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HOMOGENIZATION OF GEOLOGICAL FISSURED SYSTEMS
WITH CURVED NON-PERIODIC CRACKS

FERNANDO A. MORALES

Abstract. We analyze the steady fluid flow in a porous medium containing

a network of thin fissures of width O(ε), generated by the rigid translation

of continuous piecewise C1 functions in a fixed direction. The phenomenon
is modeled in mixed variational formulation, using the stationary Darcy’s law

and coefficients of low resistance O(ε) on the network. The singularities are

removed by asymptotic analysis as ε → 0 which yields an analogous system
hosting only tangential flow in the fissures. Finally the fissures are collapsed

into two dimensional manifolds.

1. Introduction

Groundwater and oil reservoirs are frequently fissured or layered; i.e., the bedrock
contains fissures of characteristic dimensions considerably higher than those of the
average pore size of the rock. The modeling of saturated flow through geological
structures such as these, gives rise to singular problems of partial differential equa-
tions [20]. On one hand, the singularities are caused by the drastic change of perme-
ability from the rock matrix to the fissures. On the other hand, a geometric singu-
larity is introduced due to the thinness of the fractures. The presence of singularities
in the model has non-desirable effects in their numerical implementation; some of
these are ill-conditioned matrices, high computational costs, numerical instability,
etc. This subject is a very active research field, see [2, 5, 9, 11, 12] for numerical
analysis aspects, see [8, 10] for modeling discussion and see [1, 3, 4, 13, 14, 15]
for rigorous mathematical treatment of the phenomenon. Homogenization and as-
ymptotic analysis techniques are a common approach for the analytical point of
view. However, the remarkable achievements in the field require very restrictive
hypotheses for the description of the geometry such as regular geometric shapes
or periodically arrayed structures [7, 17]. In general the variational methods for
partial differential equations can give successful formulations for a wide class of
geometric domains. The limited treatment of the geometry is due to the notorious
technical difficulties, that more general shapes introduce in the asymptotic analysis
of the problem.
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In the present work, the geometric possibilities of the medium are extended to
fissures that are not necessarily flat. We use the mixed mixed formulation and the
scaling for the flow resistance coefficients presented in [16], then a careful choice of
directions or “stream lines”, consistent with the natural geometry of the problem
permits a successful asymptotic analysis of the model. This leads to a system
coupled through multiple two dimensional manifolds representing the fissures in
the upscaled model. Additionally, the formulation allows remarkable generality in
the fluid exchange balance conditions between the rock matrix and the channels and
substantial efficiency for handling the system of equations as well as the information
(coefficients, matrices, etc) describing the geometry of the fractures. This is mostly
due to the fact that the formulation does not demand coupling constraints on the
underlying spaces of functions. The main goal of the paper is to emphasize the
geometry, consequently the study is limited to the steady case. We describe flow
with Darcy’s law

a(·)u + ∇p+ g = 0, (1.1a)
together with the conservation law

∇ · u = F. (1.1b)

Drained and null-flux boundary conditions will be specified on different parts of the
boundary of the domain to set a boundary value problem. The balance conditions
of normal stress and normal flux across the interface Γ, separating the regions Ω1

and Ω2 are given by

p1 − p2 = αu1 · n̂ and (1.1c)

u1 · n̂− u2 · n̂ = fΓ on Γ. (1.1d)

The superscripts denote restrictions to Ω1 and Ω2. The coefficient a(·) is the flow re-
sistance, i.e. the fluid viscosity times the inverse of the permeability of the medium,
to be scaled consistently with the fast and slow flow regions of the medium. Finally,
the coefficient α indicates the fluid entry resistance of the rock matrix.

In the following section we define the geometric setting, formulate the problem
in mixed mixed variational formulation and prove its well-posedness. In section
three the problem is referred to a common geometric setting in order make possible
the asymptotic analysis, the existence of a-priori estimates and the structure of the
limiting solution are also shown. Section four studies the formulation and well-
posedness of the limiting problem as well as its strong form (particularly important
for boundary and interface conditions); it also proves the strong convergence of
the solutions. Section five sets the limiting problem as a coupled system with two
dimensional interfaces and section six discusses the possibilities and limitations of
the technique as well as related future work.

2. Formulation and geometric setting

Vectors are denoted by boldface letters as are vector-valued functions and cor-
responding function spaces. We use x̃ to indicate a vector in R2; if x ∈ R3 then
the R2 × {0} projection is identified with x̃ := (x1, x2) so that x = (x̃, x3). The
symbol ∇̃ represents the gradient in the first first two directions: ı̂, ̂. Given a
function f : R3 → R then

∫
M fdS is the notation for its surface integral on the two

dimensional manifold M ⊆ R3.
∫
A
f dx stands for the volume integral in the set

A ⊆ R3; whenever the context is clear we simply write
∫
A
f .
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The symbol ν̂ denotes the outwards normal vector on the boundary of a given
domain O and n̂ denotes the upwards vector normal to a given surface i.e. n̂·k̂ ≥ 0.
For any A ⊆ R3 and t ∈ R we define its t-vertical shift by

A+ t :=
{
x + tk̂ : x ∈ A

}
(2.1)

2.1. General geometric setting. The present work will be limited to the study
of fractured media where each fissure can be described in a specific way.

Definition 2.1. LetO ⊆ R2 be a bounded open simply connected set and ζ ∈ C(O)
be a piecewise C1 function. Define the surface

Υ := {[x̃, ζ(x̃)] : x̃ ∈ O}. (2.2)

We assume that Υ is non-vertical with ess inf{n̂(s) · k̂ : s ∈ Υ} > 0. Given h > 0,
define the fissure of height h generated by a rigid vertical translation of Υ as the
domain

Θ(h,Υ) := {(x̃, y) : ζ(x̃) < y < ζ(x̃) + h}. (2.3)

Remark 2.2. Notice that in the definition of Θ(h,Υ) we mention h as the height
and not as the width of the crack. Figure 4 shows that, depending on the gradient
of the surface, the height h can become significantly different from the actual width.

Γ1

Γ2

Γ3

h1 k̂

h3 k̂

Ω0

Ω1

Ω2

Ω(h1 ,Γ1)

Ω(h3 ,Γ3)

Ω3

h2 k̂

Ω(h2 ,Γ2)

Figure 1. Unidirectional translation generated fissures

Figure 1 depicts a region Ω ⊆ R3 containing a network of fissures generated
by vertical rigid translation of continuous piecewise C1 surfaces. For the sake of
clarity we restrict the analysis to the case where only one fissure is embedded in
the domain. From here, the generalization to a system with multiple fissures is a
rather simple exercise. Next we define this domain

Definition 2.3. A medium Ω with a vertical translation generated fissure is com-
posed by three connected components denoted Θ1, Θ2 and Θ(h,Γ1) such that

(i) Θ(h,Γ1) is a region generated by the vertical translation hk̂ of a piecewise
C1 function Γ1 as given in definition 2.1.
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(ii) Θi ⊆ R3 are open bounded simply connected regions for i = 1, 2. These
stand for rock matrix regions and satisfy

∂Θ1 ∩ ∂Θ(h,Γ1) = Γ1,

∂Θ2 ∩ ∂Θ(h,Γ1) = Γ1 + h,
(2.4a)

cl(Θ1) ∩ cl(Θ2) = ∅. (2.4b)

The sets Ω1,Ω2 are the rock matrix and the fissures regions respectively; i.e.,

Ω1 := Θ1 ∪Θ2, Ω2 := Θ(h,Γ1), Ω := cl(Ω1 ∪ Ω2). (2.5)

The interfaces are defined by

Γ1, Γ2 := Γ1 + h, Γ := Γ2 ∪ Γ1 (2.6)

The upwards normal vector to the surface Γ1 is denoted n̂; i.e.,

n̂ :=
(−∇̃ζ, 1)

|(−∇̃ζ, 1)|
. (2.7)

Finally, we introduce the notation Ω = (Θ1,Θ2, ζ, h) for this type of domains.

