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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO HIGHER
ORDER NONLINEAR DELAY DIFFERENTIAL EQUATIONS

HAIHUA LIANG

Abstract. In this article, we study the oscillation and asymptotic behavior
of solutions to the nonlinear delay differential equation

x(n+3)(t) + p(t)x(n)(t) + q(t)f(x(g(t))) = 0.

By using a generalized Riccati transformation and an integral averaging tech-
nique, we establish sufficient conditions for all solutions to oscillate, or to con-

verge to zero. Especially when the delay has the form g(t) = at−τ , we provide

two convenient oscillatory criteria. Some examples are given to illustrate our
results.

1. Introduction

In this article, we study the oscillation and the asymptotic behavior of solutions
to the n+ 3-order nonlinear delay differential equation

x(n+3)(t) + p(t)x(n)(t) + q(t)f(x(g(t))) = 0, t ∈ I := [a,+∞) (1.1)

where q ∈ C(I,R+), p ∈ C1(I,R) with p(t) ≥ 0 and it does not vanish identically on
any [T,∞) ⊂ I, g ∈ C1(I,R) with 0 < g(t) < t, g′(t) ≥ 0 and limt→+∞ g(t) = +∞,
f ∈ C(R,R) and f(u)/u ≥ K(u 6= 0) for some positive constant K.

Our attention is restricted to those solutions of (1.1) which exist on I and satisfy
supt≥T |x(t)| > 0 for any T ≥ a. We make a standing hypothesis that (1.1) possess
such solutions. As usual, a solution of (1.1) is called oscillatory if it has arbitrarily
large zeros, and non-oscillatory otherwise. Equation (1.1) is called oscillatory if all
its solutions are oscillatory.

The oscillation and asymptotic behavior have extensive applications in the real
world. See the monographs [1] for more details. The problem of obtaining the
oscillation and asymptotic behavior of certain higher-order nonlinear functional
differential equations has been studied by a number of authors, see [1, 2, 3, 5, 6, 8,
12, 13, 14, 16] and the references cited therein.

In 1971 and 1977, [10, 11] discussed the oscillation of solutions of the equation

x(n)(t) + a(t)f(x(g(t))) = 0,

where 0 < g(t) < t, g(t)→∞ as t→ +∞ and a(t) > 0.
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Recently, the authors in [3] studies the 2n-order nonlinear functional differential
equation

dn

dtn

(
a(t)

(dnx(t)
dtn

)α)+ q(t)f(x(g(t))),

where α is the ratio of two positive odd integers. The oscillation theorems estab-
lished here extend a number of existing results.

On the other hand, there are many publications about nonlinear functional dif-
ferential equations with damping. For example, the authors in [17] investigated the
third-order nonlinear functional differential equation

(r2(t)(r1(t)y′)′)′ + q(t)y′ + f(y(g(t))) = 0.

Using a generalized Riccati transformation and integral averaging technique, they
establish some new sufficient conditions which insure that any solution of this equa-
tion oscillates or converges to zero.

The authors in [9] studied the nonlinear functional differential equation

y(4)(t) + p(t)y′(t) + q(t)f(y(g(t))) = 0. (1.2)

By applying the generalized Riccati transformation, it was shown that all solutions
of (1.2) oscillate or converge to zero under some conditions.

The goal of the present paper is to study the oscillation and asymptotic behavior
of solutions of the nonlinear delay differential equation (1.1). We note that equation
(1.1) with n = 1 is exactly (1.2). The authors in [9] showed that the oscillation
and asymptotic behavior of (1.2) may yield useful information in real problems.
Therefore, we think that it is interesting to study the oscillation of (1.1) since
it extends the former studies. The main idea in the proof of our results comes
from [9, 17]. This paper is organized as follows: In Section 2, we present some
lemmas which are useful in the proof of our main results. Section 3 will provide
several oscillatory and asymptotic criteria for system (1.1). We note that, in many
applications the delay g(t) has the form g(t) = t− τ or the form g(t) = at. As the
corollary of our main results, we give two convenient oscillatory and asymptotic
criterions for system (1.1) having such a common delay; see Corollaries 3.4 and 3.8,
respectively. In Section 4, some examples illustrate our main results.

