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NONLINEAR ELLIPTIC PROBLEM OF 2-q-LAPLACIAN TYPE
WITH ASYMMETRIC NONLINEARITIES

DANDAN YANG, CHUANZHI BAI

Abstract. In this article, we study the nonlinear elliptic problem of 2-q-

Laplacian type

−∆u− µ∆qu = −λ|u|r−2u+ au+ b(u+)θ−1 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain. For a is between two eigenvalues, we

show the existence of three nontrivial solutions.

1. Introduction

In this article, we are interested in finding the multiple nontrivial weak solutions
to the nonlinear elliptic problem of 2-q-Laplacian type,

−∆u− µ∆qu = −λ|u|r−2u+ au+ b(u+)θ−1 in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded domain with samooth boundary ∂Ω, λ, µ > 0 are two
parameters, N > 2, 1 < min{q, r} ≤ max{q, r} < 2 < θ ≤ 2∗ = 2N

N−2 , a ∈ R, b > 0,
and u+ = max{u, 0}. ∆qu = div(|∇u|q−2∇u) is the q-Laplacian of u.

Paiva and Presoto [12] studied the semilinear elliptic problem with asymmetric
nonlinearities,

−∆u = −λ|u|q−2u+ au+ b(u+)p−1 in Ω,
u = 0 on ∂Ω.

(1.2)

Where N ≥ 3, 1 < q < 2 < p ≤ 2∗, a ∈ R, b > 0 and λ is a positive parameter.
Problem (1.2) is also closely related to the class of superlinear Ambrosetti-Prodi

problems [6],

−∆u = au+ (u+)p + f(x) in Ω. (1.3)

Further results for problem (1.3) can be found in [4, 5, 11, 14] and references cited
therein.
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Marano and Papageorgiou [10] obtained the existence of three solutions of the
(p, q)-Laplacian problem

−∆pu− µ∆qu = f(x, u) in Ω,
u = 0 on ∂Ω,

(1.4)

by using variational methods and truncation arguments. Nonlinear elliptic problems
involving the p-q-Laplacian operator is an active are of research; see [8, 9, 13, 15,
17, 18] and the references therein.

Motivated by the above works, we shall extend the results of problem (1.2) to
problem (1.1). By using variational methods, we obtain three solutions to (1.1).
We say that g is asymmetric when g satisfies the Ambrosetti-Prodi type condition

g− := lim
t→−∞

g(t)
t

< λk < g+ := lim
t→+∞

g(t)
t
.

Since problem (1.1) involves −∆ and −∆q, the arguments will be more compli-
cated, and more analysis and estimates are needed.

The eigenvalue problem of the Laplacian, in Ω ⊂ RN , has the form

−∆u = λu in H1
0 (Ω). (1.5)

By the Ljusternik-Schnirelman principle it is well known that there exists a non-
decreasing sequence of nonnegative eigenvalues 0 < λ1 < λ2 ≤ · · · ≤ λj ≤ . . . and
a correspondent eigenfunctions ϕj . Also, the first eigenvalue λ1 is simple and the
eigenfunctions associated with λ1 do not change sign.

Now we are ready to state our main results.

Theorem 1.1. Let N ≥ 3, 1 < min{q, r} ≤ max{q, r} < 2 < θ < 2∗ and λk < a <
λk+1. Then, for λ > 0 and µ > 0 small enough, problem (1.1) has at least three
nontrivial solutions.

Theorem 1.2. Let N ≥ 4, 1 < min{q, r} ≤ max{q, r} < 2 < θ = 2∗ and λk < a <
λk+1. Then, for λ > 0 and µ > 0 small enough, problem (1.1) has at least three
nontrivial solutions.

This article is organized as follows. In Section 2, we show some geometric con-
ditions to establish the Mountain-Pass levels and give a technical lemma which is
crucial in the proof of our main results. In Section 3, we establish the existence of
three nontrivial solutions for the nonlinear elliptic problem (1.1).

2. Preliminaries

In this article, ‖·‖p and |·|p denote the norms onW 1,p
0 (Ω) and Lp(Ω), respectively;

‖u‖p =
(∫

Ω

|∇u|pdx
)1/p

, |u|p =
(∫

Ω

|u|pdx
)1/p

.

