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OSCILLATION CRITERIA FOR ODD-ORDER NONLINEAR
DIFFERENTIAL EQUATIONS WITH ADVANCED AND

DELAYED ARGUMENTS

ETHIRAJU THANDAPANI, SANKARAPPAN PADMAVATHY, SANDRA PINELAS

Abstract. This article presents oscillation criteria for n-th order nonlinear

neutral mixed type differential equations of the form`
(x(t) + ax(t− τ1)− bx(t+ τ2))α

´(n)
= q(t)xβ(t− σ1) + p(t)xγ(t+ σ2),`

(x(t)− ax(t− τ1) + bx(t+ τ2))α
´(n)

= q(t)xβ(t− σ1) + p(t)xγ(t+ σ2),`
(x(t) + ax(t− τ1) + bx(t+ τ2))α

´(n)
= q(t)xβ(t− σ1) + p(t)xγ(t+ σ2)

where n is an odd positive integer, a and b are nonnegative constants, τ1, τ2, σ1

and σ2 are positive real constants, q(t), p(t) ∈ C([t0,∞), (0,∞)) and α, β and

γ are ratios of odd positive integers with β, γ ≥ 1. Some examples are provided

to illustrate the main results.

1. Introduction

In this article, we study the oscillatory behavior of all solutions of n-th order
nonlinear neutral differential equations of the forms

((x(t) + ax(t− τ1)− bx(t+ τ2))α)(n) = q(t)xβ(t− σ1) + p(t)xγ(t+ σ2), (1.1)

((x(t)− ax(t− τ1) + bx(t+ τ2))α)(n) = q(t)xβ(t− σ1) + p(t)xγ(t+ σ2), (1.2)

((x(t) + ax(t− τ1) + bx(t+ τ2))α)(n) = q(t)xβ(t− σ1) + p(t)xγ(t+ σ2) (1.3)

where n is an odd positive integer, a and b are nonnegative constants, τ1, τ2, σ1

and σ2 are positive real constants, q(t), p(t) ∈ C([t0,∞), (0,∞)) and α, β and γ are
ratios of odd positive integers with β, γ ≥ 1.

As is customary, a solution is called oscillatory if it has arbitrarily large zeros
and non-oscillatory if it is eventually positive or eventually negative. Equations
(1.1), (1.2) and (1.3) are called oscillatory if all its solutions are oscillatory.

Differential equations with advanced and delayed arguments (also called mixed
differential equations or equations with mixed arguments) occur in many problems
of economy, biology and physics (see for example [3, 7, 11, 12, 19]), because differen-
tial equations with mixed arguments are much more suitable than delay differential
equations for an adequate treatment of dynamic phenomena. The concept of delay
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is related to a memory of system, the past events are importance for the current
behavior, and the concept of advance is related to a potential future events which
can be known at the current time which could be useful for decision making. The
study of various problems for differential equations with mixed arguments can be
seen in [4, 9, 18, 22, 23, 27].

It is well known that the solutions of some of these equations cannot be obtained
in closed form. In the absence of closed form solutions a rewarding alternative is
to resort to the qualitative study of the solutions of these types of differential
equations. But it is not quite clear how to formulate an initial value problem for
such equations and existence and uniqueness of solutions becomes a complicated
issue. To study the oscillation of solutions of differential equations, we need to
assume that there exists a solution of such equation on the half line.

The problem of asymptotic and oscillatory behavior of solutions of n-th order
delay and neutral type differential equations has received great attention in recent
years see for example [1]–[32], and the references cited therein. However, there are
few results regarding the oscillatory properties of neutral differential equations with
mixed arguments.

In [25] the author has obtained some oscillation theorems for the odd order
neutral differential equation(

x(t) + p1x(t− τ1) + p2x(t+ τ2)
)(n) = q1x(t− σ1) + q2x(t+ σ2), t ≥ t0, (1.4)

where n ≥ 1 is odd.
In [16] the authors established some oscillation criteria for the following neutral

equations

(x(t) + cx(t− h)− c∗x(t+ h∗))(n) = qx(t− g) + px(t+ g∗), (1.5)

(x(t)− cx(t− h) + c∗x(t+ h∗))(n) = qx(t− g) + px(t+ g∗), (1.6)

(x(t) + cx(t− h)− c∗x(t− h∗))(n) = qx(t− g) + px(t+ g∗), (1.7)

(x(t) + cx(t+ h)− c∗x(t+ h∗))(n) = qx(t− g) + px(t+ g∗), (1.8)

where t ≥ t0 and n is an odd positive integer, c, c∗, h, h∗, p and q are real numbers
and g and g∗ are positive constants.