2. Some preliminary lemmas

In this section we state and prove some lemmas which we will use in the proof
of our main results.

Lemma 2.1. Suppose the linear third-order differential equation

u′′′(t) + p(t)u(t) = 0, t ≥ a (2.1)

has an eventually positive increasing solution. If x is a non-oscillatory solution of
(1.1), then there exists a constant T such that |x(n)(t)| > 0 for t ≥ T .

Proof. Without loss of generality that x(t) > 0 for t ≥ a. It is easy to see that
y = −x(n) is a solution of

y′′′(t) + p(t)y(t) = q(t)f(x(g(t))). (2.2)

By using a similar argument as that in the proof of [9, Lemma 1.2], we conclude
that all solutions of (2.2) are non-oscillatory. Thus x(n)(t) is eventually positive or
eventually negative. �
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Lemma 2.2. Let x be a non-oscillatory solution of (1.1). If there exists a constant
T1 ≥ a such that x(t)x(n)(t) > 0 for t ≥ T1, then x(t)x(n+2)(t) is eventually positive.

Proof. Suppose firstly that x(t) > 0 for t ≥ T1. Since g′(t) > 0 and g(t)→ +∞ as
t→ +∞, it follows that x(g(t)) > 0 for t > T ′1 for some constant T ′1 ≥ T1. For the
sake of brevity we assume that T1 = T ′1 = a without loss of generality.

By (1.1) we find that x(n+3)(t) < 0 for t ≥ a. Thus there exists a µ ∈ R∪{−∞}
such that limt→+∞ x(n+2)(t) = µ. In view of x(n)(t) > 0, t ∈ I, it turns out that
µ ≥ 0. Thus x(n+2)(t) is eventually positive.

The case that x(t) < 0 for t ≥ T1 can be discussed in a way completely analogous
to the previous one, and hence it is omitted. This completes the proof. �

By a careful check of the proof of [9, Lemma 1.1], we obtain the following result.

Lemma 2.3. Assume that x ∈ Cn(I,R) such that x(t) > 0, x(n)(t) ≤ 0 for t ∈ I
and x(n)(t) does not vanish identically on any [T,∞) ⊂ I. If n is even (or odd),
then there exists l ∈ {1, 3, . . . , n − 1} (resp. l ∈ {0, 2, . . . , n − 1}) such that for all
sufficiently large t, x(t)x(j)(t) > 0 for j = 0, 1, . . . , l and (−1)n+j−1x(t)x(j)(t) > 0
for j = l + 1, l + 2, . . . , n− 1. Furthermore, if l ≥ 1, then

|x′(g(t))| ≥ gl−1(t)(t− g(t))n−l−1

2l−1(l − 1)!(n− l − 1)!
|x(n−1)(t)| (2.3)

for all sufficiently large t.

Remark 2.4. Lemma 2.3 is different from [9, Lemma 1.1] by pointing out that
inequality (2.3) is invalid for l = 0. And the case l = 0 needs a separate treatment
in the proof of our main results.

3. Asymptotic Dichotomy

In this section we present some sufficient conditions which guarantee that every
solution of (1.1) oscillates or converges to zero. Throughout this section we will
impose the following condition:

lim
t→∞

∫ t

a

[q(τ)−Mp′+(τ)|dτ = +∞, (3.1)

for any M > 0, where

p′+(t) =

{
p′(t), if p′(t) > 0,
0, if p′(t) ≤ 0.

Theorem 3.1. Suppose that (2.1) has an eventually positive increasing solution
and that (3.1) holds. Assume further that there exists a ρ ∈ C1(I,R+) such that

lim sup
t→∞

∫ t

T

[
Kρ(s)q(s)− 2l−3(l − 1)!(n− l + 2)!(ρ′(s))2

gl−1(s)(s− g(s))n−l+2g′(s)ρ(s)

]
ds = +∞ (3.2)

holds for every T ≥ a and for all l = 2, 4, . . . , n + 2 when n is even and for all
l = 1, 3, . . . , n+ 2 when n is odd. Then every solution x of (1.1) is oscillatory, or
satisfies x(t)→ 0 as t→∞.

