected by the shape
of the graph of f(x). This has been the focus of a great deal of research by several
authors [3 [4] 8, [I§]. Specially, if f is a positive constant, then has a unique
positive solution [I5] Adachi and Tanaka [I] showed that there exist at least four
positive solutions of the equation

—Au+ = f(x)|ul*2u+h(z) xRV,
u>0 zeRY, (1.3)
u € H'(RY)

under the assumptions 0 < f(z) < f* = limy|_o f(z), b € H1(RV)\{0} is
nonnegative and ||h||g-1 is sufficiently small. Several authors have studied a gen-

eralized version of ,
~Au+du= f(z,u) +h(z) zeRY,
u>0 zeRY, (1.4)
u e HY(RYN)

where f(x,u) and h(x) satisfy some suitable conditions. They showed the existence
of at least two positive solutions when ||h| z-1 is sufficiently small, see [2] 9] [14].

Wu [21] considered the problem with p = 2, under some suitable assump-
tions on f(x), h(z). The author obtained the existence of multiple positive solution
by variational methods. Several publications [5l [0, [0, 22] show results about the
quasilinear elliptic equation

—Apu+ NulP?u = f(z,u) z€Q,

ue WyP(Q), u0 (15)

where 1 < p < N, N > 3,  is an unbounded domain in RY. Because of the
unboundedness of the domain, the Sobolev compact embedding does not hold.
There are many methods to overcome the difficulty. In [22], the authors used the
concentration-compactness principle posed by Lions and the mountain pass lemma
to solve problem . In [5 [6], the authors studied the problem in symmetric
Sobolev spaces which posses Sobolev compact embedding.

Especially, when A\ = 1, f(x,u) = q(z)u® and € is replaced by R", using a min-
max procedure formulated by Bahri and Li [4], Citti and Uguzzoni [I0] obtained
the existence of a solution u € WhP(RN) N CLTA (RN of when p € (1,2), and

loc

B € (0,1) is constant. In [19], the authors studied the problem
—Apu+ a(z)uP ™t = fla)u? TP+ g(z)u! x e RV,
we DPRN)YNCEF@RY),  lim wu(z) =0,

loc
|| — o0

(1.6)
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which is a general case of . The authors proved that there exists a positive
solution of for all A in some interval [0, Ag).

In this article, we consider show the existence of multiple positive solutions of
. Our arguments are based on a combination of the concentration-compactness
principle of Lions [16], and Ekeland’s variational principle [I3]. Our main result is
the following theorem.

Theorem 1.1. Assume (C1)~(C3) hold, and h € L7+ (RN)\{0} is nonnegative.
Then there exists Ag > 0 such that for all X > Ao, Equation (1.1) has at least k + 1
positive solutions.

The rest of this article is organized as follows. In Section 2, we give some
preliminaries and some properties of Nehri manifold. In Section 3, we prove the
main result, Theorem

2. PRELIMINARIES

Throughout the paper, C, ¢ will denote various positive constants, their values
may vary from place to anther. By the change of variables n = A\~V/P v(x) =
nP/(5=P)y(nz), Equation (T.1)) can be transformed into

(s=7)
—Apv + [oP" 20 = f|v]5 %0 + n holv]"2v 2z e RY,

v>0 xRN, (2.1)
v e WHP(RY)

where f,, = f(nz), hy = h(nz).
For u € WYP(RY), ¢ € R, a € C(RY) nonnegative and bounded, and b €
L7+ (RN) non-negative, we define

1 1 ps=n 1
Lop(w) = ~|JulP — 7/ alul*de — n=" 7/ blu|” dz;
P S RN T RN
Map(c) = {u€ WHPRNN\{O}(I] 4 (u), u) = c};
Qg p(c) = nf{I, ,(u)|lu € M, (c)},

where [lul| = ([, [Vul? + [u[?dz)'/? is a standard norm in W'P(RN) and I,
denote the Fréchet derivative of I, ;. We shall write M, ,(0), q,5(0) as My p, g p
respectively. Then, we have the following results.

Lemma 2.1. Suppose a is a continuous bounded and nonnegative function on RV,

then aq0(c) = 5 for ¢ >0 and

5—p
sp

0,0 < ag0(€) + ag0(—c) — le|  for all c € R.

Proof. The case p = 2 was proved by Cao-Noussair [8, Lemma 2.2]. By a modifica-
tion of the method given in [8], we obtain our result. For the readers convenience,
we give a sketch here. For any ¢ > 0, let u € M, o(c). Then

||ulP = / alu|’dz + ¢ > c.
RN

Thus

W | =

1 1 c
Ia = — p_ Sd = p — >
o(u) pHuII S/RN aluldz = ( Mull” + = >

c
p .

SRR
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To show that the equality holds, choose v € WHP(RY) with [, |Vv|Pdz = ¢, for
any o > 0, define
ug () = O‘¥U(O’$), we(2) = (14 0)u,

where 6 > 0 being selected so that w, € M, (c). It is easy to see that
/ [Vue|Pdz = c,
RN
N-p)
/ lug|?de = o e q’N/ [v|%dz — 0 as o — o0
RN RN

for ¢ < p*. Obviously, such a § = (o) exists when o large enough and 8 — 0 as
o — +00. Therefore,

1 1
Io(we) = —|Jws||P — f/ alwy|*dr — £ aso— +oo.
p s Jun p
Hence
() =
,0 -
‘ p

To complete the proof of Lemma [2.1] let ¢ > 0 and u € M, o(—c). Then

= [ alulbar—c< [ alua.
RN RN

It is easy to see that there exist unique ¢ € (0, 1) such that v = tu € M, . Then
we have

Loalo) = (5 = Dlell”

1 1

= (]; - g)tpHUHp
1 1

<= Pl + -5

— o) + £+ (- e

< Iy o(u) + ag0(c) — Ss_ppc.

