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INVERSE PROBLEM OF DETERMINING THE COEFFICIENTS
IN A DEGENERATE PARABOLIC EQUATION

NADIYA HUZYK

Abstract. We consider the inverse problem of identifying the time-dependent

coefficients in a degenerate parabolic equation. The conditions of existence

and uniqueness of the classical solution to this problem are established. We
investigate the case of weak power degeneration.

1. Introduction

Inverse problems of determining simultaneously several coefficients in parabolic
equations without degeneration are studied in many articles. These unknown pa-
rameters can depend on spatial variables [1]-[3] or on time variables [10]-[11].

The inverse problems for the degenerate parabolic equation are rarely investi-
gated. Sufficient conditions for the existence and uniqueness of classical solutions
to inverse problems of identification for the time-dependent leading coefficient in a
degenerate parabolic equation in a domain with known boundary are established
in [13, 12], and for a free boundary domain in [4, 9]. Both cases of weak and
strong power degeneration are investigated. The conditions of determination for
the time-dependent lower coefficients in the parabolic equations with weak power
degeneration in a fixed boundary domain are found in [5] and in a free boundary
domain in [6].

In this article we consider an inverse problem of identifying simultaneously the
two unknown time-dependent parameters in a one-dimensional degenerate parabolic
equation. It is known that the leading coefficient of this equation is the product of
the power function which caused degeneration and an unknown function of time.
Our aim is to establish the conditions of existence and uniqueness of the classical
solution to this problem in the case of weak degeneration.

2. Statement of the problem

In a domain QT = {(x, t) : 0 < x < h, 0 < t < T} we consider an inverse
problem of determining the time dependent coefficients a = a(t) and b = b(t) in the
one-dimensional degenerate parabolic equation

ut = a(t)tβuxx + b(t)ux + c(x, t)u+ f(x, t) (2.1)
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with initial condition
u(x, 0) = ϕ(x), x ∈ [0, h], (2.2)

boundary conditions

u(0, t) = µ1(t), u(h, t) = µ2(t), t ∈ [0, T ] (2.3)

and over-determination conditions

a(t)tβux(0, t) = µ3(t), t ∈ [0, T ], (2.4)∫ h

0

u(x, t)dx = µ4(t), t ∈ [0, T ], (2.5)

where β is a known number.

Definition 2.1. A triplet of functions (a, b, u) ∈ (C[0, T ])2×C2,1(QT )∩C1,0(QT ),
with a(t) > 0, t ∈ [0, T ] is called a solution to the problem (2.1)-(2.5) if it verifies
the equation (2.1) and conditions (2.2)-(2.5).

We will investigate the case of weak power degeneration, when 0 < β < 1.

3. Existence of a solution

We use the following assumptions:

(A1) ϕ ∈ C2[0, h], µ3(t) = µ3,0(t)tβ , µ3,0 ∈ C[0, T ], µi ∈ C1[0, T ], i = 1, 2, 4,
c, f ∈ C(QT ) and satisfy the Hölder condition with respect to x uniformly
to t;

(A2) ϕ′(x) > 0, x ∈ [0, h], µ3,0(t) > 0, µ2(t)− µ1(t) 6= 0, t ∈ [0, T ];
(A3) ϕ(0) = µ1(0), ϕ(h) = µ2(0),

∫ h
0
ϕ(x)dx = µ4(0).

Theorem 3.1. Under assumptions (A1)–(A3), problem (2.1)–(2.5) has a solution
(a, b, u) for x ∈ [0, h] and t ∈ [0, T0], where the number T0, 0 < T0 ≤ T , is defined
by the data.