Remark 2.4. The condition 2.4b of connectivity of the rock matrix regions only
through the fissure is not required for modeling the problem in mixed formulation
as it is presented in section 2.4; however it is necessary for the asymptotic analysis
of the system. The same holds for the simple connectedness requirement on the
domains.

2.2. A local system of coordinates. Several aspects of the flow through the
fissure are handled more conveniently, when the velocities are expressed in a coor-
dinate system consistent with the geometry of the surface that generates the crack.
Let Γ be a surface as defined in (2.2) and n̂ the upwards normal to the surface Γ
i.e. n̂ = n̂(s) = n̂(x̃). Now, for each point x̃ we choose a local orthonormal basis
in the following way,

B(x̃) := {ê1(x̃), ê2(x̃), n̂(x̃)}. (2.8)

Let M = M(x̃) be the orthogonal matrix relating the global canonical basis with
the local one; i.e.,

M(x̃)ı̂ = ê1(x̃), (2.9a)

M(x̃)̂ = ê2(x̃), (2.9b)

M(x̃)k̂ = n̂(x̃). (2.9c)

The block matrix notation for this local matrix will be

M(x̃) :=
(
MT,τ MT,bn
M

bk,τ M
bk,bn
)

(x̃). (2.10)

Here, the index T stands for the first two components in the directions ı̂, ̂ while the
index τ stands for the tangential velocity, orthogonal to n̂. Then w = [wτ ,wbn](x̃)
with the following relations

wbn := w · n̂(x̃), (2.11a)

wτ := (w · ê1(x̃),w · ê2(x̃)). (2.11b)
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Clearly, the relationship between velocities is given by

w(x̃, x3) =
{

w̃
w · k̂

}
(x̃, x3) = M(x̃)

{
wτ

w · n̂

}
(x̃, x3)

=
(
MT,τ (x̃) MT,bn(x̃)
M

bk,τ (x̃) M
bk,bn(x̃)

){
wτ

w · n̂

}
(x̃, x3).

(2.12)

Proposition 2.5. Let h > 0, Υ, Θ(h,Υ) be as in definition 2.1; let n̂ be the
upwards normal to the surface Υ and M be the matrix defined by (2.9). Then

(i) The map w 7→ M(x̃)w is an isometry in L2(Θ(h,Υ)). In particular if
wτ ,w · n̂ are defined as in (2.11) then w ∈ L2(Θ(h,Υ)) if and only if
wτ ∈ L2(Θ(h,Υ))× L2(Θ(h,Υ)) and w · n̂ ∈ L2(Θ(h,Υ)).

(ii) If w ∈ L2(Θ(h,Υ)) is such that ∂zw ∈ L2(Θ(h,Υ)) then

∂zw(x̃, z) = M(x̃)
{

∂zwτ

(∂zw) · n̂

}
(x̃, z). (2.13)

Proof. (i) For x̃ fixed the matrix M(x̃) is orthogonal; i.e., for arbitrary functions
v,w ∈ L2(Θ(h,Υ)) and x ∈ Θ(h,Υ) holds v(x) · w(x) = M(x̃)v(x) ·M(x̃)w(x).
Hence ∫

Θ(h,Υ)

v(x) ·w(x)dx

=
∫

Θ(h,Υ)

M(x̃)v(x) ·M(x̃)w(x)dx

=
∫

Θ(h,Υ)

vτ (x) ·wτ (x)dx +
∫

Θ(h,Υ)

(v · n̂)(x) · (w · n̂)(x)dx

The equality of the second line shows the necessity and sufficiency of the tangential
and normal components being square integrable in the domain Θ(h,Υ).

(ii) It follows from a direct calculation of distributions with ϕ ∈ [C∞0 (Θ(h,Υ))]3

arbitrary and the fact that ∂zM = 0. �

2.3. The problem and its formulation. In this section we define the problem
in a rigorous way and give a variational formulation in which it is well-posed. Let
Ω = (Θ1,Θ2, ζ, h) be a fractured domain with a vertical translation generated
fissure as in definition 2.3. We denote v1, p1 the velocity and pressure in the rock
matrix region Ω1. In the same fashion v2, p2 denote the velocity and pressure in
the fissures region Ω2.

Consider the problem

a1u1 + ∇p1 + g = 0 and (2.14a)

∇ · u1 = F in Ω1, (2.14b)

p1 = 0 on ∂Ω1 − Γ, (2.14c)

p1 − p2 = αu1 · n̂1Γ2 − αu1 · n̂1Γ1 and (2.14d)

(u1 − u2) · n̂1Γ1 − (u1 − u2) · n̂1Γ2 = fΓ on Γ, (2.14e)

a2u2 + ∇p2 + g = 0 and (2.14f)

∇ · u2 = F in Ω2, (2.14g)

u2 · n̂ = 0 on∂Ω2 − Γ. (2.14h)
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The flow resistance coefficients a1, a2 and the fluid entry resistance coefficient α
are assumed to be positively bounded from below and above, see [16]. In equations
(2.14d) (2.14e) the split of cases, Γ2 and Γ1, is made in order to be consistent with
the sign of the upwards normal vector n̂.

2.4. Mixed formulation of the problem. We start defining the spaces of veloc-
ity and pressure.

V := {v ∈ L2(Ω) : ∇ · v1 ∈ L2(Ω1),v1 · n̂|Γ ∈ L2(Γ)}, (2.15a)

Q := {q ∈ L2(Ω) : ∇q2 ∈ L2(Ω2)} (2.15b)

Endowed with their natural norms

‖v‖V := {‖v‖2L2(Ω) + ‖∇ · v1‖2L2(Ω1) + ‖v1 · n̂‖2L2(Γ)}
1/2, (2.15c)

‖q‖Q := {‖q‖2L2(Ω) + ‖∇q2‖2L2(Ω2)}
1/2 (2.15d)

Remark 2.6. In the spaces above it is understood that

‖v · n̂‖2L2(Γ) = ‖v · n̂‖2L2(Γ2) + ‖v · n̂‖2L2(Γ1) . (2.16)

Consider the problem: Find p ∈ Q and u ∈ V such that∫
Ω1

a1u · v +
∫

Ω2

a2u · v −
∫

Ω1

p∇ · v +
∫

Ω2

∇p · v

+ α

∫
Γ

(u1 · n̂)(v1 · n̂) dS −
∫

Γ1

p2(v1 · n̂) dS +
∫

Γ2

p2(v1 · n̂) dS

= −
∫

Ω

g · v ,

(2.17a)

∫
Ω1

∇ · uq −
∫

Ω2

u ·∇q +
∫

Γ1

(u1 · n̂)q2 dS −
∫

Γ2

(u1 · n̂)q2 dS

=
∫

Ω

Fq +
∫

Γ

fΓq
2 dS for all q ∈ Q, v ∈ V .

(2.17b)

Remark 2.7. In the formulation above the non-symmetric interface terms are split
in two pieces in order to express everything in terms of the upwards normal vector
n̂. In the case of the symmetric term

∫
Γ
(u1 · n̂)(v1 · n̂)dS in (2.17a) such split

becomes unnecessary since the sign of the normal vector changes in both factors
canceling each other.