For convenience, we substitute ‖ · ‖ for ‖ · ‖2. The best Sobolev constant S of the
embedding H1

0 (Ω) ↪→ L2∗(Ω) is denoted by

S = inf
u∈H1

0 (Ω)\{0}

‖u‖2

|u|22∗
.
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It is known that S is independent of Ω and is never achieved except when Ω = RN
(see [16]). Consider the energy functional Iλ,µ defined on H1

0 (Ω) given by

Iλ,µ(u) =
1
2
‖u‖2 +

µ

q
‖u‖qq +

λ

r

∫
Ω

|u|rdx− a

2

∫
Ω

|u|2dx− b

θ

∫
Ω

(u+)θdx. (2.1)

It is easy to know that Iλ,µ is of class C2 and there exists a one to one correspon-
dence between the weak solutions of (1.1) and the critical points of Iλ,µ on H1

0 (Ω).
By a weak solution of (1.1) we mean that u ∈ H1

0 (Ω) satisfying

〈I ′λ,µ(u), v〉 =
∫

Ω

[∇u∇v + µ|∇u|q−2∇u∇v]dx+ λ

∫
Ω

|u|r−2uvdx

− a
∫

Ω

uvdx− b
∫

Ω

(u+)θ−1vdx = 0

for all v ∈ H1
0 (Ω).

Denote by ϕi a normalized eigenvector relative to eigenvalue λi of (1.5). Let
Vk = 〈ϕ1, . . . , ϕk〉 and Wk = V ⊥k . Without loss of generality, we suppose 0 ∈ Ω,
and m ∈ N large enough so that B2/m ⊂ Ω, where B2/m denotes the ball of radius
2/m with center in 0. Consider the functions introduced in [7],

ζm(x) =


0 if x ∈ B1/m,

m|x| − 1 if x ∈ Am = B2/m \B1/m,

1 if x ∈ Ω \B2/m.

Set ϕmi = ζmϕi,
V mk = 〈ϕm1 , ϕm2 , . . . , ϕmk 〉

and Wm
k = (V mk )⊥. For each m ∈ N, define a positive cut-off function η ∈

C∞c (B1/m) such that η ≡ 1 in B1/2m, η ≤ 1 in B1/m and ‖∇η‖∞ ≤ 4m; take
ϕmk+1 = ηϕk+1. Then

suppu ∩ suppϕmk+1 = ∅ (2.2)
whenever u ∈ V mk . By [7], it is easy to check the following Lemma.

Lemma 2.1. As m→∞ we have

ϕmi → ϕi in H1
0 (Ω) and max

u∈Vmk :
R
Ω |u|2=1

‖u‖2 ≤ λk + ckm
2−N .

Corollary 2.2. For m large enough

V mk ⊕Wk = H1
0 . (2.3)

As an easy consequence of Lemma 2.1 we have the following decomposition of
H1

0 .

Lemma 2.3. Assume λ1 < a, 1 < min{q, r} ≤ max{q, r} < 2 < θ ≤ 2∗ and
λ, µ > 0. Then every (PS) sequence of Iλ,µ is bounded.

Proof. Suppose {un} ⊂ H1
0 (Ω) is a (PS) sequence of Iλ,µ; i.e., it satisfies∣∣∣1

2
‖un‖2 +

µ

q
‖un‖qq +

λ

r

∫
Ω

|un|rdx−
a

2

∫
Ω

|un|2dx−
b

θ

∫
Ω

(u+
n )θdx

∣∣∣ ≤ C, (2.4)∣∣∣ ∫
Ω

[∇un∇v + µ|∇un|q−2∇un∇v]dx+ λ

∫
Ω

|un|r−2unvdx

− a
∫

Ω

unvdx− b
∫

Ω

(u+
n )θ−1vdx

∣∣∣ ≤ εn‖v‖, ∀v ∈ H1
0 (Ω),

(2.5)
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where εn → 0 as n→∞. By (2.4) and (2.5), we obtain

C + εn‖un‖

≥
∣∣Iλ(un)− 1

2
〈I ′λ(un), un〉

∣∣
=
∣∣∣(µ
q
− µ

2
)
‖un‖qq +

(λ
r
− λ

2
) ∫

Ω

|un|rdx+
( b

2
− b

θ

) ∫
Ω

(u+
n )θdx

∣∣∣
≥
( b

2
− b

θ

) ∫
Ω

(u+
n )θdx.