Proof. First of all we reduce the problem (2.1)–(2.5) to the equivalent system of
equations. Suppose temporary that a = a(t) and b = b(t) are the known functions.
Making the substitution

u(x, t) = ũ(x, t) + ϕ(x) + µ1(t)− µ1(0) +
x

h

(
µ2(t)− µ1(t)− µ2(0) + µ1(0)

)
(3.1)

we reduce the direct problem (2.1)–(2.3) to the problem with respect to function
ũ = ũ(x, t) with homogeneous initial and boundary conditions:

ũt = a(t)tβ ũxx + b(t)ũx + c(x, t)ũ+ f(x, t)− µ′1(t)− x

h
(µ′2(t)− µ′1(t))

+ a(t)tβϕ′′(x) + b(t)
(
ϕ′(x) +

1
h

(µ2(t)− µ1(t)− µ2(0) + µ1(0))
)

+ c(x, t)
(
ϕ(x) + µ1(t)− µ1(0) +

x

h
(µ2(t)− µ1(t)− µ2(0) + µ1(0))

)
,

(x, t) ∈ QT ,

(3.2)

ũ(x, 0) = 0, x ∈ [0, h], (3.3)

ũ(0, t) = ũ(h, t) = 0, t ∈ [0, T ]. (3.4)
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For arbitrary functions b = b(t) and a = a(t) > 0 continuous on [0, T ] problem
(3.2)–(3.4) is equivalent to the equation

ũ(x, t) =
∫ t

0

∫ h

0

G1(x, t, ξ, τ)
(
b(τ)ũξ + c(ξ, τ)ũ+ f(ξ, τ)− µ′1(τ)

− ξ

h
(µ′2(τ)− µ′1(τ)) + a(τ)τβϕ′′(ξ) + b(τ)

(
ϕ′(ξ) +

1
h

(µ2(τ)

− µ1(τ)− µ2(0) + µ1(0))
)

+ c(ξ, τ)
(
ϕ(ξ) + µ1(τ)− µ1(0)

+
ξ

h
(µ2(τ)− µ1(τ)− µ2(0) + µ1(0))

)
dξ dτ,

(3.5)

where G1 = G1(x, t, ξ, τ) is a Green function of the first value-boundary problem
for the heat equation

ũt = a(t)tβ ũxx. (3.6)

It is known [7, p. 13], that the Green functions Gk = Gk(x, t, ξ, τ), k = 1, 2 of the
first (k = 1) or the second (k = 2) value-boundary problem for (3.6) have the form

Gk(x, t, ξ, τ) =
1

2
√
π(θ(t)− θ(τ))

+∞∑
n=−∞

(
exp

(
− (x− ξ + 2nh)2

4(θ(t)− θ(τ))

)
+ (−1)k exp

(
− (x+ ξ + 2nh)2

4(θ(t)− θ(τ))

))
, k = 1, 2,

(3.7)

where θ(t) =
∫ t
0
a(τ)τβdτ .

Put v(x, t) ≡ ux(x, t). Using (3.1), (3.5), we reduce the direct problem (2.1)-(2.3)
to the system of integral equations

u(x, t) = ϕ(x) + µ1(t)− µ1(0) +
x

h

(
µ2(t)− µ1(t)− µ2(0) + µ1(0)

)
+
∫ t

0

∫ h

0

G1(x, t, ξ, τ)
(
b(τ)v(ξ, τ) + c(ξ, τ)u(ξ, τ) + f(ξ, τ)

− µ′1(τ)− ξ

h
(µ′2(τ)− µ′1(τ)) + a(τ)τβϕ′′(ξ)

)
dξ dτ, (x, t) ∈ QT ,

(3.8)

v(x, t) = ϕ′(x) +
1
h

(
µ2(t)− µ1(t)− µ2(0) + µ1(0)

)
+
∫ t

0

∫ h

0

G1x(x, t, ξ, τ)
(
b(τ)v(ξ, τ) + c(ξ, τ)u(ξ, τ) + f(ξ, τ)

− µ′1(τ)− ξ

h
(µ′2(τ)− µ′1(τ)) + a(τ)τβϕ′′(ξ)

)
dξ dτ, (x, t) ∈ QT .