In [30] the author has obtained some oscillation results for third-order nonlinear
neutral differential equation(

(x(t) + b(t)x(t− τ1) + c(t)x(t+ τ2))α
)′′′ = q(t)xβ(t− σ1) + p(t)xγ(t+ σ2), (1.9)

for t ≥ t0, where α, β and γ are ratios of odd positive integers, τ1, τ2, σ1 and σ2 are
positive constants.

Clearly equations (1.5) and (1.6) with α = β = γ = 1 and q(t) = q, p(t) = p are
special cases of equations (1.1) and (1.2). Moreover equation (1.9) with n = 3 is
special case of equation (1.3). Motivated by the above observations in this paper we
study the oscillatory behavior of equations (1.1),(1.2) and (1.3) for different values
of β ≥ 1 and γ ≥ 1.

In Section 2 we present some lemmas which are useful for our main results. In
Section 3, we present some sufficient conditions for the oscillation of all solutions
of equations (1.1),(1.2) and (1.3). Examples are provided in Section 4 to illustrate
the main results.



EJDE-2014/174 OSCILLATION CRITERIA 3

2. Some preliminary lemmas

In this section we state the following lemmas which are essential in the proofs of
our oscillation theorems.

Lemma 2.1 ([20]). Let x(t) be a function such that it and each of its derivative
up to order (n − 1) inclusive are absolutely continuous and of constant sign in
an interval (t0,∞). If x(n)(t) is of constant sign and not identically zero on any
interval of the form [t1,∞) for some t1 ≥ t0, then there exists a tx ≥ t0 and an
integer m, 0 ≤ m ≤ n with n + m even for x(n) > 0, or n + m odd for x(n) ≤ 0,
and such that for every t ≥ tx,

m > 0 implies xk(t) > 0 for k = 0, 1, . . . ,m− 1; and

m ≤ n− 1 implies (−1)m+kx(k)(t) > 0 for k = m,m+ 1, . . . , n− 1.

Lemma 2.2 ([1, Lemma 2.2.2]). If x(t) is as in Lemma 2.1 and x(n−1)(t)x(n)(t) ≤ 0
for all t ≥ tx, then for every λ, 0 < λ < 1, there exists a constant M > 0 such that

|x(λt)| ≥Mtn−1|x(n−1)(t)|
for all large t.

Lemma 2.3 ([26]). Let x(t) be a function as in Lemma 2.2. If limt→∞ x(t) 6= 0,
then for every λ ∈ (0, 1),

x(t) ≥ λ

(n− 1)!
tn−1x(n−1)(t)

for all large t.

Lemma 2.4. Let A ≥ 0, B ≥ 0 and γ ≥ 1. Then

Aγ +Bγ ≥ 1
2γ−1

(A+B)γ .

If A ≥ B, then Aγ −Bγ ≥ (A−B)γ .

A proof of the above lemma can be found in [29].

Lemma 2.5 ([21]). Suppose q : [t0,∞) → R is a continuous and eventually non-
negative function, and σ is a positive real number. Then the following hold.

(I) If

lim sup
t→∞

∫ t+σ

t

(s− t)i(t− s+ σ)n−i−1

i!(n− i− 1)!
q(s)ds > 1,

hold for some i = 0, 1, . . . , n− 1, then the inequality

y(n)(t) ≥ q(t)y(t+ σ)

has no eventually positive solution y(t) which satisfies y(j)(t) > 0 eventually, j =
0, 1, . . . , n.