(2.6)

Thus, we have ∫
Ω

(u+
n )θdx ≤ C + εn‖un‖. (2.7)

Moreover, by Hölder inequality, we have∫
Ω

(u+
n )2dx ≤ |Ω|

θ−2
θ

(∫
Ω

(u+
n )θdx

)2/θ

. (2.8)

On the other hand, by (2.5) we have

|〈I ′λ,µ(un), u−n 〉| =
∣∣‖u−n ‖2 + µ‖u−n ‖qq + λ|u−n |rr − a|u−n |22

∣∣ ≤ εn‖u−n ‖, (2.9)

with u− = max{−u, 0}. It follows from (2.4), (2.7), (2.8) and (2.9) that

1
2
‖u+

n ‖2 ≤
(µ

2
− µ

q

)
‖u−n ‖qq +

(λ
2
− λ

r

) ∫
Ω

|un|r

+
a

2

∫
Ω

(u+
n )2dx+

b

θ

∫
Ω

(u+
n )θdx+

1
2
|〈I ′λ,µ(un), u−n 〉|+ C

≤ a

2

∫
Ω

(u+
n )2dx+

b

θ

∫
Ω

(u+
n )θdx+ εn‖u−n ‖+ C

≤ εn‖un‖+ εn‖u−n ‖+ C.

(2.10)

Firstly, we show that (u+
n ) is bounded in H1

0 (Ω). Suppose by contradiction that
‖u+

n ‖ → ∞, by (2.10), we know that (u−n ) is also unbounded. Let wn = un/‖un‖.
Since {wn} is bounded in H1

0 (Ω), there exists w ∈ H1
0 (Ω) such that

wn ⇀ w in H1
0 (Ω),

wn → w in Ls, ∀1 ≤ s < 2∗,
wn → w a.e. in Ω.

From (2.10), there exists σ > 0 satisfying

‖u−n ‖ ≥ σ‖u+
n ‖2 (2.11)

whenever n is large. Notice that

w+
n =

u+
n

‖un‖
=

u+
n

(‖u+
n ‖2 + ‖u−n ‖2)1/2

≤ u+
n

(‖u+
n ‖2 + σ2‖u+

n ‖4)1/2
,

which implies that w ≤ 0. Furthermore, by

w−n =
u−n
‖un‖

=
u−n

(‖u+
n ‖2 + ‖u−n ‖2)1/2

=
u−n
‖u−n ‖

· ‖u−n ‖
(‖u+

n ‖2 + ‖u−n ‖2)1/2



EJDE-2014/170 NONLINEAR ELLIPTIC PROBLEM OF 2-q-LAPLACIAN TYPE 5

and (2.11), we obtain ‖w−n ‖ → 1. Hence, by (2.9),

− λ |u
−
n |rr

‖u−n ‖2
+ µ
‖u−n ‖qq
‖u−n ‖2

+ a
|u−n |2

‖u−n ‖2
→ 1. (2.12)

Recalling that q, r < 2, we obtain

‖u−n ‖qq
‖u−n ‖2

≤ |Ω|
2−q

2 ‖u−n ‖q−2 → 0, (2.13)

|u−n |rr
‖u−n ‖2

≤ |Ω|
2∗−r

2∗ S−
r

22∗ ‖u−n ‖
r

2∗−2 → 0. (2.14)

Moreover, by (2.11) and ‖w−n ‖ → 1, we have

u−n
‖u−n ‖

− u−n
‖un‖

=
u−n
‖un‖

( ‖un‖
‖u−n ‖

− 1
)
→ 0 in H1

0 (Ω).

Thus we may exchange ‖u−n ‖ for ‖un‖ in (2.12), and substituting (2.13) and (2.14)
into it, we obtain |w−n | → 1/

√
a, then w 6= 0. Taking v = ϕ1 in (2.5), one has∫

Ω

[∇wn∇ϕ1dx+ µ
‖un‖q−1

q

‖un‖

∫
Ω

|∇wn|q−2∇wn∇ϕ1dx

+
λ

‖un‖

∫
Ω

|un|r−2unϕ1dx− a
∫

Ω

wnϕ1dx−
b

‖un‖

∫
Ω

(u+
n )θ−1ϕ1dx→ 0;

that is,

(λ1 − a)
∫

Ω

wnϕ1dx+ µ
‖un‖q−1

q

‖un‖

∫
Ω

|∇wn|q−2∇wn∇ϕ1dx

+
λ

‖un‖

∫
Ω

|un|r−2unϕ1dx−
b

‖un‖

∫
Ω

(u+
n )θ−1ϕ1dx→ 0.