The required inequality then follows by taking the infimum over M, o(—c). ([l

Define

p(

s s=r) r
) = (I, (u),u) = [lul]? - / flulde — "5 / gl d.
RN RN

Then for u € My, p,, we have

p(s—r)
s—p

W =plal? =5 [ folultde =5 [ hfulrdo

= (p—)llull” — (5 — 1) / hylulas.

Using the same methods as [20], we split My, 5, into three parts:

n

My, = A€ My [(p=)llull” = (s =7) [ fylul*dz > 0};
fnsha RN
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M3, 1, = € My (o =)llal? = (s=1) [ fupde = 0

Mj s, = {0 € My 0= n)ul? = s =7) [ fude <0}
Then we have the following result.
Lemma 2.2. There exists 11 > 0 such that for allm € (0,m1), we have M})n:hn ={.

Proof. Assume the contrary, that is M?nvhn = () for all n > 0. Then for u € M?mhn,
we have

S—7T

°d 2.2
[l (22)
pls=r) - » R s—p R
05 hfelde =l = [ paltde =222 [ ppan 23)
RN RN p—=TJrN

Moreover,

Jull” =

s —

P p p(f—r)
Ll = e~ [ plultde <055 el
— B r
=7 \IAll el
where 3 = % - %N. Also we have
S—7T Ié; %
Jll < X o, 17 (2.4)

Let K : My, n, — R be given by

K = (s, )Tyt et [ olulrds
= ) fRN fn|u|5d.’b 77 RN n I

where ¢(s,r) = (5=) = >=2. Then K(u) =0 for all n >0 and u € M?,,,h,,,' From

(2.2) and (2.3)), it follows that for u € M%”h”, and

s—1
(ﬂ fRN .]¢‘71|1’L|5d7")][’f1 p—1 S—0D
K(u) = c(s,r)[-2= =P — / folul®dx = 0. 2.5
(1) = elo, ) [P TS 2R (25)
However, by (2.4)), the Holder and Sobolev inequalities and
[lu||® p=1 5% p1

( )= > (

W )E for aHUEanJLn,
RN Jmax

fmax
where S = inf,cp1.0 @M\ {0} % is the best Sobolev constant. Also we have
s—1
JalP3 e
— s— —_ h _p r
fRN fn|u|5d:c) =l ”ngr ]

SS p—1 1— 3
&P " h P
yr i LU LI Sy

S%  p-1 1-r
) Ikl 2 )= =0’ [All, 2]

K(u) > ¢fs, 7)(

2 [lull"[e(s, 7)(

> [luf"fe(s. )( p—
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forallu € M})nvhn7 where = p(:f_pr) — %N > 0 (see Lemma . Since ;:: <0,
there exists 1 > 0 such that for each n € (0,m1) and u € MJ?mhn’ we have K (u) > 0,
this contradicts to ([2.5). We can conclude that MJthn ={forallne (0,n). O

By Lemmafor n € (0,m) we write My, p, = Mft],h,, U Mf_mhn and define

+ . — .

o = inf If 3 «o = inf I¢ 4 .

fnrhg T Sushays fnsh . Jnohy
ueMf ueMy

The following Lemma shows that the minimizers on My, 5, are “usually” critical
points for Iy, p, .

Lemma 2.3. Forn € (0,m1), if uo is a local minimizer for Iy, n, on My, 1, , then
Ii o, (uo) =0 in W—YRYN), where W~Y(RYN) is the dual space of WP(RY).

Proof. If ug is a local minimizer for Iy, ,, on My, p, , then ug is a solution of the

optimization problem

n?

minimize Iy, », (u) subject to ¥(u) = 0.

Hence, by the theory of Lagrange multipliers, there exists § € R such that
5, o (u0) = 09 (ug)  in WHRYN).
This implies
(I}, h, (w0), u0) = O’ (ug), uo).

Since ug € My, 5, and by Lemma M}, =0 when n € (0,7:1), we have

(I}, 1, (o), uo) = 0 and (¢’ (uo), uo) # 0.
So we obtain # = 0. This completes the proof. O

For each u € WHP(RV)\{0}, we define

p—r  |ul?
s—r fRN [olul*da

Then we have the following Lemma.

tmax = ( )ﬁ > 0.

Lemma 2.4. There exists 2 > 0 such that for each v € WHP(RV)\{0} and
n € (0,12), we have
(i) there is a unique t= = t~(u) > tmax > 0 such that t”u € M; , and

nsNn
Ty, n, (7 w) = maxy>y,, 1y, n, (tu);
(i) if [on hylu|"dz > 0, then there is a unique 0 < t+ = t1(u) < tpax <t~ =
t~(u) such that ttu e M} , ,t—ue M; , and
f’lﬁhn le’h”]

Ifn ;hn (t+u) = t_n’>litI;0 Ifn yhn (tu)’ If1]7hn (t_u) = t>mtaX Ifnuhn (tU;)