(3.9)

Note that we differentiate (3.8) with respect to x in order to find v = v(x, t). Let
us study the behavior of the integrals on the right-hand sides of the formulas (3.8),
(3.9). Using (3.7), it is easy to verify that∫ h

0

G1(x, t, ξ, τ)dξ ≤ 1,
∫ h

0

|G1x(x, t, ξ, τ)|dξ ≤ C1√
θ(t)− θ(τ)

. (3.10)

Then from (3.8) and (3.9), we deduce that

I1 ≡
∣∣∣∫ t

0

∫ 1

0

G1(x, t, ξ, τ)
(
b(τ)v(ξ, τ) + c(ξ, τ)u(ξ, τ) + f(ξ, τ)− µ′1(τ)
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− ξ

h
(µ′2(τ)− µ′1(τ)) + a(τ)τβϕ′′(ξ)

)
dξ dτ

∣∣∣
≤ C2t,

I2 ≡
∣∣∣∫ t

0

∫ 1

0

G1x(x, t, ξ, τ)
(
b(τ)v(ξ, τ) + c(ξ, τ)u(ξ, τ) + f(ξ, τ)− µ′1(τ)

− ξ

h
(µ′2(τ)− µ′1(τ)) + a(τ)τβϕ′′(ξ)

)
dξ dτ

∣∣∣
≤ C3

∫ t

0

dτ√
θ(t)− θ(τ)

≤ C4

∫ t

0

dτ√
tβ+1 − τβ+1

≤ C5t
1−β

2

∫ 1

0

dz√
1− zβ+1

≤ C6t
1−β

2 .

Taking into account that 0 < β < 1, we conclude that the integrals on the right-
hand sides of the formulas (3.8), (3.9) tend to zero as t tends to zero.

Under the conditions of the Theorem 3.1 we can represent equations (2.4), (2.5)
in the form

a(t) =
µ3(t)

tβv(0, t)
, t ∈ [0, T ], (3.11)

b(t) =
1

µ2(t)− µ1(t)

(
µ′4(t) + µ3(t)− a(t)tβv(h, t)

−
∫ h

0

(c(x, t)u(x, t) + f(x, t))dx
)
, t ∈ [0, T ].

(3.12)

To this end, it suffices to differentiate (2.5) with respect to t.
Consequently, problem (2.1)–(2.5) is reduced to the system of equations (3.8),

(3.9), (3.11), (3.12) with respect to the unknowns u = u(x, t), v = v(x, t), a = a(t),
b = b(t). It follows from the way of derivation of (3.8), (3.9), (3.11), (3.12) that
if (a, b, u) is a solution to the problem (2.1)-(2.5) then (u, v, a, b) is a continuous
solution to the system of equations (3.8), (3.9), (3.11), (3.12). On the other hand,
if (u, v, a, b) ∈ (C(QT ))2× (C[0, T ])2, a(t) > 0, t ∈ [0, T ] is a solution to the system
(3.8), (3.9), (3.11), (3.12), than (a, b, u) is a solution to the inverse problem (2.1)-
(2.5) in the sense of the above definition. Indeed, using the uniqueness properties
of the solutions to the system of Volterra integral equations of the second kind it is
easy to see that v(x, t) ≡ ux(x, t). So it follows from (3.8) that function u = u(x, t)
is a solution to the equation

u(x, t) = ϕ(x) + µ1(t)− µ1(0) +
x

h

(
µ2(t)− µ1(t)− µ2(0) + µ1(0)

)
+
∫ t

0

∫ h

0

G1(x, t, ξ, τ)
(
b(τ)uξ(ξ, τ) + c(ξ, τ)u(ξ, τ) + f(ξ, τ)

− µ′1(τ)− ξ

h
(µ′2(τ)− µ′1(τ)) + a(τ)τβϕ′′(ξ)

)
dξ dτ.

This means that u ∈ C2,1(QT )∩C1,0(QT ) is a solution to (2.1)–(2.3). Then we can
rewrite (3.12) in the form

a(t)tβ(ux(h, t)−ux(0, t))+b(t)(µ2(t)−µ1(t))+
∫ h

0

(c(x, t)u(x, t)+f(x, t))dx = µ′4(t)
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or , using (2.1), (2.3), in the form∫ h

0

ut(x, t)dx = µ′4(t).