(2.15)

Since the second, the third and the fourth term above approach zero, it follows that

(λ1 − a)
∫

Ω

wϕ1dx = 0,

which is a contradiction, as w ≤ 0, w 6= 0 and λ1 < a, so that (u+
n ) is bounded.

Finally, assume that ‖un‖ → ∞ and ‖u+
n ‖ ≤ C for all n ∈ N. Taking v = wn in

(2.5), by (2.13) and
1
‖un‖

∫
Ω

(u+
n )θdx→ 0,

for θ ≤ 2∗, we obtain a|wn|22 → 1, so that wn → w in L2(Ω) with w 6= 0. Then by
(2.5) we obtain ∫

Ω

∇w∇vdx− a
∫

Ω

wvdx = 0 for all v ∈ H1
0 (Ω),

with w 6= 0 and w ≤ 0, which is a contradiction, as a is not the first eigenvalue.
Hence, we conclude that {un} must be bounded in H1

0 (Ω). �

In the subcritical case, 1 ≤ θ < 2∗, we can easily know according to the lemma
above, Iλ,µ satisfies the (PS) condition at every level.

Lemma 2.4. Let λ1 < a and θ = 2∗. For each λ, µ > 0, Iλ,µ satisfies the (PS)
condition at level c with c < 1

N b
2−N

2 SN/2.
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Proof. Let {un} ⊂ H1
0 (Ω) be a sequence satisfying

Iλ,µ(un)→ c and |〈I ′λ,µ(un), v〉| ≤ εn‖v‖p, ∀v ∈ H1
0 (Ω), (2.16)

with εn → 0 as n→∞. By Lemma 2.3 we obtain that {un} is bounded. Thus, by
passing to a subsequence, we have

un ⇀ u in H1
0 (Ω),

un → u in Ls, ∀1 ≤ s < 2∗,
un → u a.e. in Ω.

(2.17)

Since {u+
n } is bounded in H1

0 (Ω), from the Gagliardo-Nirenberg inequality it follows
that {u+

n } is also bounded in L2∗ . By passing to a subsequence again, we have
u+
n ⇀ u+ in L2∗ . Hence, we obtain by [11, Lemma 2.3] that

−∆u− µ∆qu = −λ|u|r−2u+ au+ b(u+)2∗−1, in Ω
u = 0 on ∂Ω,

(2.18)

Thus, by (2.18) we have

Iλ,µ(u) =
(µ
q
− µ

2
)
‖u‖qq +

(λ
r
− λ

2
) ∫

Ω

|u|rdx+
( b

2
− b

2∗
) ∫

Ω

(u+)2∗dx ≥ 0. (2.19)

Set wn = un − u. It is easy to check that

|u+
n − u+|ss ≤ |(un − u)+|ss = |w+

n |ss, 1 ≤ s ≤ 2∗. (2.20)

By (2.16) and the Brezis-Lieb Lemma, we have

‖wn‖2 + µ‖wn‖qq + λ|wn|rr − a|wn|22 − b|u+
n − u+|2

∗

2∗

= ‖un‖2 − ‖u‖2 + µ(‖un‖qq − ‖u‖qq) + λ(|un|rr − |u|rr)

− a(|un|22 − |u|22)− b
(
|u+
n |2

∗

2∗ − |u+|2
∗

2∗
)

+ on(1)

= 〈I ′λ,µ(un), un〉 − 〈I ′λ,µ(u), u〉+ o(1),

which implies that

lim
n→∞

[
‖wn‖2 + µ‖wn‖qq + λ|wn|rr − a|wn|22 − b|u+

n − u+|2
∗

2∗
]

= 0. (2.21)

Moreover, by (2.17) we have wn → 0 in Lr and L2. Thus, we have from (2.20) and
(2.21) that

‖wn‖2 + µ‖wn‖qq = b|u+
n − u+|2

∗

2∗ + o(1) ≤ b|w+
n |2

∗

2∗ + o(1). (2.22)

Without loss of generality, we assume that

‖wn‖2 = d+ o(1), ‖wn‖qq = h+ o(1). (2.23)

By (2.22), (2.23) and Sobolev inequality, we obtain

d ≥ S
(d+ µh

b

)2/2∗

≥ Sb−2/2∗d2/2∗ . (2.24)

If d = 0, then we complete the proof. Otherwise, (2.24) implies that

d ≥ SN/2b
2−N

2 . (2.25)
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Then by (2.16), (2.19) and the Brezis-Lieb Lemma, we conclude

c ≥ c− Iλ,µ(u) = Iλ,µ(un)− Iλ,µ(u) + o(1)

