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SECOND-ORDER BOUNDARY-VALUE PROBLEMS WITH
INTEGRAL BOUNDARY CONDITIONS ON THE REAL LINE

FULYA YORUK DEREN, NUKET AYKUT HAMAL

Abstract. This article shows the existence and multiplicity of nonnegative
solutions for nonlinear boundary-value problems with integral boundary con-

ditions on the whole line. The arguments are based upon the Krasnoselskii’ s

fixed point theorem of cone expansion-compression type. An example is given
to demonstrate our results.

1. Introduction

The theory of boundary-value problems on an infinite interval for differential
equations has become an important area of investigation in recent years. There
are many results about the existence of positive solutions on an infinite interval for
boundary value problems. We refer the reader to [1, 5, 6, 7, 9, 10, 11, 12, 15] and
the references therein.

At the same time, boundary value problems with integral boundary conditions
for ordinary differential equations represent a very interesting and important class
of problems. They constitute two, three, multi-point and nonlocal boundary value
problems as special cases. The existence results of positive solutions for such prob-
lems have received a great deal of attention. To identify a few, we refer the reader
to [2, 4, 14] and the references therein.

To the author’ s knowledge, there are relatively few papers available for the
boundary-value problems with integral boundary conditions on the half line and
the real line. (See [7, 10, 12, 13]). Yoruk and Hamal [10] considered the following
boundary-value problem with integral boundary conditions on an infinite interval,

1
p(t)

(p(t)x′(t))′ + f(t, x(t), x′(t)) = 0, t ∈ (0,∞), (1.1)

a1x(0)− b1 lim
t→0+

p(t)x′(t) =
∫ ∞

0

g1(x(s))ψ(s)ds,

a2 lim
t→+∞

x(t) + b2 lim
t→+∞

p(t)x′(t) =
∫ ∞

0

g2(x(s))ψ(s)ds.
(1.2)

The authors showed the existence results of solutions by means of the Shauder fixed
point theorem and the Leggett-Williams fixed point theorem.
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In this article, we are interested in the existence and multiplicity of nonnegative
solutions for the following integral boundary-value problem on the whole line

(p(t)x′(t))′ + λq(t)f(t, x(t), x′(t)) = 0, t ∈ R, (1.3)

a1 lim
t→−∞

x(t)− b1 lim
t→−∞

p(t)x′(t) =
∫ ∞
−∞

g1(s, x(s), x′(s))ψ(s)ds,

a2 lim
t→+∞

x(t) + b2 lim
t→+∞

p(t)x′(t) =
∫ ∞
−∞

g2(s, x(s), x′(s))ψ(s)ds,
(1.4)

where λ > 0 is a parameter, f, g1, g2 ∈ C(R× [0,∞)×R, [0,∞)), q, ψ ∈ C(R, (0,∞))
and p ∈ C(R, (0,∞))∩C1(R). Here, the values of

∫ +∞
−∞ gi(s, x(s), x′(s))ds (i = 1, 2),∫ +∞

−∞
ds

p(s) and sups∈R ψ(s) are finite and a1 + a2 > 0, bi > 0 (i = 1, 2) satisfying

D = a2b1 + a1b2 + a1a2

∫ +∞
−∞

ds
p(s) > 0.

The main features of our paper are as follows. Firstly, compared with [10],
we establish the existence results of solutions on R which expands the domain of
definition of t from a half line to the real line. Secondly, we investigate the existence
of solutions for the case λ > 0, not λ = 1 as in [10].

The rest of this article is organized as follows. In Section 2, we represent some
necessary lemmas that will be used to prove our main results. In Section 3, we apply
the Krasnoselskii’ s fixed point theorem to obtain the existence and multiplicity of
nonnegative solutions for (1.3)-(1.4). Finally, an example is given to illustrate the
main results.

To the best of our knowledge, only a few papers deal with the existence results
of solutions for the boundary-value problem whose nonlinear term f involves x and
the first order derivative x′ explicitly, especially by means of the Krasnoselskii’s
fixed point theorem. (See [8] and the references therein.) So the main aim of this
work is to fill this gap.