Proof. (i) Since h(x) is nonnegative, then [ hpnlul"dz > 0. Let

m(t) =P "||ul|? — tsfr/ folul®dz,
RN

clearly, m(t) is increasing in (0, t;ax) and is decreasing in (tmax, +00), also, we have

m(0) =0, tilgloom(t) = —00,
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i.e. m(t) is concave and achieve its maximum at ty.x. Moreover,

p—r ||w||P por p—r [|w||P s—r/ ,
M(tmax) = 5= ||[ul|? — s folul®dx
( ) (S_TfRN fn|u|5dx) || || (S_TJ‘RN fn|u|5dsc) RN 77| |

lulP*= p—r eer

pP—T s=r

= p—r = = )]

(Jun Folul?dz)s=5 "5 =7 s—r

$=p,p—T p=r [[ull® B=r g
= s—p s—p ||lu

s—r s—r) (fRN fn\u|sdm) ful

S—p,p—T p=—" S% | por r .
> = L ull” = Cllul”
e

Since C' > 0,
(s=r)
0=y [ holulrde < vl el
RN

and 3 > 0, there exists 7o > 0, such that for any n € (0,72), we have

p(s—r)

m(tmax) >n e / hﬁ|’u’|rdaj
RN

Case (a): [px hylul"dz = 0. Then there is unique t~ > tyay such that m(t~) = 0
and m/(t7) < 0. Now

(W' (t7u),t7u) = (p =)t ull’ — (s =) /RN Folt ™ ul*de = (=) tm’(t7) < 0
and

p(s—r)

T (), ) = |l - / ol upPde — g™ / ot ul" dx
RN RN

@) )Pl = @) /RN folul>da]
— () m(t7) =0,

Thus, t™u € ij7 By Moreover, we have

d d?
%Ifnvhn (tu) =0, @Ifmhn (tu) <0, fort=t".

Then we have Iy, , (t7u) = max;>¢, .. I, n, (tw).
Case (b): [pn hylul"dz > 0. There are unique ¢t and ¢~ such that 0 < ¢t <
tmax <t~ such that

p(s=r)

m(t*) = 5 / hgluldz = m(t”)
RN

and m/(t*) > 0 > m/(t7). Similar to the argument in Case a, we have tTu €
M;: By and Iy, p, (t7u) > Iy, p,(tu) > Ifmhn(ﬁu) for each ¢t € [tT,¢7], and
If, n,(tu) > I5, p, (tTu) for each t € [0,].

(i) By case (b) it follows part (i) O

To establish the existence of a local minimum for Iy, ,, on My, p,, we need the
following results.
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Lemma 2.5. (i) For eachu € M;,,h,,’ we have [px hylu|"dz >0 and Iy, , (u) < 0.
In particular oy, p, < a?mhn < 0.

7).

)

(ii) I, n, is coercive and bounded below on My, p, for all n € (0,(
Moreover, ay, p, — 0 asn— 0.

Proof. (i) For each u € M};,h”7 we have
(o —)llull? (s — 1) / folul*dz > 0,
RN

i (s=r)
||u\|p:/ FolulPde + 955 / hylul" dz.
RN RN

By (C1), we have

p(s=r)

pls=r) r s s—p s
el B e A AR Y
RN RN pP—T JrnN

and
1 1 s 1 1, p=n .
Ifn’hn(u)—(;—g)/RN Ialul dx—i—(;—;)n =P /RN hop|u|"d
1 1 1 1.s—p ,
<(=-- do + (= — - sd
G- [ flde+ G =022 [ fjulde
1 1
=(s=0(—=—) | folu’dz<0

ps  pr JrN

(=7
= Jon hylu|"dz.

(ii) For each u € My, 1, we have ||ul|? = [on folul*dz + 7
Then by the Holder and Young inequalities,
s—p s—r

P _ &) r
N e L e L

S—p s—r p—r)s—r £
> (SR STy g @)

DS ps prs L?

Thus, Iy, p, is coercive and bounded below on My, j, for all n € (0, (Z:f)%) and

- pp%TN > 0 as above. O

af,.h, — 0asn—0, where § = 1’(%?

3. PROOFS OF MAIN RESULTS

Now, we use the graph of the coefficient f to find some Palais-Smale sequences
which are used to prove Theorem [1.1} For a > 0, let C,(2?) denote the hypercube
T —q,xé +a) centered at x' = (2%, z%,...,2%) for i =1,2,..., k. Let Co(z?)
and 9C,(z") denote the closure and the boundary of Cy,(z") respectively. By the
conditions (C1) and (C3), we can choose numbers K,l > 0 such that C;(z%) are
disjoint, f(z) < f(2%) for x € 9C)(x?) for all i = 1,2,...,k and UE_,Cy(z*) C
H7JJ\;1 (7K7 K)

Define ¢, € C(R, R), g, € (WLP(RN) RYN) by

2K 2K
K ZK77 2K
Py(t) =t =5 St

_2K o 2K
o < w
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, N On(T))lul*de .
g (u) = Jr fRZ |uj|5dac for j=1,2,...,N
gn(u) = (g5 (u), go(u), ..., g} (u)) € RN,

Let Cli/n = Cyyy(2'/m),

N; ={uec M, ,, "u>0and gn(u) € Oli/n}’
ON} ={ue My 4, u>0and gy(u) € Cy )/}

for i = 1,2,...,k. It is easy to verify that N} and ON, are nonempty sets for all
i1=1,2,...,k. Consider the minimization problems in Nfi and 8Nf] for Iy, n

n?

= inf T u ~ = inf T u).
Yn B N (1) R uelaNg Fo oy (1)

Using the results in [19], we can assume w be a unique positive radial solution of
—Apu+ [uP 72U = foaxlul* 2 oz € RY,
u>0 zeRY,
u € WHP(RY)
and that Iy, o(w) = ay,..0- By (C3) and the routine computations, we have
af 0 < Qfoo 0.