(II) If

lim sup
t→∞

∫ t

t−σ

(t− s)i(s− t+ σ)n−i−1

i!(n− i− 1)!
q(s)ds > 1,

hold for some of i = 0, 1, . . . , n− 1, then the inequality

(−1)nz(n)(t) ≥ q(t)z(t− σ)

has no eventually positive solution z(t) which satisfies (−1)jz(j)(t) > 0 eventually,
j = 0, 1, . . . , n.
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Lemma 2.6 ([31]). Assume that for large t,

q(s) 6= 0 for all s ∈ [t, t∗],

where t∗ satisfies σ(t∗) = t. Then

x′(t) + q(t)[x(σ(t))]α = 0, t ≥ t0,

has an eventually positive solution if and only if the corresponding inequality

x′(t) + q(t)[x(σ(t))]α ≤ 0, t ≥ t0,

has an eventually positive solution.

In [8, 13, 23, 32], the authors investigated the oscillatory behavior of solutions
to

x′(t) + q(t)[x(σ(t))]α = 0, t ≥ t0, (2.1)

where q ∈ C([t0,∞),R+), σ ∈ C([t0,∞),R), σ(t) < t, limt→∞ σ(t) = ∞ and
α ∈ (0,∞) is a ratio of odd positive integers.

Let α = 1. Then (2.1) reduces to the linear delay differential equation

x′(t) + q(t)x(σ(t)) = 0, t ≥ t0, (2.2)

and it is shown that every solution of equation (2.2) oscillates if

lim inf
t→∞

∫ t

σ(t)

q(s)ds >
1
e
. (2.3)

3. Oscillation results

In this section we shall obtain some sufficient conditions for the oscillation of all
solutions of (1.1), (1.2) and (1.3). First we study the oscillation of all solutions of
equation (1.1).

Theorem 3.1. Assume that∫ +∞

t0

(q(t) + p(t)) dt = +∞

hold, and τ2 > σ2, (1 + aβ) > 0, a, b ≤ 1, and 1 ≤ β ≤ γ, and q(t) and p(t)
are positive and non-increasing functions for t ≥ t0. If the differential inequalities
either

y(n)(t) +
q(t)
bβ

yβ/α(t− σ1 − τ2) ≤ 0, (3.1)

or

y(n)(t) +
q(t) + p(t)

bγ
yβ/α(t− (τ2 − σ2)) ≤ 0 (3.2)

and

y(n)(t)− p(t)
2γ−1(1 + aβ)γ/α

yγ/α(t+ σ2) ≥ 0, (3.3)

have no eventually positive solution and no eventually positive increasing solution
respectively then every solution of equation (1.1) is oscillatory.
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Proof. Let x(t) be a non-oscillatory solution of (1.1). Without loss of generality we
may assume that x(t) is eventually positive; i.e., there exists a t1 ≥ t0 such that
x(t) > 0 for t ≥ t1. Set

z(t) = (x(t) + ax(t− τ1)− bx(t+ τ2))α.

Then

z(n)(t) = q(t)xβ(t− σ1) + p(t)xγ(t+ σ2) > 0 for all t ≥ t1 ≥ t0. (3.4)

Thus z(i)(t), i = 0, 1, . . . , n, are of one sign on [t2,∞); t2 ≥ t1. There are two
possibilities: (a) z(t) < 0 for t ≥ t2, (b) z(t) > 0 for t ≥ t2.

Case 1: Assume z(t) < 0 for t ≥ t2. In this case, we let

0 < v(t) = −z(t) = (bx(t+ τ2)− ax(t− τ1)− x(t))α ≤ bαxα(t+ τ2).

Then in view of the last inequality, we obtain

x(t) ≥ 1
b
v1/α(t− τ2) for t ≥ t∗ ≥ t2. (3.5)

Thus by (3.4) and (3.5),

v(n)(t) +
q(t)
bβ

vβ/α(t− σ1 − τ2) +
p(t)
bγ

vγ/α(t+ σ2 − τ2) ≤ 0, t ≥ t∗. (3.6)

By Lemma 2.1, it is easy to check that there exists a T0 ≥ t∗ such that v(n−1)(t) > 0
for t ≥ T0. Now, if v′(t) > 0 for t ≥ T0 then there exist a constant k > 0 and a
T ≥ T0 such that

v(t− σ1 − τ2) ≥ k, v(t+ σ2 − τ2) ≥ k for t ≥ T.