We integrate this equality with respect to time variable from 0 to t. Taking into
account compatibility conditions, we obtain (2.5). The validity of (2.4) follows from
(3.11).

Now we study the system of equations (3.8), (3.9), (3.11), (3.12). We will apply
the Schauder fixed point theorem for a compact operator to this system. For this
aim we first establish a priori estimates for the solutions to (3.8), (3.9), (3.11),
(3.12).

We estimate the functions u = u(x, t), v = v(x, t) taking into account (3.8),
(3.9). We conclude from the assumption of Theorem 3.1 that only the first terms
on the right-hand side of (3.8), (3.9) respectively are non equiv to zero. The sum
of the rest terms tend to zero when t tends to zero. So, there exists the number
t1, 0 < t1 ≤ T , such that∣∣∣µ1(t)− µ1(0) +

x

h

(
µ2(t)− µ1(t)− µ2(0) + µ1(0)

)
+
∫ t

0

∫ h

0

G1(x, t, ξ, τ)
(
b(τ)v(ξ, τ) + c(ξ, τ)u(ξ, τ) + f(ξ, τ)

− µ′1(τ)− ξ

h
(µ′2(τ)− µ′1(τ)) + a(τ)τβϕ′′(ξ)

)
dξ dτ

∣∣∣
≤ M0

2
, (x, t) ∈ [0, h]× [0, t1],

(3.13)

ϕ′(x)
2

+
µ2(t)− µ1(t)− µ2(0) + µ1(0)

h

+
∫ t

0

∫ h

0

G1x(x, t, ξ, τ)
(
b(τ)v(ξ, τ) + c(ξ, τ)u(ξ, τ) + f(ξ, τ)− µ′1(τ)

− ξ

h
(µ′2(τ)− µ′1(τ)) + a(τ)τβϕ′′(ξ)

)
dξ dτ ≥ 0, (x, t) ∈ [0, h]× [0, t1],

(3.14)

where M0 ≡ maxx∈[0,h] |ϕ(x)| > 0. Then from (3.8), we obtain

|u(x, t)| ≤ 3M0

2
≡M1, (x, t) ∈ [0, h]× [0, t1]. (3.15)

In addition, from (3.9) we conclude that

v(x, t) ≥ ϕ′(x)
2
≥

minx∈[0,h] ϕ
′(x)

2
≡M2 > 0, (x, t) ∈ [0, h]× [0, t1] (3.16)

and from (3.11),

a(t) ≤
max[0,T ] µ3,0(t)

M2
≡ A1, t ∈ [0, t1]. (3.17)

Denote V (t) = maxx∈[0,h] v(x, t). Taking into account (3.15), from (3.12) we obtain

|b(t)| ≤ C7 + C8a(t)tβV (t), t ∈ [0, t1]. (3.18)
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Taking into account (3.15), (3.18), from (3.9) we obtain the following inequality for
V = V (t),

V (t) ≤ C9 + C10

∫ t

0

1√
θ(t)− θ(τ)

dτ + C11

∫ t

0

V (τ)√
θ(t)− θ(τ)

dτ

+ C12

∫ t

0

a(τ)τβV 2(τ)√
θ(t)− θ(τ)

dτ, t ∈ [0, t1].
(3.19)

On the other hand, from (3.11) we find that

a(t) ≥ µ3(t)
tβV (t)

, t ∈ [0, T ], (3.20)

or
1
a(t)

≤ tβV (t)
µ3(t)

.

Using this inequality, from (3.19) we obtain

V1(t) ≤ C13 + C14

∫ t

0

a(τ)τβV 2
1 (τ)

µ3(τ)
√
θ(t)− θ(τ)

dτ, t ∈ [0, t1], (3.21)

where V1(t) = V (t) + 1
2 .