Proof. Let x be a non-oscillatory solution of (1.1). Without loss of generality, we
may assume that x(t) > 0 and x(g(t)) > 0 for t ≥ a. By Lemma 2.1, there exists a
constant T ≥ a such that x(n)(t) > 0 or x(n)(t) < 0 for t ≥ T .
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Consider firstly the case that x(n)(t) > 0, t ≥ T . By (1.1) we know that
x(n+3)(t) < 0, t ≥ T . Therefore, it follows form Lemma 2.3 (it worth mention-
ing here that n is replaced with n+ 3) that there exists l ∈ {1, 3, . . . , n+ 2} (resp.
l ∈ {0, 2, . . . , n+2}) when n is odd (resp. n is even) such that for all sufficiently large
t, x(j)(t) > 0 for j = 0, 1, . . . , l and (−1)n+jx(j)(t) > 0 for j = l+ 1, l+ 2, . . . , n+ 2.

If l ≥ 1, then we consider the function w defined by

w(t) =
ρ(t)x(n+2)(t)
x(g(t))

, t ∈ I. (3.3)

According to Lemma 2.2, w(t) is eventually positive. It follows from (1.1) and
Lemma 2.3 that
w′(t)

=
ρ′(t)
ρ(t)

w(t)− ρ(t)q(t)f(x(g(t)))
x(g(t))

− ρ(t)p(t)x(n)(t)
x(g(t))

− ρ(t)x(n+2)(t)x′(g(t))g′(t)
x2(g(t))

≤ ρ′(t)
ρ(t)

w(t)−Kρ(t)q(t)− gl−1(t)(t− g(t))n−l+2g′(t)ρ(t)(x(n+2)(t))2

2l−1(l − 1)!(n− l + 2)!x2(g(t))

=
ρ′(t)
ρ(t)

w(t)−Kρ(t)q(t)− w2(t)
gl−1(t)(t− g(t))n−l+2g′(t)
2l−1(l − 1)!(n− l + 2)!ρ(t)

= −Kρ(t)q(t)− gl−1(t)(t− g(t))n−l+2g′(t)
2l−1(l − 1)!(n− l + 2)!ρ(t)

(
w(t)

− 2l−1(l − 1)!(n− l + 2)!ρ(t)ρ′(t)
2ρ(t)gl−1(t)(t− g(t))n−l+2g′(t)

)2

+
2l−3(l − 1)!(n− l + 2)!ρ′2(t)
ρ(t)gl−1(t)(t− g(t))n−l+2g′(t)

.

(3.4)
Thus

w′(t) ≤ −Kρ(t)q(t) +
2l−3(l − 1)!(n− l + 2)!ρ′2(t)
ρ(t)gl−1(t)(t− g(t))n−l+2g′(t)

.

Integration yields∫ t

T

(
Kρ(s)q(s)− 2l−3(l − 1)!(n− l + 2)!ρ′2(s)

ρ(s)gl−1(s)(s− g(s))n−l+2g′(s)

)
ds ≤ w(T )− w(t), t > T,

which contradicts (3.2).
If l = 0 (which means that n is even), then

x′(t) < 0, x′′(t) > 0, x′′′(t) < 0, . . . ,

x(n)(t) > 0, x(n+1)(t) < 0, x(n+2)(t) > 0
(3.5)

for sufficiently large t, namely, for t ≥ T1. Let limt→∞ x(t) = µ. If µ 6= 0, then
there exists a constant T2 ≥ T1 such that x(g(t)) ≥ x(t) > µ > 0, t ≥ T2. From
(1.1) we obtain

x(n+2)(t) ≤ x(n+2)(T2)−K
∫ t

T2

x(g(u))q(u)du ≤ x(n+2)(T2)−Kµ
∫ t

T2

q(u)du, (3.6)

for t ≥ T2. By (3.1) we know that
∫∞
T2
q(u)du = +∞. Thus inequality (3.6) implies

that x(n+2)(t) is eventually negative, a contradiction to (3.5).
Consider next the case that x(n)(t) < 0 for t ≥ T . By Lemma 2.3, x(t) is

eventually monotonous and x(n−1)(t) is eventually positive. Let

lim
t→+∞

x(t) = α1, lim
t→+∞

x(n−1)(t) = α2.
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We claim that α1 = 0. If this is not true, then there exist constants β1, β2 > 0 such
that

x(g(t)) > β1, 0 < x(n−1)(t) < β2, t ≥ T3 (3.7)
for some constant T3 > 0.