Define the bilinear forms A : V→ V′, B : V → Q′, C : Q→ Q′ by

Av(w) :=
∫

Ω1

a1v ·w +
∫

Ω2

a2v ·w + α

∫
Γ

(v1 · n̂)(w1 · n̂) dS, (2.18a)

Bv(q) := −
∫

Ω1

∇ · vq +
∫

Ω2

v ·∇q −
∫

Γ1

(v1 · n̂)q2 dS +
∫

Γ2

(v1 · n̂)q2 dS .

(2.18b)

Then, the system (2.17) is a mixed formulation for the problem (2.14) with the
abstract form

u ∈ V, p ∈ Q : Au + B′p = −g in V′,

−Bu = f in Q′.
(2.19)

For the sake of completeness we recall some well known results
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Theorem 2.8. Let V, Q be Hilbert spaces and ‖·‖V, ‖·‖Q be their respective norms.
Let A : V→ V′, B : V→ Q′ be continuous linear operators such that

(i) A is non-negative and V-coercive on kerB.
(ii) The operator B satisfies the inf-sup condition

inf
q∈Q

sup
v∈V

|Bv(q)|
‖v‖V‖q‖Q

> 0. (2.20)

Then, for each g ∈ V′ and f ∈ Q′ there exists a unique solution [u, p] ∈
V ×Q to the problem (2.19). Moreover, it satisfies the estimate

‖u‖V + ‖p‖Q ≤ K(‖g‖V′ + ‖f‖Q′) . (2.21)

For a proof of the above theorem, see [6] .

Lemma 2.9. Let O be an open connected bounded set in RN and G ⊆ ∂O with
non-null RN−1-Lebesgue measure, then there exists κ = κ(O) > 0 such that

‖∇η‖L2(O) + ‖η‖L2(G) ≥ κ‖η‖H1(O) (2.22)

for all η ∈ H1(O).

For a proof of the above lemma, see [19, Proposition 5.2] or [16, Lemma 1.2].

Corollary 2.10. There exists a constant κ > 0 such that

‖∇q‖2L2(Ω2) + ‖q‖2L2(Γ) ≥ κ‖q‖
2
L2(Ω2) (2.23)

for all q ∈ H1(Ω2).

Lemma 2.11. The operator B satisfies the inf-sup condition (2.20).

Proof. We use the same strategy presented lemma 1.3 in [16] with a slight modifi-
cation in the construction of the particular test function. Fix q ∈ Q and for j = 1, 2
denote ξj the unique solution of the problem

−∇ ·∇ξj = q1 in Θj ,

∇ξj · n̂ = (−1)j−1q2 on Γj , ∇ξj · n̂ = −q2 on Γj + hj ,

ξj = 0 on ∂Θj − Γj .

(2.24)

Define v1 := ∇ξ11Θ1 + ∇ξ21Θ2 . Thus, −∇ · v1 = q1
1Θ1 + q1

1Θ2 and

v1 · n̂ = q2
1Γ1 − q2

1Γ2 .

By the Poincaré inequality c1‖v1‖Hdiv(Ω1) ≤ ‖q1‖L2(Ω1) + ‖q2‖L2(Γ). Hence, setting
v2 := ∇q2 we have

Bv(q) = −
∫

Ω1

∇ · v1q1 +
∫

Ω2

v2 ·∇q2 −
∫

Γ1

(v1 · n̂)q2 dS +
∫

Γ2

(v1 · n̂)q2 dS

=
∫

Ω1

|q1|2 +
∫

Ω2

|∇q2|2 +
∫

Γ1

|q2|2 dS +
∫

Γ2

|q2|2 dS

≥
∫

Ω1

|q1|2 +
κ

2

∫
Ω2

|q2|2 +
1
2

(
∫

Ω2

|q2|2 +
∫

Γ

|q2|2 dS)

≥ c‖v‖V‖q‖Q ,
(2.25)

for c := min{c1, 1
2 ,

κ
2 }, which gives the inf-sup condition of the operator B. �
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Theorem 2.12. Let ai(·) ∈ L∞(Ω) and

a∗ := min
i=1,2

ess inf{ai(x) : x ∈ Ωi}. (2.26)

Then, if a∗ is positive and 0 < α, the mixed variational formulation (2.19) (or
equivalently, the system (2.17)) is well-posed.

Proof. Clearly A is non-negative and V-coercive on kerB. The operator B satisfies
the inf-sup condition as seen in the preceding lemma. By theorem 2.8 the result
follows. �

3. Scaling the problem and convergence statements

The successful asymptotic analysis of the problem (2.17) demands scaling of the
heights and resistance coefficients of the medium. We have the following definition
(see figure 2).

Definition 3.1. Let Ω = (Θ1,Θ2, ζ, h) be a fractured medium with a vertical
translation generated fissure. For ε ∈ (0, 1) we define its associated ε-scaled fissured
system {(Θε

1,Θ
ε
2, ζ, εh) : ε > 0} by

Θε
1 := Θ1, Θε

2 := Θ2 − (1− ε)h, (3.1a)

Γε1 = Γ1, Γε2 = Γ2 − (1− ε)h. (3.1b)

The domains Ωε1,Ω
ε
2,Ω

ε and Γε1,Γ
ε,Γε are defined as in (2.5) and (2.6) respectively.

Γ1
ϵ

Θ1
ϵ

Θ2
ϵ

ϵ h2

Θ(ϵ h ,Γ1
ϵ)

Γ2

Θ1

Θ2

h Θ(h ,Γ1)

φ

Γ1

Figure 2. Domains mapping

Remark 3.2. Clearly the system (Θε
1,Θ

ε
2, ζ, εh), satisfies the conditions of defini-

tion 2.3 for every ε > 0.

3.1. Isomorphisms of spaces and formulation. Let Ωε1,Ω
ε
2, Ωε and Γε1,Γ

ε
2, Γε

be the domains and surfaces associated to the family {(Θε
1,Θ

ε
2, ζ, εh) : ε > 0} as in

definition 3.1. Define the spaces

Vε := {v ∈ L2(Ωε) : ∇ · v1 ∈ L2(Ωε1),v1 · n̂|Γε ∈ L2(Γε)}, (3.2a)

Qε := {q ∈ L2(Ωε) : ∇q2 ∈ L2(Ωε2)}. (3.2b)

We endow these spaces with the norms coming from the natural inner product

‖v‖Vε := {‖v‖2L2(Ωε) + ‖∇ · v1‖2L2(Ωε1) + ‖v1 · n̂‖2L2(Γε)}
1/2, (3.2c)
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‖q‖Qε := {‖q‖2L2(Ωε) + ‖∇q2‖2L2(Ωε2)}
1/2 . (3.2d)

Consider the scaled problem: Find pε ∈ Qε and uε ∈ Vε such that∫
Ωε1

a1uε · vdy + ε

∫
Ωε2

a2uε · vdy −
∫

Ωε1

pε∇ · vdy +
∫

Ωε2

∇pε · vdy

+ α

∫
Γε

(uε,1 · n̂)(v1 · n̂) dS −
∫

Γε1

pε,2(v1 · n̂) dS +
∫

Γε2

pε,2(v1 · n̂) dS

= −
∫

Ωε
gε · vdy ,

(3.3a)

∫
Ωε1

∇ · uεqdy −
∫

Ωε2

uε ·∇qdy +
∫

Γε1

(uε,1 · n̂)q2 dS −
∫

Γε2

(uε,1 · n̂)q2 dS

=
∫

Ωε
F εqdy +

∫
Γε
f εΓεq

2 dS for all q ∈ Qε,v ∈ Vε.