Applying the Cauchy and Cauchy-Buniakowski inequalities to the squared in-
equality (3.21), we conclude

V 2
1 (t) ≤ 2C2

13 + 2C2
14

∫ t

0

V 4
1 (τ)dτ√
θ(t)− θ(τ)

∫ t

0

a2(τ)τ2βdτ

µ2
3(τ)

√
θ(t)− θ(τ)

. (3.22)

Let us consider the integral

J1 =
∫ t

0

a2(τ)τ2βdτ

µ2
3(τ)

√
θ(t)− θ(τ)

.

Using (3.17) and the definition of the function θ = θ(t), we find that

θ(t) ≤ A1

(1 + β)
t1+β .

Then

t ≥ (θ(t))
1

1+β

( (1 + β)
A1

) 1
1+β

.

Taking into account (3.17) and the conditions of Theorem 3.1, we obtain

J1 ≤ C15

∫ t

0

a(τ)τβdτ
τβ
√
θ(t)− θ(τ)

≤ C16

∫ t

0

a(τ)τβdτ

θ(τ)
β

1+β
√
θ(t)− θ(τ)

.

Making the substitution z = θ(τ)/θ(t), we obtain

J1 ≤ C17(θ(t))
1−β

2(1+β)

∫ 1

0

dz

z
β

1+β
√

1− z
≤ C18. (3.23)

Using (3.23) in (3.22), we derive the inequality

V 2
1 (t) ≤ C19 + C20

∫ t

0

V 4
1 (τ)dτ√
θ(t)− θ(τ)

.
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We replace t by σ , then multiply it by a(σ)σβ

µ3(σ)
√
θ(t)−θ(σ)

, and then integrate with

respect to σ from 0 to t. Taking into account (3.23) and∫ t

τ

a(σ)σβdσ√
(θ(t)− θ(σ))(θ(σ)− θ(τ))

= π,

we deduce that∫ t

0

a(σ)σβV 2
1 (σ)

µ3(σ)
√
θ(t)− θ(σ)

dσ ≤ C21 + C22

∫ t

0

V 4
1 (τ)
τβ

dτ.

Using this inequality in (3.21), we derive the inequality

V1(t) ≤ C23 + C24

∫ t

0

V 4
1 (τ)
τβ

dτ.

Denote H(t) = C23 + C24

∫ t
0
V 4

1 (τ)
τβ dτ . Differentiating, we find

H ′(t) = C24
V 4

1 (t)
tβ

≤ C24
H4(t)
tβ

.

We integrate to obtain

H(t) ≤
C23

3
√

(1− β)
3
√

1− β − 3C3
23C24t1−β

≤M3, t ∈ [0, t2],

where the number t2, 0 < t2 < T satisfies

1− β − 3C3
23C24t

1−β
2 > 0. (3.24)

This implies
v(x, t) ≤M3, (x, t) ∈ [0, h]× [0, t2], (3.25)

where the constant M3 depends on the data.
Using (3.25), from (3.18), (3.20) we obtain the estimates

a(t) ≥ A2 > 0, t ∈ [0, t2], (3.26)

|b(t)| ≤M4, t ∈ [0, t2], (3.27)

where A2 and M4 are the known constants. Thus, an a priori estimates of the
solutions to system (3.8), (3.9), (3.11), (3.12) are established.

Put T0 = min{t1, t2}. Denote ω = (u, v, a, b), N = {(u, v, a, b) ∈ (C(QT0
))2 ×

(C[0, T0])2 : |u(x, t)| ≤ M1,M2 ≤ v(x, t) ≤ M3, A2 ≤ a(t) ≤ A1, |b(t)| ≤ M4}. We
rewrite system (3.8), (3.9), (3.11), (3.12) as the operator equation

ω = Pω,

where the operator P is defined by the right-hand sides of these equations. The
obtained estimates (3.15), (3.16), (3.17), (3.25), (3.26), (3.27) of the functions
(u, v, a, b) guarantee that P maps N into N . The compactness of operator P
can be established as in non degenerate case [7, p. 20]. Now the Schauder fixed-
point theorem yields the existence of the continuous solution to system (3.8), (3.9),
(3.11), (3.12) on [0, h]× [0, T0]. This means that exists the solution (a, b, u) to the
inverse problem (2.1)-(2.5). This completes the proof of Theorem 3.1. �
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4. Uniqueness of a solution

Theorem 4.1. Assume that the following conditions hold:
(B1) c, f ∈ C1,0([0, h]× [0, T ]), ϕ ∈ C3[0, h];
(B2) µ3,0(t) 6= 0, µ2(t)− µ1(t) 6= 0, t ∈ [0, T ]

Then the solution to (2.1)-(2.5) is unique.