For small n > 0 satisfying 2,/ < 1, we define a function t, € C'(R¥,[0,1]) such

that
) = {; N
|| > ENGE
and [Vip,| <2 in RY. Let 27 = ﬁ(l,l,...,l) € RY and
wy(x) = t;w(z — a:; + M, (z — 3;; + ™),

where t,° > 0 are selected such that w, € M ;} hy Then we have the following
results.

Lemma 3.1. Asn — 0, we have
p(s—r)

@) 0 fon hyw" (= & 4 275 (z — L + ") dw — 0;
(ii) t; — 1.

Proof. (i) Since g = 26=1) _ 2N > 0 and hy(z) > 0, we have

s—p

p(s=r) ‘ ‘
0< eta =-» / hpw" (z — Ty )by (v — T4 x")dz
RN n n
zt ! .
<Pl e llw(z = = + @)y (z — = + 27|
n n
and , 4
z* z* Sp
wxz— —+ 2"z — — +2")||P - ——ay,...0-
e = 2+ aminta = T +an) = Loy
Thus (i) holds.
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(ii) Since w,, € M, , we have
—\p A T e
&P IV(w(z = — 42"y (z — — + 7))
RN n n
T (w(e = =+ )y (e — =+ "))
n ‘ n ‘
— () S — T e — T e
=(t,;) fow®(x + 2")ep (x +a")dx
RN n n

+ np(::;) (t;)r/ hyw" (x — T4 z")y (z — T4 x")dzx.
RN n n
When 7 — 0, from part (i) it follows that
_ _ xt z
()P ([wl? + o(n)) = (&) lw(z — P )iy (x — P z")[[P + o(n)
= ()" [ ptle = S = S anda + o)
RN n n

= ()" [ S+t = et de + o).

Moreover, nz — 0 as  — 0, and from [|w[|? = [4x fmaxw®dz, we have

R Lt et el S
K S_TIRN fﬂw(m—‘%—kx")qﬁn(z—%—i—x"ﬂsdx
p—r,_1
= > (.
*)(5—7") P
Thus, t,; — 1 as 7 — 0 and (ii) holds. O

Let 1, = min{ny, 2, (‘::1’;)%}, then we have the following result.

Lemma 3.2. For each € > 0, there exists n. € (0,1.] such that
oz]Tmhn < ’yi] < min{ay,, o+ g, 0y, n, + oo, 1=1,2,....k ne(0,n).

Proof. For i =1,2,...,k, obviously we have a;mhn < 7%.

Now we show the second inequality hold. First, we prove that g, (wy,) € Cli/n.
For j =1,2,..., N, since
_ Jan n(zj)ws(z — % + 2"y (x — % + a")dx

gy (wy) = p =
e Janw wi(x — 5 +am)Pi(z — 5 +am)dz

and )
xt x5 1
Yoz — =+ =0 if |z; — L] > —.
n( ” ) |; 77\ 7
By the definition of 1,, we have
Je,, dn(@)ws(@ = 5+ i@ — 5 + @)de

Joi, W@ =5 +amui(e = 5+ am)de

g%(wn) =
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provided ﬁ < % From the definition of ¢, and g, we conclude that g, (w,) € C}, .
Thus, w, € Ny. Moreover, by Lemma we obtain
(t—)p zt

2
L5, (W) = ZD ] IVwle =+ agn(z = <+ a?)"de

%

[ =T e - e
RN n n

t7)s i i
_ &) fw®(z — % + &)y (x — % + a")dx

S RN

pis=r (E)" xt xt
—n 7( v) / hpw"(x — — + ")y (z — — + 2")dx
RN n n

r
1 1 i s

= - |[Vw|? + |wPdz — — f(nz 4+ x* — nx")wdz + o(n).

P JrN S JrN
Since nx™ — 0 as 7 — 0 and from the above, we have
Ly (Wy) = T 0(w) + 0(n) = 0 + 0(n)-
Therefore, for any € > 0 there exists 3 > 0 such that
7:7 < afmax,o +€7 7’ = 172a"'7'l€7 77 S (0’773)

Moreover, ay,,...0 < @~ o and ay, p, — 0 as n — 0, then there exists 14 > 0 such
that

Vi< g n, e, i=1,2,...k n€(0,ny).
We take 7. = min{ns,n4}, this implies
Yy <min{ay,. 0+ e ap,n, +ageo},

fori=1,2,...,k and n € (0,7n.). This completes the proof. O

Since W1P(R¥) is not a Hilbert space in general, even if the (PS) sequence {u,, }
of I (u) is bounded, hence there exists u € W1P(RY) such that

Up —u  in WHP(RY),
we can not ensure
Yy, P 2Vu,, — |[VulP"?Vu in L7 (RN
k k

for some subsequence {uy,} of {u,}, so we can not use Brezis-Lieb lemma [20]
directly. We use the following results.

Lemma 3.3. If {u,} C W'P(RY) is a (PS). sequence of Iy, 5, , then there exists
a subsequence {uy} such that u, — ug in WP (RYN) for some ug € WHP(RY), and
I'(ug) =0, Vug — Vug a.e. in RY.

The proof of the above lemma was given in [I2, Lemma 2.1], also in [17]. We
omit it here.