(3.3b)

Clearly, the problem (3.3) is well-posed since it verifies all the hypothesis of theorem
2.12. In order to analyze the asymptotic behavior of the solution (uε, pε) as ε ↓ 0
the geometry of the ε-domains must be mapped to a common domain of reference.

3.2. The ε-problems in a reference domain. We introduce the change of vari-
able (see figure 2) ϕ : Ωε → Ω defined by

ϕ(y) := y1Θε1
(y) + (ỹ, y3 + (1− ε)h)1Θεj

(y)

+ (ỹ,
1
ε

(y3 − ζε(ỹ)) + ζε(ỹ) + (1− ε)h)1Θ(εh,Γε1)(y)
(3.4)

Defining (x̃, z) := ϕ(y) the gradients are related as follows

∇y =
{

∇̃x

∂z

}
1Ωε1

+
∑
i

[
I (1− 1

ε )∇̃xζ(x̃)
0 1

ε

]{
∇̃x

∂z

}
1Ωε2

(3.5)

Here, it is understood that I is the identity matrix in R2×2. We write ζ instead of
ζε for the sake of simplicity, recalling that both surfaces differ only by a constant
of vertical translation.

Theorem 3.3. Let ϕ : Ωε → Ω be the change of variable defined in equation
(3.4). Then, the maps defined Φ1 : V → Vε, Φ2 : Q → Qε defined respectively by
(Φ1v)(y) := v(ϕ(y)) and (Φ2q)(y) := q(ϕ(y)) are isomorphisms.

Proof. First notice for v ∈ V and q ∈ Q the functions Φ1v and Φ2q are defined on
Ωε. Moreover, for ` = 1, 2 the restriction of the change of variable is a bijection; i.e.,
ϕ : Ωε` → Ω` is a bijection. Therefore v(·) ∈ L2(Ω`) if and only if v(ϕ(·)) ∈ L2(Ωε`)
and q(·) ∈ L2(Ω`) if and only if q(ϕ(·)) ∈ L2(Ωε`). Even more, ϕ : Γε1 → Γ1 and
ϕ : Γε1 + εh→ Γ1 + h are bijective rigid translations. Therefore, the isomorphisms
L2(Γε1) ' L2(Γ1), L2(Γε1 + εh) ' L2(Γ1 + h) follow.

For the isomorphism Φ1 take v ∈ V which is equivalent to v(y) ∈ L2(Ω) and
∇y ·v(y) ∈ L2(Ω1). By the previous discussion these two conditions are equivalent
to v(ϕ(y)) ∈ L2(Ωε) and ∇y · v(ϕ(y)) = ∇y · v(x) ∈ L2(Ωε1). However, equation
(3.4) yields ∇y ·v(ϕ(y)) = ∇y ·v(x) = ∇x ·v(x) whenever x ∈ Ω1; i.e., ∇y ·v(y) ∈
L2(Ωε1) if and only if ∇x · v(x) = ∇x · v(ϕ(y)) ∈ L2(Ω1) as desired.

For the map Φ2, the L2-integrability condition between spaces Q and Qε is
shown using the same arguments of the first paragraph. It remains to show the
L2-integrability condition on the gradient. First observe that the last row in the
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matrix equation (3.5) implies that ∂
∂y3

q(y) ∈ L2(Ωε2) if and only if ∂
∂z q(x) ∈ L2(Ω2).

Second, for the derivatives in the first two directions, the equation (3.5) yields

∂

∂y`
q(y) =

∂

∂x`
q(x) + (1− 1

ε
)
∂

∂x`
ζ(x)

∂

∂z
q(x), ` = 1, 2.

Recalling the gradient of ζ is bounded, we conclude ∂
∂y`

q(y) ∈ L2(Ωε2) if an only if
∂
∂x`

q(x) ∈ L2(Ω2) for ` = 1, 2. Since ∂
∂z q(x) ∈ L2(Ω2) is immediate, the proof is

complete. �

We are to apply the change of variable ϕ : Ωε → Ω in the problem (3.3), to
this end, it is more convenient to write the system in terms of the quantities and
directions which yield estimates agreeable with the asymptotic analysis. Hence, re-
calling the definition of the upwards normal vector (2.7) the following relationships
hold

|(−∇̃ζ, 1)|v · n̂ = −ṽ · ∇̃ζ + v3, (3.6a)

(ṽ, ṽ · ∇̃ζ) · n̂ = 0 in Θ(h,Γ1). (3.6b)

Applying the change of variable (3.4) to problem (3.3) and combining with rela-
tion (3.6a) we obtain the following variational statement: Find pε ∈ Q and uε ∈ V
such that∫

Ω1

a1uε · v + ε2
∫

Ω2

a2uε · v −
∫

Ω1

pε∇ · v

+
∫

Ω2

ε(∇̃pε + ∂zp
ε∇̃ζ) · ṽ +

∫
Ω2

|(−∇̃ζ, 1)|∂zpε(v · n̂)

−
∫

Γ1

pε,2(v1 · n̂) dS +
∫

Γ2

pε,2(v1 · n̂) dS + α

∫
Γ

(uε,1 · n̂)(v1 · n̂) dS

= −
∫

Ω1

gε · v − ε
∫

Ω2

gε · v .

(3.7a)

∫
Ω1

∇ · uεq −
∫

Ω2

εũε,2 · (∇̃q + ∂zq∇̃ζ)−
∫

Ω2

|(−∇̃ζ, 1)|(uε,2 · n̂)∂zq

+
∫

Γ1

(uε,1 · n̂)q2 dS −
∫

Γ2

(uε,1 · n̂)q2 dS

=
∫

Ω1

F ε,1q + ε

∫
Ω2

F ε,2q +
∫

Γ

f εΓq
2 dS for all q ∈ Q,v ∈ V .

(3.7b)

Finally, by the theorem 3.3 on isomorphisms of function spaces, we conclude that
the problems (3.7) and (3.3) are equivalent.

3.2.1. The strong rescaled problem. The solution of the problem (3.7) is the weak
solution of the system of equations

a1uε,1 + ∇pε,1 + g = 0 and (3.8a)

∇ · uε,1 = f ε,1 in Ω1 . (3.8b)

pε,1 = 0 on ∂Ω1 − Γ . (3.8c)

pε,1 − pε,2 = αu1 · n̂1Γ2 − αu1 · n̂1Γ1 and (3.8d)

(uε,1 − uε,2) · n̂1Γ1 − (uε,1 − uε,2) · n̂1Γ2 = f εΓ on Γ . (3.8e)
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εa2ũε,2 + ∇̃pε,2 + (1− 1

ε )∂zpε,2∇̃ζ + g̃ε

ε2a2u
ε,2
3 + ∂zp

ε,2 + εgε3

]T
= 0 , (3.8f)

∇ · (εũε,2, εũε,2 · ∇̃ζ + |(−∇̃ζ, 1)|(uε,2 · n̂)) = εF ε,2 in Ω2 , (3.8g)

ũε,2 · ν̃ = 0 on ∂Ω2 − Γ . (3.8h)

As before equations (3.8d), (3.8e) have the separation of cases 1Γ2 ,1Γ1 in order to
be consistent with the upwards normal vector n̂. However, the equations (3.8e) and
(3.8h) need further clarification. Reordering and integrating by parts the second
and third summands of equation (3.7b), we have