Integrating (1.1) from T3 to t yields

x(n+2)(t) +
∫ t

T3

[(p(u)x(n−1)(u))′ − p′(u)x(n−1)(u)]du

+
∫ t

T3

x(g(u))q(u)
f(x(g(u)))
x(g(u))

du

= x(n+2)(T3).

Thus by (3.7) we obtain

x(n+2)(t)

≤ x(n+2)(T3) + p(T3)x(n−1)(T3) +
∫ t

T3

p′(u)x(n−1)(u)du−
∫ t

T3

β1Kq(u)du

≤ x(n+2)(T3) + p(T3)x(n−1)(T3) +
∫ t

T3

x(n−1)p′+(u)du−
∫ t

T3

β1Kq(u)du

≤ x(n+2)(T3) + p(T3)x(n−1)(T3) +
∫ t

T3

β2p
′
+(u)du−

∫ t

T3

β1Kq(u)du

= x(n+2)(T3) + p(T3)x(n−1)(T3)− β1K

∫ t

T3

[q(u)− β2

β1K
p′+(u)]du.

(3.8)

By letting t → +∞, we get from (3.1) that x(n+2)(t) → −∞. Consequently, there
is a constant T4 ≥ T3 such that x(n+2)(t) ≤ −1 for t ≥ T4. Hence x(n+1)(t) ≤
x(n+1)(T4) − (t − T4) → −∞ as t → +∞. By the same way, it follows that
x(n)(t), x(n−1)(t), . . . , x′(t), x(t) → −∞ as t → +∞. This contradict the assump-
tion that x(t) is eventually positive. �

Remark 3.2. Conditions (3.1) are not equivalent to [9, Condition (2.2)]. We
would like to point out here that, unfortunately, the proof of the main theorem in
[9] contains an error. In fact, in the first paragraph of Page 6, under the assumption
y(t) > 0, y′(t) < 0, the authors conclude that y′(t) → 0 as t →∞. Obviously, this
is not necessarily true.

In what follows we give two interesting criteria for the oscillatory and asymptotic
behavior of the solutions to (1.1).

Corollary 3.3. Suppose that (2.1) has an eventually positive increasing solution
and that (3.1) holds. Assume further that

lim sup
t→∞

∫ t

T

[
Kq(s)− 2l−3(l − 1)!(n− l + 2)!g′(s)

gl+1(s)(s− g(s))n−l+2

]
g(s)ds = +∞ (3.9)

holds for all l = 2, 4, . . . , n + 2 when n is even and for all l = 1, 3, . . . , n + 2 when
n is odd. Then every solution x of (1.1) is oscillatory, or satisfies x(t) → 0 as
t→∞.

The conclusion of the above corollary follows from Theorem 3.1 by letting ρ(t) =
g(t).
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Corollary 3.4. Suppose that (2.1) has an eventually positive increasing solution
and that (3.1) holds. If limt→∞ t/g(t) ≥ α > 1, then every solution x of (1.1) is
oscillatory, or satisfies x(t)→ 0 as t→∞.

Proof. Since limt→∞ t/g(t) ≥ α > 1, there exists a constant ᾱ > 1 such that
t/g(t) > ᾱ for t ≥ T1, where T1 ≥ a. Hence∫ t

T1

g′(s)g(s)
gl+1(s)(s− g(s))n−l+2

ds

=
∫ t

T1

g′(s)
gn+2(s)(s/g(s)− 1)n−l+2

ds

≤ 1
(ᾱ− 1)n−l+2

∫ t

T1

g′(s)
gn+2(s)

ds

=
1

(n+ 1)(ᾱ− 1)n−l+2

( 1
gn+1(T1)

− 1
gn+1(t)

)
<

1
gn+1(T1)(n+ 1)(ᾱ− 1)n−l+2

, for all t > T1.