=
1
2
(
‖un‖2 − ‖u‖2

)
+
µ

q

(
‖un‖qq − ‖u‖qq

)
+
λ

r
(|un|rr − |u|rr)−

a

2
(
|un|22 − |u|22

)
− b

2∗
(
|u+
n |2

∗

2∗ − |u+|2
∗

2∗
)

+ o(1)

=
1
2
‖wn‖2 +

µ

q
‖wn‖qq +

λ

r
|wn|rr −

a

2
|wn|22 −

b

2∗
|u+
n − u+|2

∗

2∗ + o(1).

(2.26)

Let n→∞ in (2.26), we obtain by (2.22), (2.23), (2.25) and wn → 0 in Lr and L2

that

c ≥ d

2
+
µh

q
− d+ µh

2∗

=
(1

2
− 1

2∗
)
d+

(µ
q
− µ

2∗
)
h

≥
(1

2
− 1

2∗
)
d

≥ 1
N
SN/2b

2−N
2 ,

which is a contradiction. �

3. Main result

Firstly, we consider the existence of the nonnegative solution of (1.1) . Define
the functional I+

λ,µ : H1
0 (Ω)→ R as follows

I+
λ,µ(u) =

1
2
‖u‖2 +

µ

q
‖u‖qq +

λ

r

∫
Ω

(u+)rdx− a

2

∫
Ω

(u+)2dx− b

θ

∫
Ω

(u+)θdx. (3.1)

It follows that I+
λ,µ ∈ C1 and the critical points u+ of I+

λ,µ satisfy u+ ≥ 0 and
so are critical points of Iλ,µ as well, actually, (I+

λ,µ)′(u+)[(u+)−] = −‖(u+)−‖2 −
µ‖(u+)−‖qq = 0.

Similar to the proofs of Lemma 2.3 and Lemma 2.4, we can show that I+
λ,µ

satisfies the (PS) condition.

Lemma 3.1. Let 2 < θ ≤ 2∗. If λ, µ > 0, then I+
λ,µ satisfies the (PS) condition at

level c with c < 1
N S

N/2b
2−N

2 .

Lemma 3.2. The trivial solution u ≡ 0 is a local minimizer for I+
λ,µ, for all

λ, µ > 0.

Proof. It suffices to show that 0 is a local minimizer of I+
λ,µ in the topology (see

[3]). For u ∈ C1
0 (Ω), we have

I+
λ,µ(u) =

1
2
‖u‖2 +

µ

q
‖u‖qq +

λ

r

∫
Ω

(u+)rdx− a

2

∫
Ω

(u+)2dx− b

θ

∫
Ω

(u+)θdx

≥ λ

r

∫
Ω

(u+)rdx− a

2

∫
Ω

(u+)2dx− b

θ

∫
Ω

(u+)θdx

≥
(λ
r
− a

2
|u|2−rC0 −

b

θ
|u|θ−rC0

)∫
Ω

(u+)rdx ≥ 0
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whenever
a

2
|u|2−rC0 +

b

θ
|u|θ−rC0 ≤

λ

r
.

�

Lemma 3.3. There exists t0 > 0 such that I+
λ,µ(t0ϕ1) ≤ 0, for all λ, µ in a bounded

set.

Proof. Let ϕ1 be the positive eigenfunction associated to λ1, for t > 0, we have

I+
λ,µ(tϕ1) =

t2

2
‖ϕ1‖2 +

tqµ

q
‖ϕ1‖qq +

trλ

r

∫
Ω

ϕr1dx−
t2a

2

∫
Ω

ϕ2
1dx−

tθb

θ

∫
Ω

ϕθ1dx

=
t2

2
(λ1 − a)

∫
Ω

ϕ2
1dx+

tqµ

q
‖ϕ1‖qq +

trλ

r

∫
Ω

ϕr1dx−
tθb

θ

∫
Ω

ϕθ1dx

Since λ1 < a and q, r < 2 < θ, there exists a choice of t0 > 0 such that I+
λ,µ(t0ϕ1) ≤

0 for λ, µ in a bounded set. �

Define
c+λ,µ = inf

γ∈Γ+
sup
t∈[0,1]

I+
λ,µ(γ(t)),

where
Γ+ = {γ ∈ C([0, 1], γ(0) = 0, γ(1) = t0ϕ1}.