Lemma 3.4. There are positive numbers 6 and ns € (0,n.] such that for i =
1,2,...,k, we have

;}; >ay,.. 0+0  foralln e (0,n5).
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Proof. Fixi € {1,2,...,k}. Suppose the contrary that there exists a sequence {n,,}
with 7, — 0 as n — oo such that *yj,n — ¢ < ay,..0- Consequently, there exists a
sequence {u,} C ON, such that g, (u,) € dC’, and

nn

Iy, h,, (Un),un) =0,
Ifﬂ'nﬂhNn (Un) —C S afmaxvo'
By Lemma {un} is uniformly bounded in WH?(RY). For u,, € My ., we
deduce from the Sobolev imbedding theorem that there exists a constant v > 0

such that ||u,|| > v for all n. Applying the concentration-compactness principle of
Lions [16] to |uy,|*, there are positive constants R,z and {y,} € RY such that

/ |un|?dx > for all n,
BN (yn,R)

where BN (y,,, R) = {z € R¥||z — y,| < R}. Let U, = u,(z + yy), and define
-]?nn () = f(x + NnYn), 7317,” () = h(M@ + NnYn)-

Then we have o
(Iz 5 (Un),tn) =0,
f’]n ’h77'rl.

I~ -~
f”ﬂ,’h'rl’n,
By Lemma [3.3] Sobolev imbedding theorem and Riesz’s theorem, there is a uy €

WLP(RY) and a subsequence of {,}, still denoted by {,} such that

U, —ug in WHP(RY),

(3.1)

(Up) — c.

Up — up  ae. in RY,

/ |, |*de — |ugl®dx > p,
BN (0,R) BN (0,R)

and
Vi, — Vug a.e. in RV,
Vi, P2V, — [Vug|P "2V in L7-1 (RY)
Set w,, = @, — up. By the Brezis-Lieb lemma [20], we have

/'ﬁﬁmmz/‘ﬁwwm+/ Fo lwn|da + o(1). (3.2)
RN RN RN

Since {u,} is uniformly bounded and %, — ug, we obtain

p(s—r) p(s—r) ~
U / b, |tn|"dx = 15,77 / hop, |tn|"dz — 0 as n — oo (3:3)
RN RN

and
[l = ol + fhon]” + o). c
Combining (3.1)-(3.4), we have
funl? = [ Fouluntde = ~(uoll? = [ By luolde) +o1). (35)
RN RN

We distinguish the two cases: (A) ||wy| — 0 and (B) ||w,] — ¢ > 0.
Case (A): From condition (C3) we can choose a positive constant ¢ such that

f(x) < fuax for z € 6§+5\Cf_5.
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We complete the proof by establishing the contradiction

hm Ijnn ’hnn (Un) > Oéfmaxvo'

n—oo

Consider the sequence {n,y,}. By passing to a subsequence if necessary, we may
assume that one of the following cases occur:

(Al) {nnyn} C 624—6\011;57

(A2) {nnyn} C 6;—5’ )
(A3) {nwyn} C RN\CZ+5 and {N,y,} is bounded;
(A4) {nnyn} is unbounded.

Let € > 0 and R, > 0 be such that

flw\zRe [ |*dx

— <e. 3.6
f]RNlunlsdx = (3.6)

In case (A1), we assume n,y, — J € 6§+5\Cﬁ5 and f(¥) < fmax- Consequently

by (3.3) and (3.4), we have

1 1 ~ p(s—r) ~
3 _ 3 e P _ ~ |s _ s—p ~ |r
Jim Ty, () = Yo (7 == [ By @falde = [ R il da
1 1 L
— ol = % [ @luolda
p S JRN
Z OF(F),0 > Afunax,05
we also have
fuolP = [ $@)lual*ds =0,
RN
which is a contradiction.
In case (A2),
7 (u ) _ f]RN d’nn(xj =+ (yn)3)|ﬂn|sdx
Jna Ll T [fin|*daz
. f\az|§R€ P, (xj + (yn)j)|ﬂn|sdx + fmzRe P, (mj + (yn)j)|ﬂn|sdx
f]RN [y, |5dx ’
In the region |z| < R, when n is sufficiently large, we have
xi — (1 —6) 2t 4+ (1 - 9) 2K 2K
zj+ (yn); € (- - R, -2 +R) C (——,=—).
i+ (yn)j € ( - - ) C( 0 77n)
It follows from ([3.6) and the definition of ¢,,, that
, xt — (1 —9) 2K
g (up) > (——=—R)(1 —€) — —¢,
o (Un) > ( o )1 =€) o
, zi+ (1 —9) 2K
g%n (un) < (T + Re)(]. — 6) -+ 1776'

It is clear from the above inequalities that we can choose € > 0, § > € sufficiently

small such that ) )
. zh—1 xt+1
I (uy) € (—, L —
gnn( ) ( Tn Tin )

for n large enough, which contradicts gy, (u,) € 9C} o
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In case (A3), we assume that n,y, — J & Cj,5 as n — oo, then for some
je{l,2,...,N}, we have y; 2x§-+(l+5) or yj §x§—(l+6).

. 2it(l4s
First, we assume y; > 7 + (I +6) occurs, then (y,); > w for all n. When
|z;| < R, we have
i+ (1+3
zj + (Yn); > j7§2) — R

and ) s .