−
∫

Ω2

εũε,2 · (∇̃q + ∂zq∇̃ζ)−
∫

Ω2

|(−∇̃ζ, 1)|(uε,2 · n̂)∂zq

= −
∫

Ω2

(εũε,2, εũε,2 · ∇̃ζ + |(−∇̃ζ, 1)|(uε,2 · n̂)) ·∇q

=
∫

Ω2

∇ · (εũε,2, εũε,2 · ∇̃ζ + |(−∇̃ζ, 1)|(uε,2 · n̂))q

−
∫
∂Ω2

q(εũε,2, εũε,2 · ∇̃ζ + |(−∇̃ζ, 1)|(uε,2 · n̂)) · ν̂ dS ,

where ν̂ is the outwards unit normal vector of the boundary Ω2. We focus on the
boundary term∫

∂Ω2

q(εũε,2, εũε,2 · ∇̃ζ + |(−∇̃ζ, 1)|(uε,2 · n̂)) · ν̂ dS

=
∫
∂Ω2−(Γ1∪Γ2)

q(εũε,2, εũε,2 · ∇̃ζ + |(−∇̃ζ, 1)|(uε,2 · n̂)) · ν̂ dS

+
∑
`=0,1

∫
Γ`

q(εũε,2, εũε,2 · ∇̃ζ + |(−∇̃ζ, 1)|(uε,2 · n̂)) · ν̂ dS.

The equality ν̂ · k̂ = 0 holds on the portion of the vertical wall ∂Ω2− (Γ1∪Γ2); i.e.,
the equation (3.8h) follows. For the remaining pieces of the boundary recall n̂ = ν̂
on Γ2 and n̂ = −ν̂ on Γ1; together with the equation (2.7), we obtain

−
∫

Γ`

q(εũε,2, εũε,2 · ∇̃ζ + |(−∇̃ζ, 1)|(uε,2 · n̂)) · ν̂ dS

= (−1)`−1

∫
Γ`

q(εũε,2, εũε,2 · ∇̃ζ + |(−∇̃ζ, 1)|(uε,2 · n̂)) · (−∇̃ζ, 1)

|(−∇̃ζ, 1)|
dS

= (−1)`−1

∫
Γ`

q(uε,2 · n̂) dS for ` = 1, 2.

Combining this last identity with the interface terms in equation (3.7b), the strong
normal flux balance condition (3.8e) follows.

3.3. A-priori estimates and convergence statements. To obtain a-priori es-
timates on the norm of the solutions the following hypothesis are assumed:

‖F ε‖L2(Ω) is bounded and F 1,ε w
⇀ F 1 in L2(Ω1), (3.9a)

gε w
⇀ g in L2(Ω1), g2,ε(x̃, εz) w

⇀ g(x̃) in L2(Ω2), (3.9b)

and f εΓ
w
⇀ fΓ in L2(Γ). (3.9c)
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Now test equation (3.7a) with uε and equation (3.7b) with pε, add them together
and obtain

a∗(‖uε,1‖20,Ω1
+ ‖εuε,2‖20,Ω2

) + α‖uε,1 · n̂‖2L2(Γ)

=
∫

Ω1

F ε,1pε + ε

∫
Ω2

F ε,2pε +
∫

Γ

f εΓp
ε,2 dS −

∫
Ω1

g1 · uε −
∫

Ω2

g2 · εuε

≤ C(‖F ε‖0,Ω + ‖f εΓ‖0,Γ)‖pε‖Q + ‖gε‖0,Ω(‖uε,1‖0,Ω1 + ‖εuε,2‖0,Ω2).

(3.10)

Here, the constant C > 0 is independent from ε > 0. Next, the term ‖pε‖Q must
be bounded in terms of the flux uε,11Ω1 + εuε,21Ω2 and the forcing terms. By the
third component of the vector equation (3.8f) we have

‖1
ε
∂zp

ε,2‖0,Ω2 ≤ ε‖a2‖L∞(Ω2)‖uε,23 ‖0,Ω2 + ‖gε3‖0,Ω2 . (3.11a)

Combined with the first two components of the vector equation (3.8f) yields

‖∇̃pε,2‖0,Ω2 ≤ C(‖a2‖L∞(Ω2)‖εuε,2‖0,Ω2 + ‖gε‖0,Ω2), (3.11b)

for an adequate constant C > 0. Thus

‖∇pε,2‖0,Ω2 ≤ C(‖a2‖L∞(Ω2)‖εuε,2‖0,Ω2 + ‖g‖0,Ω2). (3.12)

With C > 0 a constant independent from ε > 0. Additionally, the equation (3.8a)
yields

‖∇pε,2‖0,Ω1 ≤ ‖a1‖L∞(Ω2)‖uε,2‖0,Ω1 + ‖g‖0,Ω1 . (3.13)

The boundary condition (3.8c) together with Poincaré inequality give the con-
trol ‖pε,1‖1,Ω1 ≤ C‖∇pε‖0,Ω1 . On the other hand, the inequality (2.23) implies
‖pε‖1,Ω2 ≤ C(‖pε‖0,Γ + ‖∇pε‖0,Ω2); combined with the normal stress balance con-
ditions (3.8d) we conclude:

‖pε‖Q ≤ ‖pε‖1,Ω ≤ C‖∇pε‖0,Ω. (3.14)

And C > 0 is independent from ε > 0. Finally, a combination of inequalities (3.14),
(3.13) and (3.12) imply that the left hand side of inequality (3.10) is bounded. From
the observations above we conclude that the following sequences are bounded

‖uε,1‖0,Ω1 , ‖εuε,2‖0,Ω2 ,
√
α‖uε,1 · n̂‖L2(Γ), (3.15a)

‖pε,1‖H1(Ω1), ‖pε,2‖H1(Ω2), ‖1
ε
∂zp

ε‖0,Ω2 , ‖∇ · uε,1‖L2(Ω1). (3.15b)

Remark 3.4. The change of variable ϕ modifies the structure of the divergence
on the domain Ω2, therefore it can only be claimed that the linear combination
ε∇̃ · ũε,2 + ε(1− 1

ε )∂z(∇̃ζ · ũε,2) + ∂zu
ε,2
3 is bounded in L2(Ω2).

3.4. Weak limits. In the previous section bounds independent from ε > 0 are
obtained for [uε,1, εuε,2] ∈ V and pε = [pε,1, pε,2] ∈ H1(Ω1)×H1(Ω2), consequently
in Q. Then, there must exist u ∈ V, p ∈ Q, η ∈ L2(Ω2) and a subsequence, from
now on denoted the same, such that

pε
w
⇀ p in Q and strongly in L2(Ω), (3.16a)

uε,1 w
⇀ u1 in L2(Ω1) and ∇ · uε,1 w

⇀ ∇ · u1 in L2(Ω1), (3.16b)
√
αuε,1 · n̂ w

⇀
√
αu1 · n̂ in L2(Γ), (3.16c)

εuε,1 w
⇀ u2 in L2(Ω2), (3.16d)
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1
ε
∂zp

ε,2 w
⇀ η in L2(Ω2) and ∂zp

ε,2 → 0 strongly in L2(Ω2). (3.16e)

Choose φ ∈ C∞0 (Ω2) arbitrary, test the equation (3.7b) with q := εφ and let ε ↓ 0.
Recalling (3.16d) this gives

0 = lim
ε↓0

∫
Ω2

|(−∇̃ζ, 1)|(εuε,2 · n̂)∂zφ

=
∫

Ω2

|(−∇̃ζ, 1)|(u2 · n̂)∂zφ

= −〈∂z|(−∇̃ζ, 1)|(u2 · n̂), φ〉D′(Ω2),D(Ω2).