Thus

v(n)(t) ≤ −kβ/α p(t) + q(t)
bγ

, for t ≥ T,

and hence

0 < v(n−1)(t) ≤ v(n−1)(T )− kβ/α

bγ

∫ t

T

(p(s) + q(s))ds→ −∞ as t→∞,

a contradiction. Thus, v′(t) < 0 for t ≥ T and the function satisfies (−1)iv(i)(t) > 0
eventually for i = 0, 1, . . . , n and t ≥ T . From (3.6), we have either

v(n)(t) +
q(t)
bβ

vβ/α(t− σ1 − τ2) ≤ 0, t ≥ T

or

v(n)(t) +
q(t) + p(t)

bγ
vβ/α(t− (τ2 − σ2)) ≤ 0, t ≥ T,

has a positive solution, which is a contradiction.
Case 2: Assume z(t) > 0 for t ≥ t2. By the Lemma 2.1, there exists a t3 ≥ t2

such that z′(t) > 0 for t ≥ t3. Next, we let

y(t) = z(t) + aβz(t− τ1)− bγ

2γ−1
z(t+ τ2), t ≥ t3. (3.7)

Then

y(n)(t) = z(n)(t) + aβz(n)(t− τ1)− bγ

2γ−1
z(n)(t+ τ2)

= q(t)xβ(t− σ1) + p(t)xγ(t+ σ2) + aβ
(
q(t− τ1)xβ(t− σ1 − τ1)
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+ p(t− τ1)xγ(t+ σ2 − τ1)
)
− bγ

2γ−1

(
q(t+ τ2)xβ(t− σ1 + τ2)

+ p(t+ τ2)xγ(t+ σ2 + τ2)
)
.

Using the monotonicity of q(t) and p(t), a, b ≤ 1, 1 ≤ β ≤ γ and Lemma 2.4 in the
above inequality, we obtain

y(n)(t) ≥ q(t)
2β−1

(x(t− σ1) + ax(t− σ1 − τ1)− bx(t− σ1 + τ2))β

+
p(t)
2γ−1

(x(t+ σ2) + ax(t+ σ2 − τ1)− bx(t+ σ2 + τ2))γ .

Now using z(t) > 0 for t ≥ t2 in the above inequality, we obtain

y(n)(t) ≥ q(t)
2β−1

zβ/α(t− σ1) +
p(t)
2γ−1

zγ/α(t+ σ2) > 0, t ≥ t3. (3.8)

If y(t) < 0 eventually, we can get same conclusion as in Case 1. Thus we observe
that y(t) > 0 eventually. Now, if z′(t) > 0 eventually for t ≥ t2 then there exist a
positive constant c and a T ≥ t2 such that, z(t−σ1) ≥ c, z(t+σ2) ≥ c. Thus using
last inequality in (3.8), we obtain

y(n)(t) ≥ q(t)
2β−1

cβ/α +
p(t)
2γ−1

cγ/α > 0.

Then y(n−1)(t)→∞ and y(i)(t)→∞ for i = 0, 1, . . . , n− 2 as t→∞. Therefore,
one can conclude that

y(i)(t) > 0 eventually for i = 0, 1, . . . , n. (3.9)

Now, using the monotonicity of z(t), we obtain

y(t) = z(t) + aβz(t− τ1)− bγ

2γ−1
z(t+ τ2) ≤ (1 + aβ)z(t).

then from the above inequality and (3.8), we have

y(n)(t) ≥ p(t)
2γ−1(1 + aβ)γ/α

yγ/α(t+ σ2), t ≥ t3. (3.10)

This inequality admits a solution that satisfies (3.9), thus y(t) is a positive increasing
solution of the inequality (3.3), which is a contradiction. The proof is now complete.

�

Corollary 3.2. Assume that∫ +∞

t0

(q(t) + p(t)) dt = +∞

hold, and τ2 > σ2, (1 + aα) > 0, a, b ≤ 1 and α = β = γ ≥ 1 and q(t) and p(t) are
non-increasing functions for t ≥ t0. If either

lim inf
t→∞

∫ t

t−(σ1+τ2)

(s− σ1 − τ2)n−1q(s)ds >
bα(n− 1)!

λe
, λ ∈ (0, 1), (3.11)

or

lim inf
t→∞

∫ t

t−τ2+σ2

(s− τ2 + σ2)n−1(p(s) + q(s))ds >
bα(n− 1)!