(3.10)

By (3.1) we obtain that
∫∞
a
q(t)dt = +∞. Note that limt→∞ g(t) = +∞, it turns

out that
∫∞
a
q(t)g(t)dt = +∞. Using this result and the inequality (3.10), the

required conclusion follows from Corollary 3.3. �

In applications there are many models in which the delay g(t) satisfies the con-
dition in Corollary 3.4. As an example, g(t) = at − τ for a ∈ (0, 1), but not for
a = 1. The case a = 1 will be discussed later.

Our next goal is to present some new oscillation results for (1.1), by using the
so-called integral averages condition of Philos-type. Following the literature [13],
we introduce a class of functions <. Let

D0 = {(t, s) : t > s ≥ a}, D = {(t, s) : t ≥ s ≥ a}.
If the function H ∈ C(D,R) satisfies

(i) H(t, t) = 0 for t ≥ a and H(t, s) > 0 for (t, s) ∈ D0,
(ii) H has a continuous and non-positive partial derivative on D0 with respect

to the second variable such that
∂H(t, s)
∂s

= −h(t, s)
√
H(t, s) for all (t, s) ∈ D0,

then H is said to belong to the class <.

Theorem 3.5. Suppose that equation (2.1) has an eventually positive increasing
solution and that (3.1) holds. Assume further that there exist functions H ∈ < and
ρ ∈ C1(I,R+) such that

lim sup
t→∞

1
H(t, T )

∫ t

T

[
Kρ(s)H(t, s)q(s)−

(ρ(s)h(t, s)−
√
H(t, s)ρ′(s))2

ρ2(s)Gl(s)

]
ds = +∞,

(3.11)
where

Gl(t) =
gl−1(t)(t− g(t))n−l+2g′(t)

a(l)ρ(t)
with a(l) = 2l−3(l − 1)!(n− l + 2)!,

where l = 2, 4, . . . , n+2 when n is even, and l = 1, 3, . . . , n+2 when n is odd. Then
every solution x of (1.1) is oscillatory, or satisfies x(t)→ 0 as t→∞.
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Proof. Let x be a non-oscillatory solution of (1.1). Without loss of generality, we
may assume that x(t) > 0 and x(g(t)) > 0 for t ≥ a. By Lemma 2.1, there exists a
constant T ≥ a such that x(n)(t) > 0 or x(n)(t) < 0 for t ≥ T .

Assume firstly that x(n)(t) > 0 for t ≥ T . It follows from (1.1) that x(n+3)(t) < 0
and hence there exists l ∈ {1, 3, . . . , n+2} (resp. l ∈ {0, 2, . . . , n+2}) when n is odd
(resp. n is even) such that for all sufficiently large t, x(j)(t) > 0 for j = 0, 1, . . . , l
and (−1)n+jx(j)(t) > 0 for j = l + 1, l + 2, . . . , n+ 2.

Defining again the function w as in (3.3). If l 6= 0, then we get from (3.4) that

Kρ(t)q(t) ≤ −w′(t) +
ρ′(t)
ρ(t)

w(t)− 1
4
w2(t)Gl(t). (3.12)

Thus

K

∫ t

T

H(t, s)ρ(s)q(s)ds

≤
∫ t

T

[
− w′(s)H(t, s) +

(ρ′(s)
ρ(s)

w(s)− 1
4
w2(s)Gl(s)

)
H(t, s)

]
ds.

Using integration by parts and noting that H ∈ <, we find

−
∫ t

T

w′(s)H(t, s)ds = w(T )H(t, T ) +
∫ t

T

w(s)
∂H(t, s)
∂s

ds

= w(T )H(t, T )−
∫ t

T

w(s)h(t, s)
√
H(t, s)ds.