Since (−∇̃ζ, 1) does not depend on the vertical variable z and it is the non-zero
vector almost everywhere, we conclude that ∂z(u2 · n̂) = 0 i.e. the component of
the velocity normal to the surface Γ1 is independent from z in Ω2. Now choose
q ∈ Q arbitrary, test (3.7b) with εq and let ε ↓ 0 to get

0 =
∫

Ω2

|(−∇̃ζ, 1)|(u2 · n̂)∂zq dx

=
∫
G

∫ ζ(ex)+h

ζ(ex)

|(−∇̃ζ, 1)|(u2 · n̂)∂zq dzdx̃

=
∫
G

|(−∇̃ζ, 1)|(u2 · n̂)[q(x̃, ζ(x̃) + h)− q(x̃, ζ(x̃))] dx̃.

The above holds for all q ∈ Q, in particular choosing q(x̃, ζ(x̃)) = φ(x̃) for φ ∈
C∞0 (G) arbitrary and q(x̃, ζ(x̃) + h) = 0 the statement above transforms in∫

G

|(−∇̃ζ, 1)|(u2 · n̂)(x̃, ζ(x̃))φ(x̃, ζ(x̃)) dx̃ ∀φ ∈ C∞0 (G).

Therefore, |(−∇̃ζ, 1)|(u2 · n̂) must be null and since |(−∇̃ζ, 1)| is non-zero almost
everywhere we conclude

u2 · n̂ = 0 in Ω2. (3.17)
This implies that the Cartesian coordinates of u2 satisfy the relation

u2 =
{

ũ2

u2
3

}
=
{

ũ2

ũ2 · ∇̃ζ

}
in Ω2. (3.18)

Now take a function v2
τ ∈ (C∞0 (Ω2)2. Recalling (2.12) define ṽ := MT,τv2

τ and
v3 := M

bk,τv2
τ . Then, the function v2 := 1

ε (ṽ, v3) has the structure (3.18) or
equivalently v2 · n̂ = 0 inside Ω2. Define v as the trivial extension of v2 to the
whole domain Ω, therefore v ∈ V. Test (3.7a) with v and let ε ↓ 0, this gives∫

Ω2

a2(x)u2 · (ṽ, v3) +
∫

Ω2

∇̃p2 · ṽ +
∫

Ω2

g · (ṽ, v3) = 0.

Consequently,∫
Ω2

a2(x)u2
τ · vτ +

∫
Ω2

∇̃p2 ·MT,τvτ +
∫

Ω2

gτ · vτ = 0.

The equation above holds for all vτ ∈ (C∞0 (Ω2)2 and due to the isomorphism of
proposition 2.5 we conclude

a2(x)u2
τ + (MT,τ )′∇̃p2 + gτ = 0 in Ω2. (3.19)
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Equation (3.16e) implies that p2 does not depend on the variable z on Ω2; i.e.,
p2 = p2(x̃). Therefore assuming

a2 = a2(x̃), g̃ = g̃(x̃) in Ω2 (3.20)

the equation (3.19) gives u2
τ = u2

τ (x̃) i.e. u2
τ is independent from z in Ω2. Together

with the fact u2 · n̂ = 0 in Ω2 we conclude that the whole vector velocity u2 is
independent from z in Ω2.

Remark 3.5. Observe that by the assumptions for the data (3.20) the equation
(3.19) is independent from z, becoming a lower-dimensional Darcy-type constitutive
law on the stream lines parallel to ζ.

4. The limit problem

Define the subspaces

V0 := {v ∈ V : ∂zv2 = 0, v2 · n̂ = 0 in Ω2}; (4.1a)

Q0 := {q ∈ Q : ∂zq = 0 in Ω2}. (4.1b)

From the structure of the space, if v = [v1,v2] ∈ V0 then the function [v1, 1
εv

2] is
also in V0. Hence, we use [v1, 1

εv
2] to test (3.7a) and q ∈ Q0 to test (3.7b), then

we let ε ↓ 0 and conclude that the limits [uε,1, εuε,2]→ u and pε → p are a solution
of the limit problem: Find p ∈ Q0 and u ∈ V0 such that∫

Ω1

a1u · v −
∫

Ω1

p∇ · v +
∫

Ω2

a2u2
τ · v2

τ +
∫

Ω2

∇̃pε · ṽ

−
∫

Γ1

p2(v1 · n̂) dS +
∫

Γ2

p2(v1 · n̂) dS + α

∫
Γ

(u1 · n̂)(v1 · n̂) dS

= −
∫

Ω1

g · v −
∫

Ω2

gτ · v2
τ ,

(4.2a)

∫
Ω1

∇ · u q −
∫

Ω2

ũ2 · ∇̃q +
∫

Γ1

(u1 · n̂)q2 dS −
∫

Γ2

(u1 · n̂)q2 dS

=
∫

Ω1

F 1q +
∫

Γ

fΓq
2 dS for all q ∈ Q0,v ∈ V0 .

(4.2b)

4.1. Well-Posedness of the limit problem. Problem (4.2) is a mixed formula-
tion of the type (2.19) with the operators A0 : V0 → V′0 and B0 : V0 → Q′0 defined
by

A0v(w) :=
∫

Ω1

a1v ·w +
∫

Ω2

a2v2
τ ·w2

τ + α

∫
Γ

(v1 · n̂)(w1 · n̂) dS, (4.3a)

B0v(q) := −
∫

Ω1

∇ · v q +
∫

Ω2

ṽ · ∇̃q −
∫

Γ1

(v1 · n̂)q2 +
∫

Γ2

(v1 · n̂)q2 . (4.3b)

Theorem 4.1. The operator B0 satisfies the inf-sup condition.

Proof. The proof has the same structure as lemma 2.11, there is only one detail
to be examined in the construction of the test functions. Fix q = [q1, q2] ∈ Q0,
construct v1 in the same way it is done in problem (2.24). On the other hand since
q2 ∈ H1(Ω2) and ∂zq

2 = 0, define

v2 := (∇̃q2, ṽ · ∇̃ζ) in Ω2.
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Then v2 · n̂ = 0 and ∂zv2 = 0 in Ω2; i.e., v2 ∈ V0 and ‖v2‖0,Ω2 ≤ C‖q2‖1,Ω2 as
desired. Repeating the inequalities presented in (2.25) the proof follows. �

Since the inf-sup condition holds, the theorem 2.12 applies to the operators (4.3)
on the spaces V0, Q0 and the limit problem (4.2) is well-posed. By the uniqueness
of the solution of the limit problem, it follows that the original sequence converges
weakly to the limit u ∈ V0, p ∈ Q0.

4.2. The strong form. To describe the strong limit problem corresponding to
(4.2), two properties have to be exploited. First, the structure v · n̂ = 0 in Ω2 for
all v ∈ V0, this implies that ṽ = MT,τv2

τ , with MT,τ the matrix defined in (2.12).
Second, the independence of the velocities and pressures with respect to z in Ω2.
This last property allows to write the integrals over Ω2 as surface integrals on Γ1.
Hence, the system (4.2) transforms into: Find p ∈ Q0 and u ∈ V0 such that∫

Ω1

a1u · v −
∫

Ω1

p∇ · v + h

∫
Γ1

(n̂ · k̂)(a2u2
τ + (MT,τ )′∇̃pε + gτ ) · v2

τ dS

−
∫

Γ1

p2(v1 · n̂) dS +
∫

Γ2

p2(v1 · n̂) dS + α

∫
Γ

(u1 · n̂)(v1 · n̂) dS

= −
∫

Ω1

g · v ,

(4.4a)

∫
Ω1

∇ · uq − h
∫

Γ1

(n̂ · k̂)MT,τu2
τ · ∇̃q2 dS +

∫
Γ1

(u1 · n̂)q2 dS −
∫

Γ2

(u1 · n̂)q2 dS

=
∫

Ω1

F 1q +
∫

Γ

fΓq
2 dS for all q ∈ Q0, v ∈ V0 .