On the other hand, by the proof of Lemma 3.3, we obtain

I+
λ,µ(tϕ1) ≤ tqµ

q
‖ϕ1‖qq +

trλ

r

∫
Ω

ϕr1dx.

Then, if λ and µ are small enough, c+λ,µ <
1
N S

N/2b
2−N

2 , consequently, by means
of the Mountain Pass Theorem, c+λ,µ is a critical value of I+

λ,µ. Thus, we have the
following result.

Lemma 3.4. Let N > 2, 1 < min{q, r} ≤ max{q, r} < 2 < θ ≤ 2∗ and λ1 < a. If
λ, µ are small enough, then (1.1) has at least a nontrivial positive solution.

To obtain the negative solution, consider the functional I−λ,µ : H1
0 (Ω)→ R given

by

I−λ,µ(u) =
1
2
‖u‖2 +

µ

q
‖u‖qq +

λ

r

∫
Ω

(u−)rdx− a

2

∫
Ω

(u−)2dx. (3.2)

Again, I−λ,µ ∈ C1 and the critical points u− of I−λ,µ satisfy u− ≤ 0 and so are
critical points of Iλ,µ as well. We will apply once again the mountain pass theorem
to obtain a critical point of I−λ,µ.

Lemma 3.5. The trivial solution u ≡ 0 is a local minimizer for I−λ,µ, for all
λ, µ > 0.

Proof. It suffices to show that 0 is a local minimizer of I−λ,µ in the topology. For
u ∈ C1

0 (Ω), we have

I−λ,µ(u) =
1
2
‖u‖2 +

µ

q
‖u‖qq +

λ

r

∫
Ω

(u−)rdx− a

2

∫
Ω

(u−)2dx

≥ λ

r

∫
Ω

(u−)rdx− a

2

∫
Ω

(u−)2dx
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≥
(λ
r
− a

2
|u|2−rC0

) ∫
Ω

(u−)rdx ≥ 0

whenever a
2 |u|

2−r
C0 ≤ λ/r. �

Lemma 3.6. There exists t0 > 0 such that I−λ,µ(−t0ϕ1) ≤ 0, for all λ, µ in a
bounded set.

Proof. For t > 0, we have

I−λ,µ(−tϕ1) =
t2

2
‖ϕ1‖2 +

tqµ

q
‖ϕ1‖qq +

trλ

r

∫
Ω

ϕr1dx−
t2a

2

∫
Ω

ϕ2
1dx

=
t2

2
(λ1 − a)

∫
Ω

ϕ2
1dx+

tqµ

q
‖ϕ1‖qq +

trλ

r

∫
Ω

ϕr1dx.

Since λ1 < a and r, q < 2, there exists a choice of t0 > 0 which proves the lemma.
�

As in the nonnegative solution case, we obtain a critical value

c−λ,µ = inf
γ∈Γ−

sup
t∈[0,1]

I−λ,µ(γ(t)),

where
Γ− = {γ ∈ C([0, 1] : γ(0) = 0, γ(1) = −t0ϕ1}.

Similar to the proof of Lemma 3.5, we obtain the estimate

c−λ,µ ≤ max
s∈[0,1]

I−λ,µ(−st0ϕ1) ≤ tq0µ

q
‖ϕ1‖qq +

tr0λ

r

∫
Ω

ϕr1dx,

which implies that if λ, µ are small enough, then we obtain the estimate c−λ,µ <
1
N S

N/2b
2−N

2 , consequently, by the Mountain Pass Theorem, c−λ,µ is a critical value
of I−λ,µ. Hence, we obtain another important result.

Lemma 3.7. Let N > 2, 1 < min{q, r} ≤ max{q, r} < 2 < θ ≤ 2∗ and λ1 < a. If
λ, µ small enough, then (1.1) has at least a nontrivial negative solution.

For Wk and V mk are as in Section 2, we now consider the existence of the third
solution.

Lemma 3.8. There exist α > 0 and ρ > 0 such that

Iλ,µ(u) ≥ α
whenever u ∈Wk and ‖u‖ = ρ.