Let

Q(t, s) = h(t, s)−
√
H(t, s)

ρ′(s)
ρ(s)

,

then

K

∫ t

T

H(t, s)ρ(s)q(s)ds

≤ w(T )H(t, T )−
∫ t

T

[
w(s)

√
H(t, s)Q(t, s) +

1
4
Gl(s)H(t, s)w2(s)

]
ds

= w(T )H(t, T )− 1
4

∫ t

T

Gl(s)H(t, s)
(
w(s) +

2Q(t, s)
Gl(s)

√
H(t, s)

)2

ds+
∫ t

T

Q2(t, s)
Gl(s)

ds

≤ w(T )H(t, T ) +
∫ t

T

Q2(t, s)
Gl(s)

ds.

It turns out that

1
H(t, T )

∫ t

T

[
KH(t, s)ρ(s)q(s)− Q2(t, s)

Gl(s)

]
ds ≤ w(T ). (3.13)

This contradicts (3.11). The rest of the proof is the same as in Theorem 3.1, and
hence it is omitted. �

By letting ρ(t) = g(t) in (3.11), from Theorem 3.5 we obtain the following result.
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Corollary 3.6. Suppose that (2.1) has an eventually positive increasing solution
and that (3.1) holds. Assume further that there exists function H ∈ < such that

lim sup
t→∞

1
H(t, T )

∫ t

T

[
Kg(s)H(t, s)q(s)

−
a(l)(g(s)h(t, s)−

√
H(t, s)g′(s))2

gl(s)(s− g(s))n−l+2g′(s)

]
ds = +∞,

(3.14)

where l = 2, 4, . . . , n+ 2 when n is even and l = 1, 3, . . . , n+ 2 when n is odd. Then
every solution x of (1.1) is oscillatory, or satisfies x(t)→ 0 as t→∞.

Corollary 3.7. Suppose that (2.1) has an eventually positive increasing solution
and that (3.1) holds. If g′(t) > 0 and there is a real number m 6= 0 such that

lim sup
t→∞

1
[g(t)− g(T )]m

∫ t

T

[
K
( g(t)
g(s)

− 1
)m
q(s)

− m2a(l)(g(t)− g(s))m−2g2(t)g′(s)
gl+m+1(s)(s− g(s))n−l+2

]
ds = +∞,

(3.15)

where l = 2, 4, . . . , n+ 2 when n is even and l = 1, 3, . . . , n+ 2 when n is odd. Then
every solution x of (1.1) is oscillatory, or satisfies x(t)→ 0 as t→∞.

Proof. Let H(t, s) = [g(t) − g(s)]m, ρ(t) = 1/gm(t), then H ∈ <, ρ ∈ C1(I,R+).
Moreover, h(t, s) = mg′(s)(g(t)− g(s))m/2−1. Consequently,

(ρ(s)h(t, s)−
√
H(t, s)ρ′(s))2

ρ2(s)Gl(s)

=
(g(t)− g(s))m−2(mρ(s)g′(s)− (g(t)− g(s))ρ′(s))2

ρ2(s)Gl(s)

=
m2(g(t)− g(s))m−2g2(t)g′2(s)

Gl(s)g2(s)

=
m2a(l)(g(t)− g(s))m−2g2(t)g′(s)

gl+m+1(s)(s− g(s))n−l+2
.

(3.16)

The required conclusion follows from (3.15) and (3.16). �

In some applications, the delay g(t) has the form g(t) = t− τ with τ > 0 which
does not satisfy the condition limt→∞ t/g(t) ≥ α > 1 of Corollary 3.4. Next we
give a convenient criterion for system (1.1) having such a delay.

Corollary 3.8. Suppose the following conditions hold:
(i) Equation (2.1) has an eventually positive increasing solution;
(ii) Condition (3.1) holds and there are integer m > 1 and constant α > 0 such

that limt→∞ q(t)/tm−1 ≥ α;
(iii) g(t) = at− τ with 0 < a ≤ 1 and τ > 0.

Then every solution x of (1.1) is oscillatory, or satisfies x(t)→ 0 as t→∞.