(4.4b)

Integrating by parts the statement above, we obtain the strong problem with piece-
wise C1 surface interfaces:

a1u + ∇p1 + g1 = 0, (4.5a)

∇ · u = F 1 in Ω1 , (4.5b)

p1 = 0 on ∂Ω1 − Γ , (4.5c)

u2 · n̂ = 0, ∂zp
2 = 0 , (4.5d)

[a2(s)u2
τ + (MT,τ )′∇̃p2 + g2

τ (s)]1Γ1 = 0 , (4.5e)

[(u1 · n̂|Γ2 − u1 · n̂|Γ1)]1Γ1 + h(n̂ · k̂)∇̃ · (MT,τu2
τ )1Γ1 = fΓ in Γ , (4.5f)

p1 − p2 = αu1 · n̂1Γ2 − αu1 · n̂1Γ1 , (4.5g)

u2 · ν̂ = 0 on ∂G . (4.5h)

The statement of equation (4.5e) was already shown in (3.19), however the state-
ments (4.5f) and (4.5h) need further discussion.

4.3. The interface integrals.

Definition 4.2. Let G, ζ and Υ be as in definition 2.1, define the spaces

L2(Υ) := {h : Υ→ R :
∫

Υ

h2(s) dS < +∞}, (4.6a)

H1(Υ) := {h ∈ L2(Υ) : ∇̃h ∈ L2(Υ)× L2(Υ)}, (4.6b)
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H1
0 (Υ) := {h ∈ H1(Υ) : h|∂G = 0}. (4.6c)

Here ∇̃ indicates the gradient with respect to the variables (x1, x2) contained in G.

We have the following isomorphism result.

Theorem 4.3. Let O and Υ be as in definition 2.1. Consider the natural embedding
 : Υ→ O defined by (x̃, ζ(x̃)) := x̃ and the map

ϕ 7→ ϕ ◦  (4.7)

Then
(i) The embedding (4.7) is an isomorphism between L2(O) and L2(Υ);
(ii) The embedding (4.7) is an isomorphism between H1(O) and H1(Υ);

(iii) The embedding (4.7) is an isomorphism between H1
0 (O) and H1

0 (Υ).

Proof. By definition  : Υ → O is linear and bijective, therefore the map (4.7) is
bijective between spaces of functions.

(i) By the hypothesis that ζ satisfies C1 = ess inf{n̂(s) · k̂ : s ∈ Υ} > 0 then, for
any φ ∈ L2(Υ)∫

Υ

(φ ◦ )2 dS =
∫
O

(n̂(x̃) · k̂)−1φ2(x̃)dx̃ ≤ 1
C1

∫
O
φ2(x̃)dx̃.

The inequality above gives the continuity of the application ϕ 7→ ϕ◦j. By Banach’s
inversion theorem the map is an isomorphism.

(ii) By definition ∇̃(φ ◦ ) = ∇̃φ(x̃) holds for any φ ∈ H1(O).
(iii) Is immediate from (ii). �

Choose q ∈ Q0 supported inside Ω2 and test equation (4.4b); hence

−
∫

Ω2

ũ2 · ∇̃q −
∫

Γ1

(u1 · n̂)q2 dS +
∫

Γ2

(u1 · n̂)q2 dS =
∫

Γ1∪Γ2

fΓ1q
2 dS. (4.8)

We focus on the first term of the left-hand side. First ∂zq2 = 0 implies ũ2 · ∇̃q2 =
u2 ·∇q2, then

−
∫

Ω2

u2 ·∇q =
∫

Ω2

∇ · u2q2 −
∫
∂Ω2

q2u2 · ν̂ dS. (4.9)

The two summands on the right-hand side are treated separately. For the first
summand the independence from the variable z implies that ∇ · u2 = ∇̃ · ũ2. The
fact u2 · n̂ = 0 in Ω2 gives ũ2 = MT,τu2

τ . Thus∫
Ω2

∇̃ ·ũ2q2 dx = h

∫
G

∇̃ ·(MT,τu2
τ )q2 dx̃ = h

∫
Γ1

(n̂ ·k̂)∇̃ ·(MT,τu2
τ )q2 dS. (4.10)

The boundary term in (4.9) can be written as

−
∫

Γ1∪Γ2

q2u2 · ν̂ dS −
∫
∂Ω2−(Γ1∪Γ2)

q2u2 · ν̂ dS.

The first summand vanishes since u2 · n̂ = 0 in Ω2. The boundary piece described
in the second summand is a vertical wall, then ν̂ ·k̂ = 0 and it can be identified with
the outwards normal vector to the set G ⊆ R2. Moreover, from the independence
of the integrand with respect to the variable z, the surface integral can be collapsed
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to a line integral over ∂G. Combining these observations with (4.10) and (4.9), the
equation (4.8) transforms into

h

∫
Γ1

(n̂ · k̂)∇̃ · (MT,τu2
τ )q2 dS − h

∫
∂G

q2u · ν̂ dC

−
∫

Γ1

(u1 · n̂)q2 dS +
∫

Γ2

(u1 · n̂)q2 dS

=
∫

Γ1∪Γ2

fΓq
2dS,

where dC is the arc-length measure on ∂G. The isomorphisms provided by theo-
rem 4.3 imply that the quantifier q2|Γ1 can hit any function in the space H1

0 (Γ1).
Therefore, the equation (4.5f) follows. Finally, using again theorem 4.3, the trace
of the test function q2|Γ1 can hit any function in the space H1

0 (Γ1), and combined
with equation (4.5f) we obtain (4.5h).

4.4. Strong convergence of solutions.

Theorem 4.4. Under the hypotheses

‖F ε,1 − F 1‖0,Ω1 → 0, ‖f εΓ − fΓ‖0,Γ → 0, ‖gε − g‖0,Ω → 0, (4.11)

the solutions uε, pε satisfy the following strong convergence statements

‖uε,1 − u1‖0,Ω1 → 0, ‖εuε,2 − u2‖0,Ω2 → 0,

‖pε,1 − p1‖1,Ω1 → 0, ‖pε,2 − p2‖1,Ω2 → 0.
(4.12)

The proof of the above theorem uses exactly the same arguments presented in
[16, Theorem 3.2], and it is omitted.

Finally, assume that u2
τ 6= 0 and consider the quotients:

‖uε,2τ ‖0,Ω2

‖uε,2 · n̂‖0,Ω2

=
‖εuε,2τ ‖0,Ω2

‖εuε,2 · n̂‖0,Ω2

>
‖u2

τ‖0,Ω2 − δ
‖εuε,2 · n̂‖0,Ω2

> 0 . (4.13)

The lower bound holds true for ε > 0 small enough and adequate δ > 0. Therefore,
we conclude that the magnitudes’ ratio of the tangential over the normal compo-
nents of the flux blows-up to infinity; i.e., the flow in the thin channel is predomi-
nantly tangential. Finally if u2

τ = 0, unlike the analysis for flat interfaces presented
in [16], no conclusions can be obtained because of the complexity introduced by the
geometry of the fissure.