. i+ (+3 2K xi+1

g ) > (DT gy g 2 m
" T T T

for sufficiently small € > 0, 6 > € and n large enough. This contradicts to gy, (un) €
dC*, . When g; <z — (I 4 0), the argument is similar.

n

In case (A4), we assume 7,y, — 00 as n — 00, using a similar argument to case

(A1) and condition (C3), we can also obtain a contradiction.
Case (B): Set

fuol? = [ Fuluol*ds = A+ o(0),

then by (3.5)),
ewal? —/ T lwnlde = — A+ o(1).
RN

Without loss of generality, we may assume that A > 0(A < 0 can be considered
similarly). We can choose a sequence {t,} with ¢, — 1 as n — oo such that
v, = thw, satisfies

Jonl? = [ Folonldo = A
RN
Since ug € ann,o(A +0(1)), by (3.2)-(3.4) and Lemma H we have

1 1 ~ .
Tt () = ol =5 [ Fr (@l

1 1 -
++mmw—f/ 7o (@) wnldz + o(1)
p S RN

A+o0(1) 1 1/ ~
> ———+ —||v,||P — - (@) v Pde + o1
2t Sl =5 [ B @oalda + o)

> 0, o 4) 07, o(-A) +ol)
§—p

—A 1
o AT o(1)
5—p
—A 1

> Oéfnn,vo +

Z afma;uo +

which is a contradiction. If A = 0, we can find two sequences {¢,} and {s,} with
tn, — 1, s, — 1 as n — oo such that w,, = t,w,, U, = spup satisfy

P = | Fulwalode =0,

||@n||p—/ Fo[on|?dz = 0.
RN
Thus

hm Ifn" 7}747)71 (Un)

n— o0



EJDE-2014/17 EXISTENCE OF MULTIPLE SOLUTIONS 15

. 1, 1 ~ 1, 1 ~
= lim [~ (@l - / Fon ol de + 7P — - / Fo B d
n—oo Lp S RN P S RN
>afmax70’

which is a contradiction. This completes the proof. ([l

From now on, taking § > 0 as in Lemma and fixing € > 0 such that € < ¢,
consider 7. as in Lemma ns as in Lemma [3.4] and denote 19 = min{n., ns}.

Lemma 3.5. If n € (0,70), then for each u € My, j, , there exist e, > 0 and
a differentiable function &, : B(0,e,) C WYP(RN) — Rt such that &,(0) =
L, fu(v)(u - U) € anvhn’ and

€00 = [p [ | IFuP Va0t fup~unds

- s/ folul*2uvdz fnpgs:pr)r/ hn|u|T72uvd;L’}
RN RN
sl = =) [ fluldd]
RN
for all v e WHP(RY).

Proof. For u € My, 1., define a function F : R x WhP(RY) — R by

n?

Fu(€usw) = (I}, (Gu(u = w)), &ulu — w))

:55/ |V(u—w)|p+|u—w|pdx—§i/ [nlu —w|dz
RN RN

G [ bt
RN
Then F,(1,0) = (I}, (u),u) =0 and

d s p(s—r) -
4 p1,0) :p||u||p—5/ Folulde —n"5 r/ holu|" de
d&, RN RN

= (p—r)ull? — (s — 1) / fylul*dz 0.
RN

According to the implicit function theorem, there exist £, > 0 and a differentiable
function &, : B(0,e,) C WHP(RY) — R* such that &,(0) = 1, and

(€,(0),v) = {p /RN |VulP~2VuVo + |ulP~?uvds

p(s

—r)
—s/ Folul*2uvde —n~ s> r/ hn|u|T_2uvdx}
RN RN

=l = (s =r) [ gylulda]
RN
and F, (&, (v),v) =0 for all v € B(0,¢&,), which is equivalent to

<I}n7hn (fu(v)(u - w))afu(v)(u - w)> =0, Wwe B(O,Eu)
That is, &, (v)(u —v) € My, 4, . 0
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Lemma 3.6. If n € (0,m), then for each u € N}, there exist &, > 0 and
a differentiable function &, : B(0,e,) C WYP(RY) — R* such that &;(0) =
1, & (v)(u—v) € N} for allv € B(0,e,), and

((€.)'(0),v) = [P /RN |VuP~2VuVo + |[ulP~2uvdz

(s=r)
- s/ folul®uvda —77p-<s—f: 7"/ hn\u|“2uvd;ﬂ}
RN RN

[l = =0 [ fhulds]
for all v € WHP(RN).

Proof. Similar to the argument in Lemma[3.5] there exist £, > 0 and a differentiable
function ¢, : B(0,e,) € WHP(RY) — R* such that &, (0) = 1, & (v)(u —v) €
My, n, for all v € B(0,¢e,), Since

o= nlul? == [ fluds <o,
RN
thus, if €, small enough, by the continuity of the functions &, and g,, we have
(W& (0)(u—10))), & (V)(u—v))
=@ —=)l& W) (u—=0v)[f = (s—7) /]RN fol€y (0)(u —v)Pdz < 0.
and g,(&, (v)(u—v)) € Cli/n. O

Proposition 3.7. (i) Ifn € (0,1m0), then there exists a (PS)ay, ,, sequence {u,} C
Mfmhn mn Wl’p(RN) f07” Ifnvhn . ‘

(it) If n € (0,m0), then there exists a (PS).; sequence {un} C Ny in Whp(RY)
for Ifnvhn’ = 1,2,...,k.
Proof. Since the proof oi(i) is similar to that of (ii), but simpler, we only prove
(ii) here. We denote by N the closure of N, then we note that