Proof. By Corollary 3.7, it suffices to show that (3.15) holds. For the sake of brevity,
we only give the proof of the case that a = 1. The proof of the other cases is similar
and hence is omitted. Obviously, condition (ii) implies that q(t)/(t − τ)m−1 >
α/2, t ≥ T1 for some constant T1 > a. Hence∫ t

T1

( g(t)
g(s)

− 1
)m

q(s)ds
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=
∫ t

T1

(t− s)m

s− τ
· q(s)

(s− τ)m−1
ds

≥ α

2

∫ t

T1

(t− s)m

s− τ
ds

=
α

2

∫ t

T1

((t− τ)− (s− τ)))m

s− τ
ds

=
α

2

m∑
k=0

Ckm(−1)k(t− τ)m−k
∫ t

T1

(s− τ)k−1ds

=
α

2

(
(t− τ)mln

t− τ
T1 − τ

+
m∑
k=1

Ckm(−1)k
(t− τ)m − (t− τ)m−k(T1 − τ)k

k

)
,

where Ckm = m!
(m−k)!k! . It turns out that

lim
t→∞

1
(g(t)− g(T ))m

∫ t

T

( g(t)
g(s)

− 1
)m

q(s)ds

≥ lim
t→∞

α

2

( (t− τ)m

(t− T )m
ln

t− τ
T1 − τ

+
m∑
k=1

Ckm(−1)k
(t− τ)m − (t− τ)m−k(T1 − τ)k

k(t− T )m
)

= +∞.
(3.17)

On the other hand,

1
(g(t)− g(T ))m

∫ t

T

(g(t)− g(s))m−2g2(t)g′(s)
gl+m+1(s)(s− g(s))n−l+2

ds

=
(t− τ)2

(t− T )m

∫ t

T

((t− τ)− (s− τ))m−2

(s− τ)l+m+1τn−l+2
ds

=
1

τn−l+2
Il(t),

(3.18)

where

Il(t) =
(t− τ)2

(t− T )m

∫ t

T

((t− τ)− (s− τ))m−2

(s− τ)l+m+1
ds.

If m = 2, then

Il(t) =
( t− τ
t− T

)2 ∫ t

T

1
(s− τ)l+3

ds < M1, (3.19)

where M1 is a constant.
If m > 2, then

Il(t) =
(t− τ)2

(t− T )m

m−2∑
k=0

Ckm−2(−1)k(t− τ)m−2−k
∫ t

T

(s− τ)k−l−m−1ds

=
( t− τ
t− T

)m m−2∑
k=0

Ckm−2(−1)k(t− τ)−k
(T − τ)k−l−m − (t− τ)k−l−m

m+ l − k

=
( t− τ
t− T

)m m−2∑
k=0

Ckm−2(−1)k
(T − τ)k−l−m(t− τ)−k − (t− τ)−l−m

m+ l − k
< M2,

(3.20)
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where M2 is a constant.
By (3.18), (3.19) and (3.20), it is easy to see that

lim sup
t→∞

1
[g(t)− g(T )]m

∫ t

T

m2a(l)(g(t)− g(s))m−2g2(t)g′(s)
gl+m+1(s)(s− g(s))n−l+2

ds < +∞. (3.21)

Finally, combining (3.17) with (3.21), we find that (3.15) holds. This completes the
proof. �

4. Examples

In this section, we give examples that illustrate our main results.

Example 4.1. Consider the eighth-order delay differential equation

x(8)(t) +
1

(1 + 2t)2
( t2 + t− 2

(1 + t)3 ln(1 + t)
+

3
(1 + 2t)

)
x(5)(t) +

3t+ sin t
t2 − 2

x(t− ln t) = 0,

(4.1)
for t ≥ 2. Here n = 5,

p(t) =
1

(1 + 2t)2
( t2 + t− 2

(1 + t)3 ln(1 + t)
+

3
(1 + 2t)

)
, q(t) =

3t+ sin t
t2 − 2

and f(x) = x with K = 1.
The equation u′′′ + p(t)u = 0 has a positive and strictly increasing solution

u(t) = (2t+1)3/2 ln(1+t). It is easy to see that
∫∞
2
q(t)dt = +∞, p′(t) is eventually

negative and hence that (3.1) is true. Let ρ(t) = t, then it is easy to see that for
l = 1, 3, 5, 7,

lim sup
t→∞

∫ t

2

[
Kρ(s)q(s)− 2l−3(l − 1)!(n− l + 2)!(ρ′(s))2

gl−1(s)(s− g(s))n−l+2g′(s)ρ(s)

]
ds

= lim sup
t→∞

∫ t

2

[3s2 + s sin s
s2 − 2

− 2l−3(l − 1)!(7− l)!
(s− ln s)l−1(ln s)7−l(s− 1)

]
ds = +∞.