Γ1

Θ1

Θ2−h k̂

Figure 3. System of 2-D manifold fissures
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5. A problem with two dimensional manifolds

In this section, using the independence of the limit functions with respect to z in
Ω2, it will be shown that the limiting problem (4.5) can be formulated as a system
coupling Darcy flow in three dimensions, with tangential flow hosted in a piecewise
C1 surface, as depicted in figure 3. First we introduce the geometry, recall that
Θ2 − hk̂ = {ω − kk̂ : ω ∈ Ω2} and consider the domain

ϑ := Θ1 ∪ (Θ2 − hk̂), ϑFR := ϑ ∪ Γ1. (5.1)

Additionally we introduce the notation Γ+
1 , Γ−1 for the upper and lower faces of the

piecewise surface Γ1.

5.1. Spaces of functions and isomorphisms.

Definition 5.1. We define the following spaces for velocity and pressure

Vf :=
{
v ∈ L2(ϑFR) : ∇ · v1|Θ1 ∈ L2(Θ1),∇ · v1|Θ2−hbk ∈ L2(Θ2 − hk̂),

v1 · n̂|Γ+
1
,v1 · n̂|Γ−1 ∈ L

2(Γ1),v2|Γ1 ∈ L2(Γ1)
}
,

(5.2a)

Qf := {q ∈ L2(ϑFR) : q|Γ1 ∈ H1(Γ1)}. (5.2b)

Endowed with the norms coming from the natural inner products

‖v‖Vf
:=
{
‖v‖2L2(ϑFR) + ‖∇ · v‖2L2(ϑFR) + ‖v · n̂|Γ+

1
‖2L2(Γ1)

+ ‖v · n̂|Γ−1 ‖
2
L2(Γ1) + ‖v‖2L2(Γ1)

}1/2
,

(5.2c)

‖q‖Qf := {‖q‖2L2(ϑFR) + ‖q‖2H1(Γ1)}
1/2. (5.2d)

Remark 5.2. Note that definition (5.2a) requires only v ∈ Hdiv(Θ1) and v ∈
Hdiv(Θ2 − hk̂); i.e., the divergence is a square integrable function only on these
subdomains. Therefore, both normal traces v · n̂|Γ+

1
and v · n̂|Γ−1 make sense in

H−1/2(Γ1), but we require the extra condition of been in L2(Γ1). We do not demand
the global condition v ∈ Hdiv(ϑFR) because this would imply the continuity of the
normal traces across a surface; i.e., u1 · n̂|Γ+

1
= u1 · n̂|Γ−1 . Such condition can not

model jumps across the fissures as the normal stress balance interface (4.5g) and
the limit equation (4.5f).

Next define a change of variable based on piecewise rigid translations

Definition 5.3. Let x = (x̃, x3) and define the map T : Ω→ R3

Tx := (x̃, x3)1Θ1(x̃, x3) + (x̃, x3 − h)1Θ2(x̃, x3) + (x̃, ζ(x̃))1Θ(h,Γ1)(x̃, x3) (5.3)

Theorem 5.4. (i) The application v 7→ v ◦ T is an isometric isomorphism
from V0 to Vf .

(ii) The application q 7→ q ◦ T is an isometric isomorphism from Q0 to Qf .

Proof. (i) The proof is a direct application of part (i) in theorem 4.3. The only
detail that needs further clarification is to observe that

v1 · n̂|Γ1 7→ (v1 ◦ T ) · n̂|Γ−1 ,

v1 · n̂|Γ2 = v1 · n̂|Γ1+h 7→ (v1 ◦ T ) · n̂|Γ+
1
.

(ii) It is a direct application of parts (i) and (ii) in theorem 4.3. �
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5.2. The lower dimensional mixed problem. By the previous theorem, prob-
lem (4.2) is equivalent to the following mixed problem with a piecewise C1 coupling
interface: Find p ∈ Qf and u ∈ Vf such that∫

ϑ

a1u · v −
∫
ϑ

p∇ · v + h

∫
Γ1

(n̂ · k̂)(a2u2
τ + (MT,τ )′∇̃p+ gτ ) · v2

τ dS

+ α

∫
Γ1

[
(u1 · n̂|Γ+

1
)(v1 · n̂|Γ+

1
) + (u1 · n̂|Γ−1 )(v1 · n̂|Γ−1 )

]
dS

−
∫

Γ1

p2
[
(v1 · n̂|Γ+

1
)− (v1 · n̂|Γ−1 )

]
dS

= −
∫
ϑ

g · v −
∫

Γ1

gτ · v2
τ dS ,

(5.4a)

∫
ϑ

∇ · uq − h
∫

Γ1

(n̂ · k̂)MT,τu2
τ · ∇̃q2 dS +

∫
Γ1

[
(u1 · n̂|Γ+

1
)− (u1 · n̂|Γ−1 )

]
q2 dS

=
∫
ϑ

F 1q +
∫

Γ1

fΓq
2 dS for all q ∈ Qf , v ∈ Vf .

(5.4b)

Finally the equivalence of problems (4.2) and (4.4) gives the well-posedness of
the system above.

6. Final remarks and future work

Γ

Γ+h ê

ê

Γ

Γ+h k̂

A1

n̂1

n̂1=k̂n̂2 n̂2

V 1 V 1

V 2 V 2

A1

A2 A2

Figure 4. Translation generated fissures

(i) Giving the adequate definitions, the results can be generalized immediately to
a system of multiple fissures, such as the one depicted in figure 1. The formulation
presented in this work can handle large amounts of information in a remarkably
efficient way. One of the main reasons is the notation introduced by Showalter in
[16] for the description of function spaces.

(ii) Our results can be generalized immediately to the RN -setting using the same
arguments presented here. The problems have analogous structure.

(iii) The approach based on analytic semigroups theory presented in section [16],
can be directly applied to this case, in order to model the time dependent problem
for totally fissured systems with singularities.

(iv) Although the mathematical analysis is solid, the approach used throughout
the paper stops been suitable for surfaces with high gradients, such as the one
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depicted in the right-hand side of figure 4 where n̂2 · k̂ � n̂1 · k̂. In this case,
the translation in the direction k̂ generates a fissure whose cross section areas can
be very different from one piece to another; i.e., A2 � A1. Such a fissure is not
realistic. On the other hand, consider a fissure such as the one depicted in the left-
hand side of figure 4. Here the translation is made in the bisector vector direction

ê ≡ 1
| bn1+bn2

2 |
n̂1 + n̂2

2

This process generates a more realistic fissure.
(v) Demanding the fissures to be defined by the parallel translation of a surface in

a fixed direction, is definitely a step forward with respect to previous achievements,
however it is still a restrictive hypothesis for modeling the phenomenon in natural
geological formations.

(vi) Setting the problem in the mixed variational formulation used here, can
be easily extended to systems with fissures described by a very general type of
geometry. However, the difficulty of the asymptotic analysis, for upscaling purposes,
increases substantially.

(vii) Such questions will be addressed in future work by the introduction of
correction factors, obtained comparing the flow energy dissipation in a real fissure
and an artificial one e.g. replacing the presence of the fissure in the left-hand side of
Figure 4 with the one on the right-hand side affected by a correction factor. In the
same way, fissures defined by walls which are not rigid translations of a common
surface, will be compared to a fissure generated by the vertical translation of an
“average surface” having the same “average width”.
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