@:NéuaNz, foreach i =1,2,... k.
From Lemma [3.2) and Lemma we obtain

i < minfag, p, + ape0h s i =1,2,...,k, 1 € (0,m0). (3.7)
Hence o
Yy = inf{ly, n,(u):u € Ni} fori=1,2,... k.
Fix some i € {1,2,...,k}. Applying the Ekeland variational principle [I7] there
exists a minimizing sequence {u,} C N} such that

2

1
Ifmhn (Un) < ’Yn + E? (38)
1 —
Ig, n,(un) < Iy n, (w) + EHU} —upl| forallw e N (3.9)

From (3.7) we may assume that u,, € Né for n sufficiently large. Applying Lemma
with u = u, we obtain the functional ; : B(0,e,,) — R for some &,, > 0
such that &, (w)(u, —w) € Nj. Choose 0 < p < &y, and u € W'P(RY) with
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u# 0. Set w, = ﬁ and 2} = & (w,)(un —w),). Since 2z} € N;, we deduce from
(B-9) that
1
Lty (2) = Ly (Un) 2 =25 = unl.
By the mean value theorem, we have

77/_

n 1 n
<I}n,hn(un)72p Up) + O(HZp —un|) > _gllzp — Un|-

Thus,

_ 1
(T, (un ), —wp) + (&, (wp) =1)(TG, g (un), tn—wp) = —— [z —un|+o(]| 25 —unl])-

n
(3.10)
Since &, (w,)(un —w,) € N}, and consequently from (3.10) we obtain

= A (), )+ (62, 000) = 1)U (1) = T (250 = )

1 n n
2 = llzp = unll + olllzy — unll)-
Thus,
(§ur, (wp) —1)

n

U
<I}n,h,, (Un), m> < <I},,,hn (un) — I}n,hn (), tun — wp)

P . (3.11)
Iz =l ollizg = wnl)
np P)
Since
2z — unll < pl&,, (wp)| + 1€, (wp) — 1 [lun]|

e €z, () — 1]

én (w,) — B

tim B2 0 < ez ),

p— p

if we let p — 0 in (3.11]) for a fixed n, and by Lemma (ii) we can find a constant
C > 0, independent of p, such that

u, C

(I%, 1, (un), H7ll> < — (1418 (O

We are done once we show that [[(§; )'(0)|| is uniformly bounded in n. By Lemma
(ii), Lemma [3.6| and the Holder inequality, we have

. ool
I e (RN S AR

We only need to show that

(= ) funll” = (5 — ) / fulunl*dz| > C
RN

for some C' > 0 and n large. We argue by way of contradiction. Assume that there
exists a subsequence {u,,} satisfy

o=l = =) [ Folunde = of0) (312)

By the fact that u, € M}, (un) and (3.12]), we obtain that

/ Jolun|*dz > 0.
RN

n

for some b > 0.
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So we have
fuall < 2 j;nf’nhnmmﬁ +0(1) (3.13)
p—r S° 1
n s—p 1). 3.14
lenll > (o)™ + () (3.14)
Then

—1

= Jen folun)®dz + 0(1));1} =
fRN folun|*dx

s—Pp
— / folun|®dx
p—7Jry~

(3.15)
However, by (3.13)-(3.14)), the Holder and Sobolev inequalities, combining with
8> 0and n € (0,10), we have

psfl
[ =

T fofanas) I un||” + o(1
T folanide) " = IR el - 0(1)

Lpr—r
p—

SS L 1—7r fé3
) Pl = bl e ] (1)
SS p—1
—> (nP
s—p fr}
fmax) (

K(up) > c(s,7)(

s

> Junl"[c(s, 7)(

> Jun["[e(s, 7)( IR, 2 7= =0 lIkl e ]+ o(1)

s—r
sS—p Lr=r
>d
for some d > 0 and n large enough. This is a contradiction to (3.15). So we have
If'mhn (Un) = 711:] + 0(1)
and I}mhn (up,) = 0in W=1(RY). Thus we complete the proof of (ii). O
Theorem 3.8. For each n € (0,m0), Equation (2.1) has a positive solution u, €

+ _ _
My, such that If, p, (un) = ay, n, = g b

Proof. By Proposition (i), there exists a (PS)a,, , sequence {u,} C My, p,, by
Lemma (ii) and Lemma there exist a subsequence {u,} and u,, in WHP(RY)
such that

Unp — u, weakly in WhP(RN),
Up — Uy a.e. in RY,
Uy — u, in LYRY) forl < ¢ < p*,
Vu, — Vu, a.e. in RN,
IV, P2V, — [Vu,|P"2Vu, in L71 (RY),

It is easy to see that u, is a solution of (2.1
Moreover, by the Egorov theorem and the Holder inequality and condition h €

LP%T(RN)7 we obtain
/RN hylup|"dz — /RN B Jun | de.

We claim that [, hy|u,|"dz # 0. If not,

funll = [ lual*da +o(0),
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and

11 .
-z d
G0 [ Flwlds

1 1 ps—r 1
= ];H’U/n”p — E/RN folun|®dx —n —=» ;/RN ho|up|"dx + o(1)
= afnvhn +0(1)7

this contradicts oy, », < 0. Thus, u, is a nontrivial solution of (2.1). Now we show
that u, — u, strongly in WHP(RY). If not, ||u,| < liminf, . |[u,], so we have

1 11, sen .
sy < Ity i) = = Dl = (2 = 0 [ ol
«

< lim Iy 4, (un) =

n—oo

. . . . _ +
this is a contradiction. Thus Iy, 5, (uy) = o, n,. At last, we show u, € My, . If

n

not, by Lemma we know that u, € M 7 By by Lemma there exist unique

td and t; such that tdu, € M;; h, and touy € My, and ty <ty = 1. Since
d

d2
%Ifnahn (tg—u’fl) = 0’ ﬁjfnvhn (tg—uﬂ) > 07
there exists ¢ € (t7,t, ] such that Iy . (t5u,) < I, n, (tu,). By Lemma