λe
, λ ∈ (0, 1), (3.12)
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and

lim sup
t→∞

∫ t+σ2

t

(s− t)i(t− s+ σ2)n−i−1

i!(n− i− 1)!
p(s)ds > 2α−1(1+aα), i = 0, 1, . . . , n−1,

(3.13)
then every solution of (1.1) is oscillatory.

Proof. Let y(t) be a positive solution of (3.2), for t ≥ t1 ≥ t0. Then we have
y(n)(t) ≤ 0 for all t ≥ t1. More over, (−1)iy(i)(t) > 0 for i = 1, 2, . . . , n for all
t ≥ t1. Then from Lemma 2.3 we obtain

y(t) ≥ λ

(n− 1)!
tn−1y(n−1)(t), λ ∈ (0, 1).

From (3.2), we have

y(n)(t) +
p(t) + q(t)

bα
y(t− τ2 + σ2) ≤ 0, t ≥ t2.

Combining the last two inequalities, we obtain

y(n)(t) + (p(t) + q(t))
λ

bα(n− 1)!
(t− τ2 + σ2)n−1y(n−1)(t− τ2 + σ2) ≤ 0, t ≥ t2.

Let w(t) = y(n−1)(t). Then we see that w(t) is a positive solution of

w′(t) + (p(t) + q(t))
λ

bα(n− 1)!
(t− τ2 + σ2)n−1w(t− τ2 + σ2) ≤ 0, t ≥ t2 (3.14)

But according to the Lemma 2.6 and the condition (2.3), condition (3.12) guaran-
tees that inequality (3.14) has no positive solution, which is a contradiction. Hence
(3.2) has no eventually positive solution. Moreover condition (3.11) is sufficient
for the inequality (3.1) has no eventually positive solution,which is a contradiction.
Moreover in view of Lemma 2.5 (I) and the condition (3.13), inequality (3.10) has
no eventually positive solution which satisfies (3.9), which is a contradiction. Hence
(3.3) has no eventually positive increasing solution. �

Next we consider (1.2), and present sufficient conditions for the oscillation of all
solutions.

Theorem 3.3. Assume that∫ +∞

t0

(q(t) + p(t)) dt = +∞

hold, and σi > τi for i = 1, 2, (1+bγ) > 0, a, b ≤ 1, and 1 ≤ γ ≤ β, and q(t) and p(t)
are positive and nondecreasing functions for t ≥ t0. If the differential inequalities

y(n)(t) +
q(t)
aβ

yβ/α(t− σ1 + τ1) ≤ 0, (3.15)

and

y(n)(t)− p(t)
2γ−1(1 + bγ)γ/α

yγ/α(t+ σ2 − τ2) ≥ 0, (3.16)

have no eventually positive solution and no eventually positive increasing solution
respectively. Then every solution of equation (1.2) is oscillatory.
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Proof. Let x(t) be a non-oscillatory solution of (1.2). Without loss of generality we
may assume that x(t) is eventually positive; i.e., there exists a t1 ≥ t0 such that
x(t) > 0 for t ≥ t1. Set

z1(t) = (x(t)− ax(t− τ1) + bx(t+ τ2))α

and proceeding as in the proof of Theorem 3.1, we that the function z
(i)
1 (t), i =

0, 1, . . . , n, are of one sign on [t2,∞), t2 ≥ t1. There are two possibilities: (1)
z1(t) < 0 for t ≥ t2, (2) z1(t) > 0 for t ≥ t2.

Case 1: Assume z1(t) < 0 for t ≥ t2. In this case, we let

0 < v1(t) = −z1(t) = (ax(t− τ1)− bx(t+ τ2)− x(t))α ≤ aαxα(t− τ1).