Proof. Suppose that (2.1)-(2.5) has two solutions (ai, bi, ui), i = 1, 2. Denote a(t) =
a1(t)− a2(t), b(t) = b1(t)− b2(t), u(x, t) = u1(x, t)− u2(x, t). From (2.1)-(2.5), we
obtain

ut = a1(t)tβuxx + b1(t)ux + c(x, t)u+ a(t)tβu2xx + b(t)u2x, (x, t) ∈ QT , (4.1)

u(x, 0) = 0, x ∈ [0, h], (4.2)

u(0, t) = u(h, t) = 0, t ∈ [0, T ], (4.3)

a1(t)tβux(0, t) + a(t)tβu2x(0, t) = 0, t ∈ [0, T ], (4.4)∫ h

0

u(x, t)dx = 0, t ∈ [0, T ]. (4.5)

With the aid of the Green function G∗(x, t, ξ, τ) of the first boundary-value problem
for the equation

ut = a1(t)tβuxx + b1(t)ux + c(x, t)u

we represent the solution to (4.1)-(4.3) in the form

u(x, t) =
∫ t

0

∫ h

0

G∗(x, t, ξ, τ)(a(τ)τβu2ξξ(ξ, τ) + b(τ)u2ξ(ξ, τ))dξ dτ, (4.6)

(x, t) ∈ QT . Differentiating (4.6) with respect to x, we find

ux(x, t) =
∫ t

0

∫ h

0

G∗x(x, t, ξ, τ)(a(τ)τβu2ξξ(ξ, τ) + b(τ)u2ξ(ξ, τ))dξ dτ, (4.7)

(x, t) ∈ QT .
From (4.4), we deduce

a(t) = − a1(t)
u2x(0, t)

ux(0, t), t ∈ [0, T ]. (4.8)

Note that the condition u2x(0, t) 6= 0, t ∈ [0, T ] is satisfied because of the assump-
tion µ3,0(t) 6= 0, t ∈ [0, T ] in Theorem 4.1.

Differentiating (4.5) with respect to t and using (4.1)-(4.4), we obtain

b(t) = − 1
µ2(t)− µ1(t)

(
a1(t)tβux(h, t) + a(t)tβu2x(h, t) +

∫ h

0

c(x, t)u(x, t)dx
)
,

(4.9)
for t ∈ [0, T ]. Using (4.6), (4.7), we reduce (4.8), (4.9) to the system of homogeneous
integral Volterra equations of the second kind

a(t) =
∫ t

0

(K11(t, τ)a(τ) +K12(t, τ)b(τ))dτ, (4.10)

b(t) =
∫ t

0

(K21(t, τ)a(τ) +K22(t, τ)b(τ))dτ, (4.11)
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where

K11(t, τ) = − a1(t)
u2x(0, t)

∫ h

0

G∗x(0, t, ξ, τ)τβu2ξξ(ξ, τ)dξ,

K12(t, τ) = − a1(t)
u2x(0, t)

∫ h

0

G∗x(0, t, ξ, τ)u2ξ(ξ, τ)dξ,

K21(t, τ) = − 1
µ2(t)− µ2(τ)

(
a1(t)tβ

∫ h

0

G∗x(h, t, ξ, τ)τβu2ξξ(ξ, τ)dξ

+
∫ h

0

∫ h

0

G∗(x, t, ξ, τ)c(x, t)τβu2ξξ(ξ, τ)dξdx

− tβa1(t)u2x(h, t)
u2x(0, t)

∫ h

0

G∗x(0, t, ξ, τ)τβu2ξξ(ξ, τ)dξ
)
,

K22(t, τ) = − 1
µ2(t)− µ2(τ)

(
a1(t)tβ

∫ h

0

G∗x(h, t, ξ, τ)u2ξ(ξ, τ)dξ

+
∫ h

0

∫ h

0

G∗(x, t, ξ, τ)c(x, t)u2ξ(ξ, τ)dξdx

− tβa1(t)u2x(h, t)
u2x(0, t)

∫ h

0

G∗x(0, t, ξ, τ)u2ξ(ξ, τ)dξ
)
.