Ity (6 ) < Ip, o, (tun) < Ip, n, (tgun) = I, b, (),
which is a contradiction. Thus, Iy, n (uy) = ay, n, = a};’hn. Since Iy, n,(u,) =

Iy, h, (luy]) and |uy,| € MJ—”:JW by Lemma |2.3| and the maximum principle, we may
assume that u, is a positive solution of (2.1). O

Proposition 3.9. Assume that {u,} C M, , isa (PS). sequence, where ¢ <
aj, h, +ageo. Then there evists a subsequence, still denoted by {u,}, and ug in
WEP(RN) such that u, — ug strongly in WHP(RN) and Iy, 5, (uo) = c.

Proof. By Lemma (ii), there exists a subsequence {u,} and uy in W1P(RY)
such that
U, — ug weakly in WHP(RY).

First, we claim that ug = 0 is impossible. If not, by h € Lﬁ(RN), the Egorov
theorem and the Holder inequality, we have

lunll? = o(1). (3.16)
Moreover, {un} C M, , , we deduce from the Sobolev imbedding theorem that
lun|| > C  for some C >0, n=1,2,....

which contradicts to (3.16)). Thus, by Lemma ug is a nontrivial solution of (2.1])
and Iy, p, (o) > ay, n,. We write u, = ug + v, with v,, = 0 weakly in Wh#(RY).
By the Brezis-Lieb lemma [16], we have

/ f,,|un|pda::/ f,7|u0\”da:+/ FolomlPda + o(1)
RN RN RN
:/ fn|u0\pdx+/ FvnPdx + o(1).
RN RN
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Since {u,} is a bounded sequence in W1P(RY), we have {v,} is also a bounded
sequence in W1P(RY). Moreover, by h € Ly (RY), the Egorov theorem and the
Holder inequality, we have

/ h,,|vn|"dx:/ hn|un\Td:c—/ hop|ug|"dz + o(1) = o(1).
RN RN RN

Hence, for n large enough, we can conclude that

by + g0 > Ip o, (uo + vn)

1 1
> It b, (wo) + = lvn | — 7/ °|vn|®dx + 0(1)
p S JrN

1 1
> g+ ol =5 [Pl de +o(1),

we obtain ) )
Lijonll? - 7/ F2lonl*dz < g g + o(1). (3.17)
p S JrRN

Also from I} , (un) = o(1) in W—YHRY), {u,} is uniformly bounded and wuq is a

solution of (2.1]), we obtain
(I5, n, (un) s un) = [lon [P —/ [Zlonl*dz + o(1) = o(1). (3.18)
RN

We claim that and can be hold simultaneously only if {v,} admits a
subsequence which converges strongly to zero. If not, then |v,|| is bounded away
from zero; that is,

||vn|| > C  for some C > 0.

From (3.18)), it follows that
‘ s
/ Fvn|?dx > fpafoo’o + o(1).
RN §—P

By (3.17) and (3.18)), for n large enough

1 1
a0 < G- 0 [ el + o)
P S RN
1 » 1 oo s
= 7””71” -~ f |vn| dr + 0(1) < Qfoo 0,
p S JrRN

which is a contradiction. Therefore, u,, — ug strongly in WP (RY) and Iy, 5, (uo) =
C.

Proof of Theorem[I.1. By Lemma [3.2] Proposition and Proposition for
each n € (0,m0) and 7 € {1,2,...,k}, there exist a sequence {u,} C N, and
ul € WHP(RN)\{0} such that
It n, (un) =, + o(1),
I5, b, (un) = o(1)
and u!, — u} strongly in WP (RYN). Obviously, the function u} is a solution of the
equation (2.1) and Iy, 5, (up) = 7. Similar to the argument in Theorem [3.8 we
have uf, is positive. Since g}, (uf) € Cyp(z?), uy € M;:,,h,, and u}) € Mg, . where

u, is a positive solution of Eq.(2.1)) as in Theorem [3.8] This implies u,, uj and ué
are different for i # j.



EJDE-2014/17 EXISTENCE OF MULTIPLE SOLUTIONS 21

Letting Ao = 1, ", Ux(z) = )\ﬁun(/\l/p;v) and U;(z) = )\sipué()\l/px). We
obtain Uy and U; are positive solutions of the (1.1)) with ¢ = 1,2,... k. This
completes the proof. O

Remark 3.10. It is easy to see from the proof of Theorem that the solutions
Uy, Ui(i=1,2,...,k) satisfy

(1) Ul Lo @y, [Uillpoe rvy — 00 as A — 00

(2) Uy, (T3l nn) — 00 as X — 00 if p < s < B +p;

(3) 1UALo@s), [1Uillznn) = 0 as A = o0 if B +p < s < p"

Lemma 3.11. When1 <r <p<s<p* and N > 1, we have p(:f_;)—w > 0.
Proof. When N <pand 1 <r <p<s<p* obviously, we have
ps=7) (p—r)N
§—p p
We consider only the case N > p. Set
L(s)=p*(s =)= (p—7)N(s = p), s€ (p,p").
Then it is easy to see that

L(s) = min{L(p), L(p*)} = min{p*(p — 1), 77— 5

This completes the proof. ([l

> 0.

> 0.
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