Proof. If u ∈Wk, then

Iλ,µ(u) =
1
2
‖u‖2 +

µ

q
‖u‖qq +

λ

r

∫
Ω

|u|rdx− a

2

∫
Ω

|u|2dx− b

θ

∫
Ω

(u+)θdx

≥ 1
2
‖u‖2 − a

2

∫
Ω

|u|2dx− b

θ

∫
Ω

(u+)θdx

≥
(1

2
− a

2λk+1

)
‖u‖2 − b

θ
|u|θθ

≥ ‖u‖2
(
A−B‖u‖θ−2

)
,

with A,B > 0. Then it suffices to take ρ < (A/B)
1
θ−2 . �
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Lemma 3.9. Given λ0 > 0 and µ0 > 0, there exist m0 ∈ N and R > ρ such that

Iλ,µ(u) ≤ µ

q
‖u‖qq +

λ

r

∫
Ω

|u|rdx,

whenever u ∈ ∂Qm, where Qm = (BR ∩ V mk ) ⊕ [0, Rϕmk+1], m ≥ m0, λ ≤ λ0 and
µ ≤ µ0. Henceforth ∂ means the boundary relative to subspace V mk .

Proof. Let m be large enough and ak < a such that

λk + ckm
2−N ≤ ak < a. (3.3)

For u ∈ V mk , by Lemma 2.1 and (3.3) one can obtain

Iλ,µ(u) =
1
2
‖u‖2 +

µ

q
‖u‖qq +

λ

r

∫
Ω

|u|rdx− a

2

∫
Ω

|u|2dx− b

θ

∫
Ω

(u+)θdx

≤
(1

2
− a

2ak

)
‖u‖2 +

µ

q
‖u‖qq +

λ

r

∫
Ω

|u|rdx− b

θ

∫
Ω

(u+)θdx

≤ µ

q
‖u‖qq +

λ

r

∫
Ω

|u|rdx,

(3.4)

and
Iλ,µ(ξϕmk+1)

=
ξ2

2
‖ϕmk+1‖2 +

µξq

q
‖ϕmk+1‖qq +

λξr

r

∫
Ω

|ϕmk+1|rdx

− aξ2

2

∫
Ω

|ϕmk+1|2dx−
bξθ

θ

∫
Ω

((ϕmk+1)+)θdx

≤ ξ2

2
‖ϕmk+1‖2 +

µ0ξ
q

q
‖ϕmk+1‖qq +

λ0ξ
r

r

∫
Ω

|ϕmk+1|rdx−
bξθ

θ

∫
Ω

((ϕmk+1)+)θdx.

(3.5)

Since ϕmk+1 → ϕk+1 in W 1,2
0 (Ω) as m → ∞, ϕk+1 changes of sign, and θ > 2, q, r,

there exist m0 ∈ N and R > 0 such that

Iλ,µ(Rϕmk+1) ≤ 0 ∀m ≥ m0. (3.6)

Then combining (2.2), (3.4) and (3.6) leads to

Iλ,µ(u) ≤ µ

q
‖u‖qq +

λ

r

∫
Ω

|u|rdx, (3.7)

whenever u ∈ V mk ∪ (V mk ⊕Rϕmk+1). By (3.5), there exists β > 0 satisfying

Iλ,µ(ξϕmk+1) ≤ β, (3.8)

for all ξ ≥ 0 and m ≥ m0. Since a > λk, we may take R > 0 such that

Iλ,µ(u) ≤
(1

2
− a

2λk

)
‖u‖2 +

µ

q
‖u‖qq +

λ

r

∫
Ω

|u|rdx

≤ −β +
µ

q
‖u‖qq +

λ

r

∫
Ω

|u|rdx.
(3.9)

Hence, by (2.2), (3.8) and (3.9) we obtain

Iλ,µ(u+ ξϕmk+1) = Iλ,µ(u) + Iλ,µ(ξϕmk+1) ≤ µ

q
‖u‖qq +

λ

r

∫
Ω

|u|rdx (3.10)

for all m ≥ m0 and u ∈ ∂(BR ∩ V mk ). Thus, by (3.7) and (3.10), we complete the
proof. �
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Proof of Theorem 1.1. For the subcritical case, if θ < 2∗, α is given by Lemma 3.8.
Take λ and µ small enough in order that

µ

q
‖u‖qq +

λ

r

∫
Ω

|u|rdx < α

for all u ∈ ∂Qm. Then by Lemma 3.9 we have

Iλ,µ(u) < α

whenever u ∈ ∂Qm and m ≥ m0. Applying the Linking Theorem, Iλ,µ possesses a
critical point u at level cλ,µ, where

cλ,µ = inf
Γ

max
u∈Qm

Iλ,µ(η(u)),

Γ = {η ∈ C(Qm,W 1,p
0 (Ω)); η = Id on ∂Qm},

Finally, since cλ,µ ≥ α, Iλ,µ(u) ≥ α > 0 and c±λ,µ → 0 as λ, µ→ 0. Hence, if λ, µ are
small enough c±λ,µ < α ≤ cλ,µ, and we know that u may be neither of the critical
points found above for I+