Consequently, by Theorem 3.1, any solution of (4.1) is oscillatory, or satisfies x(t)→
0 as t→∞.

Example 4.2. Consider the fourth-order delay differential equation

x(4)(t) +
3(ln2 t− 2)
t3 ln3 t

x′(t) +
t+ 1
t2 + 1

x
(

(1 + sin
1

t2 + 1
)
t

2

)
= 0, t ≥ 1. (4.2)

The delay function g(t) = (1+sin 1
t2+1 ) t2 satisfies 0 < g(t) < t, limt→+∞ g(t) = +∞

and t/g(t) ≥ 2/(1 + sin(1/2)) > 1. It is not hard to check that the equation
u′′′+p(t)u = 0, with p(t) = 3(ln2 t−2)

t3 ln3 t
, has a positive and strictly increasing solution

u(t) = t ln3 t. Moreover, since

p′(t) =
3

t4 ln4 t
(6 + 6 ln t− ln2t− 3 ln3 t),

p′+(t) = 0 for sufficiently large t. Clearly,
∫∞
1
q(t)dt ≥

∫∞
1

t+1
2t2 dt = +∞, which

implies that (3.1) is true. Thus, by Corollary 3.4, any solution of (4.2) is oscillatory,
or satisfies x(t)→ 0 as t→∞.
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Example 4.3. Consider the fifth-order delay differential equation

x(5)(t)+
2

t3(1 + 2 ln t)
x′′(t)+(5+e−t cos t)tx(at−τ)(2+exp[−x(at−τ)]) = 0, (4.3)

for t ≥ 1, where a ∈ (0, 1], τ > 0. Obviously, the function f(x) = x(2+e−x) satisfies
that f(x)/x ≥ 2 for x 6= 0. It is easy to check that the equation u′′′ + p(t)u = 0
has a positive and strictly increasing solution u(t) = t(2 ln t + 1). Moreover, since
p′(t) ≤ 0 and

∫∞
1
q(t)dt =

∫∞
1

(5 + e−t cos t)tdt = +∞, it follows that (3.1) is
satisfied. Clearly, limt→∞ q(t)/t = 5. Thus, by Corollary 3.8, any solution of (4.3)
is oscillatory, or satisfies x(t)→ 0 as t→∞.

Acknowledgments. This research was supported by the NSF of China (grant
11201086), by the Foundation for Distinguished Young Talents in Higher Education
of Guangdong, China (grant 2012LYM 0087), and by the Excellent Young Teachers
Training Program for colleges and universities of Guangdong Province, China (grant
Yq2013107).

References

[1] R. P. Agarwal, S. R. Grace, D. O’Regan; Oscillation Theory for Difference and Functional

Differential Equations, Kluwer Acad. Publ,Drdrechet, 2000.
[2] R. P. Agarwal, M. F. Aktasm A. Tiryaki; On oscillation criteria for third order nonlinear

delay differential equations Arch. Math., 45 (2009), 1–18.

[3] R. P. Agarwal, S. R. Grace, P. J. Y. Wong; Oscillation theorems for certain higher order
nonlinear functional differential equations, Appl. Anal. Disc. Math., 2 (2008), 1–30.

[4] M. F. Aktas, A. Tiryaki, A. Zafer; Integral criteria for oscillation of third order nonlinear
differential equations, Nonlinear Anal., 71 (2009), e1496-e1502.

[5] M. F. Aktas, A. Tiryaki, A. Zafer, Oscillation criteria for third-order nonlinear functional

differential equations, Appl. Math. Letti., 31 (2010), 756–762.
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