To show that the kernels K11,K21 have an integrable singularity, we estimate the
function u2xx(x, t). To this end, we consider the corresponding problem (2.1)-
(2.3). For the function u2(x, t), u2x(x, t) the equalities analogous to (3.8), (3.9)
respectively take place. We denote by G(2)

1 = G
(2)
1 (x, t, ξ, τ) the Green function of

the first value-boundary problem for the equation

ut = a2(t)tβuxx.

This function defines by the formula analogous to (3.7) with θ(2)(t) =
∫ t
0
a2(τ)τβdτ .

Differentiating the corresponding formula (3.8) twice with respect to x and using
the relationship G

(2)
1xx(x, t, ξ, τ) = G

(2)
1ξξ(x, t, ξ, τ) we arrive to the equation

u2xx(x, t) = ϕ′′(x) +
∫ t

0

G
(2)
1ξ (x, t, h, τ)

(
b(τ)u2ξ(h, τ) + c(h, τ)u2(h, τ)

+ f(h, τ)− µ′2(τ) + a2(τ)τβϕ′′(h)
)
dτ

−
∫ t

0

G
(2)
1ξ (x, t, 0, τ)

(
b(τ)u2ξ(0, τ) + c(0, τ)u2(0, τ)

+ f(0, τ)− µ′1(τ) + a2(τ)τβϕ′′(0)
)
dτ

−
∫ t

0

∫ h

0

G
(2)
1ξ (x, t, ξ, τ)

(
c(ξ, τ)u2ξ(ξ, τ) + cξ(ξ, τ)u2(ξ, τ)

+ fξ(ξ, τ)− 1
h

(µ′2(τ)− µ′1(τ)) + a2(τ)τβϕ′′′(ξ)
)
dξ dτ

−
∫ t

0

∫ h

0

G
(2)
1ξ (x, t, ξ, τ)b(τ)u2ξξ(ξ, τ)dξ dτ, (x, t) ∈ QT .

(4.12)
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Taking into account (3.7), we have

J ≡
∫ t

0

|G(2)
1ξ (x, t, 0, τ)|dτ

=
1

2
√
π

∫ t

0

1
(θ(2)(t)− θ(2)(τ))3/2

+∞∑
n=−∞

|x+ 2nh| exp
(
− (x+ 2nh)2

4(θ(2)(t)− θ(2)(τ))

)
dτ.

Using the definition of θ(2) = θ(2)(t) and substituting z = 1− τ
t , we obtain

J ≤ C25t
− 3β+1

2

∫ 1

0

z−
3
2

+∞∑
n=−∞

|x+ 2nh| exp
(
−C26(x+ 2nh)2

t1+βz

)
dz.

Let us change the variable σ =
√

C26
t1+βz

(x+ 2nh). We get as a result

J ≤ C27

tβ

∫ +∞

−∞
e−σ

2
dσ ≤ C28

tβ
.

We evaluate the rest integrals which the formula (4.12) contains by a similar way.
So from (4.12) we deduce

|u2xx(x, t)| ≤ C29

tβ
. (4.13)

This implies that the kernels of system (4.10), (4.11) have the integrable singulari-
ties and respectively this system have only trivial solution

a(t) ≡ 0, b(t) ≡ 0, t ∈ [0, T ].

Using this fact in the problem (4.1)-(4.3) we obtain that

u(x, t) ≡ 0, (x, t) ∈ QT .
The proof is complete. �
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