λ,µ and I−λ,µ; that is, u is the third solution of (1.1). Thus,
combining Lemmas 3.4 and 3.7, we conclude that (1.1) has at least three nontrivial
solutions. �

Proof of Theorem 1.2. For the critical case, θ = 2∗. Consider the family of func-
tions taken from [1]:

uε =
CN ε

(N−2)/2

(ε2 + |x|2)(N−2)/2
, ε > 0,

where
CN = (N(N − 2))(N−2)/4.

Let umε = ηuε, where η is given as section 2, and Qεm = (BR ∩ V mk ) ⊕ [0, Rumε ].
Replacing umε by ϕmk+1 in Lemma 3.7, we obtain

Iλ,µ(u) ≤ µ

q
‖u‖qq +

λ

r

∫
Ω

|u|rdx, ∀u ∈ ∂Qεm

whenever m is large. Hence, to conclude the proof of Theorem 1.2, it remains to
show that

sup
u∈Qεm

Iλ,µ(u) <
1
N
SN/2b

2−N
2 (3.11)

for all ε, λ and µ small enough. Let

J(u) =
1
2
‖u‖2 − a

2

∫
Ω

|u|2dx− b

2∗

∫
Ω

(u+)2∗dx.

Then, we have

Iλ,µ(u) = J(u) +
λ

r

∫
Ω

|u|rdx+
µ

q
‖u‖qq.

It is sufficient to prove that there exist m0 > 0 and ε0 > 0 such that

sup
u∈Qεm

J(u) <
1
N
SN/2b

2−N
2

for all m ≥ m0 and ε < ε0. It is not difficult to obtain the following expressions [2]:∫
Ω

|∇umε |2dx = SN/2 +O(εN−2), (3.12)
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Ω

|umε |2
∗
dx = SN/2 +O(εN ). (3.13)

Moreover, we obtain∫
Ω

|umε |2dx =
∫
B(0,1/m)

|uε|2dx+O(εN−2)

≥
∫
B(0,ε)

C2
N ε

N−2

[2ε2]N−2
+
∫
ε<|x|<1/m

C2
N ε

N−2

[2|x|2]N−2
+O(εN−2)

=

{
dε2| ln ε|+O(ε2), if N = 4,
dε2 +O(εN−2), if N ≥ 5,

(3.14)

where d is a positive constant. If N = 4, according (3.12), (3.13) and (3.14), one
has

‖umε ‖2 − a|umε |2

|umε |22∗
≤ S2 − adε2| ln ε|+O(ε2)

(S2 +O(ε4))1/2

= S − adε2| ln ε|S−1 +O(ε2) < S,

for ε > 0 sufficiently small. And similarly, if N ≥ 5, we obtain

‖umε ‖2 − a|umε |2

|umε |22∗
≤ SN/2 − adε2 +O(εN−2)

(SN/2 +O(εN ))2/2∗

= S − adε2S(2−N)/2 +O(εN−2) < S,

for ε > 0 sufficiently small. Let u = v + tumε ∈ Qεm. By simple computation, we
obtain

max
t≥0

J(tumε ) =
b

2−N
2

N

(‖umε ‖2 − a|umε |2
|umε |22∗

)N/2
<

1
N
SN/2b

2−N
2 . (3.15)

Fix m0 > 0 such that λk + ckm
2−N
0 ≤ σ < a. Then, for m ≥ m0, we obtain

J(v) =
1
2
‖v‖2 − a

2

∫
Ω

|v|2dx− b

2∗

∫
Ω

(v+)2∗dx

≤ 1
2
‖v‖2 − a

2
|v|2 ≤ σ

2
|v|2 − a

2
|v|2 ≤ 0.

(3.16)

From (3.15) and (3.16), we obtain

J(u) = J(v + tumε ) = J(v) + J(tumε ) ≤ J(tumε ) <
1
N
SN/2b

2−N
2 .

So, (3.11) holds. �

Letting µ→ 0 in Theorem 1.1 and Theorem 1.2, we easily show that Theorems
1.1 and 1.2 extend the main results in Paiva and Presoto [12].
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