Then in view of the last inequality, we obtain

x(t) ≥ 1
a
v
1/α
1 (t+ τ1) for t ≥ t∗ ≥ t2. (3.17)

Thus by (1.2) and (3.17),

v
(n)
1 (t) +

q(t)
aβ

v
β/α
1 (t− σ1 + τ1) +

p(t)
aγ

v
γ/α
1 (t+ σ2 + τ1) ≤ 0, t ≥ t∗. (3.18)

By Lemma 2.1, it is easy to check that there exists a T0 ≥ t∗ such that v(n−1)
1 (t) > 0

for t ≥ T0. Now, if v′1(t) > 0 for t ≥ T0 then there exist a constant k1 > 0 and a
T ≥ T0 such that

v1(t− σ1 + τ1) ≥ k1, v1(t+ σ2 + τ1) ≥ k1 for t ≥ T.
Thus

v
(n)
1 (t) ≤ −kγ/α1

p(t) + q(t)
aβ

, for t ≥ T,

and hence

v
(n−1)
1 (t) ≤ v(n−1)

1 (T )− k
γ/α
1

aβ

∫ t

T

(p(s) + q(s))ds→ −∞ as t→∞,

a contradiction. Thus, v′1(t) < 0 for t ≥ T and the function satisfies (−1)iv(i)
1 (t) > 0

eventually for i = 0, 1, . . . , n and t ≥ T . From (3.18), we have

v
(n)
1 (t) +

q(t)
aβ

v
β/α
1 (t− σ1 + τ1) ≤ 0, t ≥ T,

has a positive solution, which is a contradiction.
Case 2: Assume z1(t) > 0 for t ≥ t2. By the Lemma 2.1, there exists a t3 ≥ t2

such that z′1(t) > 0 for t ≥ t3. Next, we let

y1(t) = z1(t)− aβ

2β−1
z1(t− τ1) + bγz1(t+ τ2), t ≥ t3. (3.19)

Then

y
(n)
1 (t) = z

(n)
1 (t)− aβ

2β−1
z
(n)
1 (t− τ1) + bγz

(n)
1 (t+ τ2)

= q(t)xβ(t− σ1) + p(t)xγ(t+ σ2)− aβ

2β−1

(
q(t− τ1)xβ(t− σ1 − τ1)

+ p(t− τ1)xγ(t+ σ2 − τ1)
)

+ bγ
(
q(t+ τ2)xβ(t− σ1 + τ2)

+ p(t+ τ2)xγ(t+ σ2 + τ2)
)
.
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Using the monotonicity of q(t) and p(t), a, b ≤ 1, 1 ≤ γ ≤ β and Lemma 2.4 in the
above inequality, we obtain

y
(n)
1 (t) ≥ q(t)

2β−1
(x(t− σ1)− ax(t− σ1 − τ1) + bx(t− σ1 + τ2))β

+
p(t)
2γ−1

(x(t+ σ2)− ax(t+ σ2 − τ1) + bx(t+ σ2 + τ2))γ .

Now using z1(t) > 0 for t ≥ t2 in the above inequality, we obtain

y
(n)
1 (t) ≥ q(t)

2β−1
z
β/α
1 (t− σ1) +

p(t)
2γ−1

z
γ/α
1 (t+ σ2) > 0, t ≥ t3. (3.20)

If y(t) < 0 eventually, we can get same conclusion as in Case 1. Thus we observe
that y(t) > 0 eventually. Now, if z′(t) > 0 eventually for t ≥ t2 then there exist a
positive constant c1 and a T ≥ t2 such that, z(t − σ1) ≥ c1, z(t + σ2) ≥ c1. Thus
using last inequality in (3.20), we obtain

y(n)(t) ≥ q(t)
2β−1

c
β/α
1 +

p(t)
2γ−1

c
γ/α
1 > 0.

Then y(n−1)(t) → ∞ and y(i)(t) → ∞ for i = 0, 1, . . . , n − 2 as t → ∞. Therefore
one can conclude that

y
(i)
1 (t) > 0 eventually for i = 0, 1, . . . , n, t ≥ t3. (3.21)

Now,

y1(t) = z1(t)− aβ

2β−1
z1(t− τ1) + bγz1(t+ τ2) ≤ (1 + bγ)z1(t+ τ2).

then from the above inequality and (3.20), we have

y
(n)
1 (t) ≥ p(t)

2γ−1(1 + bγ)γ/α
y
γ/α
1 (t+ σ2 − τ2), t ≥ t3. (3.22)

Inequality (3.22) admits a solution that satisfies (3.21), thus y1(t) is a positive
increasing solution of the inequality (3.16), which is a contradiction. The proof is
now complete. �

Corollary 3.4. Let σi > τi for i = 1, 2, (1 + bα) > 0, a, b ≤ 1 and α = β = γ ≥ 1.
If

lim inf
t→∞

∫ t

t−(σ1−τ1)
(s− σ1 + τ1)n−1q(s)ds >

aα(n− 1)!
λ1e

, λ1 ∈ (0, 1) (3.23)

and

lim sup
t→∞

∫ t+σ2−τ2

t

(s− t)i(t− s+ σ2 − τ2)n−i−1

i!(n− i− 1)!
p(s)ds > 2α−1(1 + bα), (3.24)

for i = 0, 1, . . . , n− 1, then every solution of (1.2) is oscillatory.

The proof of the above corollary is similar to that of Corollary 3.2 and hence it
is omitted. Next we consider equation (1.3) and present sufficient conditions for
the oscillation of all solutions.

Theorem 3.5. Let σ2 > τ2, a ≤ 1, b ≥ 1 and 1 ≤ β ≤ γ, and

Q(t) = min {q(t− τ1), q(t), q(t+ τ2)},
P (t) = min {p(t− τ1), p(t), p(t+ τ2)},
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be positive functions for t ≥ t0. If the differential inequality

y(n)(t)− P (t)
4γ−1(1 + aβ + bγ)γ/α

yγ/α(t+ σ2 − τ2) ≥ 0, (3.25)

has no eventually positive solution. Then every solution of (1.3) is oscillatory.

Proof. Let x(t) be an eventually positive solution of equation (1.3), then there exists
a t1 ≥ t0 such that x(t) > 0 for t ≥ t1. Set

z2(t) = (x(t) + ax(t− τ1) + bx(t+ τ2))α, t ≥ t1.

and proceeding as in the proof of Theorem 3.1, we see that the function z(i)
2 (t), i =

0, 1, . . . , n are of one sign on [t2,∞), for some t2 ≥ t1. Now we define

y2(t) = z2(t) + aβz2(t− τ1) + bγz2(t+ τ2), t ≥ t2. (3.26)

Then y2(t) > 0 for t ≥ t2 and then

y
(n)
2 (t) = z

(n)
2 (t) + aβz

(n)
2 (t− τ1) + bγz

(n)
2 (t+ τ2)

= q(t)xβ(t− σ1) + p(t)xγ(t+ σ2) + aβ
(
q(t− τ1)xβ(t− σ1 − τ1)

+ p(t− τ1)xγ(t+ σ2 − τ1)
)

+ bγ
(
q(t+ τ2)xβ(t− σ1 + τ2)

+ p(t+ τ2)xγ(t+ σ2 + τ2)
)
.

Since a ≤ 1, b ≥ 1, 1 ≤ β ≤ γ and using Lemma 2.4 in the above inequality, we
obtain

y
(n)
2 (t) ≥ Q(t)

4β−1
(x(t− σ1) + ax(t− σ1 − τ1) + bx(t− σ1 + τ2))β

+
P (t)
4γ−1

(x(t+ σ2) + ax(t+ σ2 − τ1) + bx(t+ σ2 + τ2))γ .

Now using z2(t) > 0 for t ≥ t2 in the above inequality, we obtain

y
(n)
2 (t) ≥ Q(t)

4β−1
z
β/α
2 (t− σ1) +

P (t)
4γ−1

z
γ/α
2 (t+ σ2) > 0, t ≥ t2. (3.27)

Since z2(t) > 0 and z′2(t) > 0 are eventually positive increasing functions. From
(3.26) we see that y2(t) > 0 and y′2(t) > 0 and also from inequality (3.27), y(n)

2 (t) >
0 for t ≥ t2. As a result of this

y
(i)
2 (t) > 0, for t ≥ t2 and i = 0, 1, . . . , n. (3.28)

Using the monotonicity of z2(t), we obtain

y2(t) = z2(t) + aβz2(t− τ1) + bγz2(t+ τ2) ≤ (1 + aβ + bγ)z2(t+ τ2).

Then from the above inequality and (3.27), we have

y
(n)
2 (t) ≥ P (t)

4γ−1
z
γ/α
2 (t+ σ2)

≥ P (t)
4γ−1(1 + aβ + bγ)γ/α

y
γ/α
2 (t− τ2 + σ2), t ≥ t2.

This inequality admits a solution that satisfies (3.28), thus y2(t) is a positive in-
creasing solution of the inequality (3.25), which is a contradiction. The proof is
now complete. �
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Corollary 3.6. Let σ2 > τ2, a ≤ 1, b ≥ 1 and α = β = γ ≥ 1. If

lim sup
t→∞

∫ t+σ2−τ2

t

(s− t)i(t− s+ σ2 − τ2)n−i−1

i!(n− i− 1)!
P (s)ds > 4α−1(1 + aα + bα),

(3.29)
where i = 0, 1, . . . , n− 1, then every solution of equation (1.3) is oscillatory.

The proof of the above corollary is similar to that of Corollary 3.2 and hence it
is omitted.

4. Examples

In this section we present some examples to illustrate the main results.

Example 4.1. Consider the differential equation(
(x(t) +

1
4
x(t− π)− 1

4
x(t+ 2π))3

)(v)

=
1
4
x3(t− 3π/2) +

1
8
x3(t+ 3π/2), (4.1)

for t ≥ 0. Here a = 1/4, b = 1/4, α = β = γ = 3, τ1 = π, τ2 = 2π, σ1 = 3π/2,
σ2 = 3π/2, q(t) = 1/4, p(t) = 1/8. Then one can see that all conditions of Corollary
3.2 are satisfied. Therefore all the solutions of equation (4.1) are oscillatory. In fact
x(t) = sin1/3 t is one such oscillatory solution of equation (4.1).

Example 4.2. Consider the differential equation(
(x(t)− e

π/3

9
x(t−π)+

1
eπ/3

x(t+π))3
)(v)

=
4e5π/2

729
x3(t−5π/2)+

4
729e3π

x3(t+3π),

(4.2)
where t ≥ 0. Here a = eπ/3/9, b = 1/eπ/3, α = β = γ = 3, τ1 = π, τ2 = π,
σ1 = 5π/2, σ2 = 3π, q(t) = 4e5π/2/729, p(t) = 4/(729e3π). Then one can see that
all conditions of Corollary 3.4 are satisfied. Therefore, all the solutions of equation
(4.2) are oscillatory. In fact x(t) = et/3 sin1/3 t is one such oscillatory solution of
equation (4.2).

Example 4.3. Consider the differential equation

(x(t) + x(t− π) + x(t+ π))(v) =
5

t− π
x(t− π) +

t

t+ 3π/2
x(t+ 3π/2), (4.3)

for t ≥ 0. Here a = b = 1, α = β = γ = 1, τ1 = τ2 = π, σ1 = π, σ2 = 3π/2,
q(t) = 5

t−π , p(t) = t
t+3π/2 . Then one can see that all conditions of Corollary 3.6

are satisfied. Therefore, all the solutions of equation (4.3) are oscillatory. In fact
x(t) = t sin t is one such oscillatory solution of equation (4.3).

Example 4.4. Consider the differential equation(
x(t) +

1
2
x(t− π/2)− 1

2
x(t+ 2π)

)(vii)

=
1
2
x(t− 7π/2) +

1
2
x(t+ 4π), (4.4)

for t ≥ 0. Here a = 1/2, b = 1/2, α = β = γ = 1, τ1 = π/2, τ2 = 2π, σ1 = 5π/2,
σ2 = 4π, q(t) = 1/2, p(t) = 1/2. Then one can see that all conditions of Corollary
3.2 are satisfied. Therefore, all the solutions of equation (4.4) are oscillatory. In
fact x(t) = sin t+ cos t is one such oscillatory solution of equation (4.4).
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Example 4.5. Consider the differential equation(
(x(t)− e

3
x(t− 1) +

1
e2
x(t+ 2))3

)(v)

= 1000e9x3(t− 3) +
125
e9

x3(t+ 3), (4.5)

for t ≥ 0. Here a = e/3, b = 1/e2, α = β = γ = 3, τ1 = 1, τ2 = 2, σ1 = σ2 = 3,
q(t) = 1000e9, p(t) = e9

125 . Then one can see that all conditions of Corollary 3.4
are satisfied except the condition (3.24). Therefore, not all solutions of (4.5) are
oscillatory. In fact x(t) = et is one such non-oscillatory solution, since it satisfies
equation (4.5).
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