2. Preliminaries

In this section, we present some preliminary results and lemmas that will be
used in the proof of our main results. For convenience, we denote θ(t) and ϕ(t) by

θ(t) = b1 + a1

∫ t

−∞

dτ

p(τ)
, ϕ(t) = b2 + a2

∫ ∞
t

dτ

p(τ)
. (2.1)

Lemma 2.1. Under the conditions D > 0 and
∫∞
−∞

ds
p(s) < +∞, the boundary-value

problem

(p(t)x′(t))′ + h(t) = 0, t ∈ R, (2.2)

a1 lim
t→−∞

x(t)− b1 lim
t→−∞

p(t)x′(t) =
∫ ∞
−∞

σ1(s)ds,

a2 lim
t→+∞

x(t) + b2 lim
t→+∞

p(t)x′(t) =
∫ ∞
−∞

σ2(s)ds
(2.3)

has a unique solution for any h, σ1, σ2 ∈ L(R). Furthermore, this unique solution
can be expressed as

x(t) =
∫ ∞
−∞

G(t, s)h(s)ds+
ϕ(t)
D

∫ ∞
−∞

σ1(s)ds+
θ(t)
D

∫ ∞
−∞

σ2(s)ds. (2.4)
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Here,

G(t, s) =
1
D

{
θ(t)ϕ(s), −∞ < t ≤ s < +∞;
θ(s)ϕ(t), −∞ < s ≤ t < +∞,

(2.5)

where θ(t) and ϕ(t) are given by (2.1).

Remark 2.2. From (2.5), we can get the following properties of G(t, s):

(1) G(t, s) is continuous on R× R.
(2) For any s ∈ R, G(t, s) is continuous differentiable on R, except t = s.
(3) ∂G(t,s)

∂t |t=s+ −∂G(t,s)
∂t |t=s−= − 1

p(s) .
(4) For any t, s ∈ R, G(t, s) ≤ G(s, s),

G(s) := lim
t→+∞

G(t, s) =
b2
D
θ(s) ≤ G(s, s) < +∞,

G(s) := lim
t→−∞

G(t, s) =
b1
D
ϕ(s) ≤ G(s, s) < +∞.

(5) For any k > 0 real number, t ∈ [−k, k] and s ∈ R, we have

G(t, s) ≥ wG(s, s), where w =
min{ϕ(k), θ(−k)}

max{ϕ(−∞), θ(∞)}
. (2.6)

It is obvious that 0 < w < 1.

We define the Banach space

B = {x ∈ C′(R) : lim
t→∓∞

x(t) < +∞, lim
t→∓∞

x′(t) < +∞}

equipped with the norm ‖x‖ = supt∈R[|x(t)|+ |x′(t)|] and the cone P ⊂ B by

P =
{
x ∈ B : x(t) ≥ 0 ∀t ∈ R, min

t∈[−k,k]
x(t) ≥ w sup

t∈R
|x(t)|, k > 0, [−k, k] ⊂ R

}
,

in which w is given by (2.6). In this article, we need the following assumptions:

(H1) f, g1, g2 ∈ C(R× [0,∞)×R, [0,∞)) and for any t ∈ R and i = 1, 2, we have

u2(t)h3(x, y) ≤ f(t, x, y) ≤ u1(t)h3(x, y), gi(t, x, y) ≤ vi(t)hi(x, y),

where hi ∈ C([0,∞)×R, [0,∞)) (i = 1, 2, 3), ui, vi ∈ L(R, (0,∞)) (i = 1, 2);
also there exists 0 < γ0 < 1 such that u2(t) ≥ γ0u1(t).

(H2)
∫∞
−∞G(s, s)q(s)ui(s)ds < +∞, (i = 1, 2).

(H3) ψ : R→ (0,∞) is a continuous function with sups∈R ψ(s) < +∞.

Using the above assumptions, we define the operator A on P by

Ax(t) = λ

∫ ∞
−∞

G(t, s)q(s)f(s, x(s), x′(s))ds+
ϕ(t)
D

∫ ∞
−∞

g1(s, x(s), x′(s))ψ(s)ds

+
θ(t)
D

∫ ∞
−∞

g2(s, x(s), x′(s))ψ(s)ds,

where G(t, s) is given by (2.5). Obviously, x is a solution of (1.3)-(1.4) if and only
if x is a fixed point of the operator A.
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3. Main Results

In this section, we will apply the following Krasnoselskii’s fixed point theorem
to establish the existence and multiplicity of nonnegative solutions for (1.3)-(1.4).

Lemma 3.1 ([3]). Let B be a real Banach space and P ⊂ B be a cone in B.
Assume that Ω1,Ω2 are open subsets of B with 0 ∈ Ω1 and Ω1 ⊂ Ω2 and let
A : P ∩ (Ω2 \ Ω1)→ P be a completely continuous operator such that, either

(i) ‖Ax‖ ≤ ‖x‖ for x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖ for x ∈ P ∩ ∂Ω2;
(ii) ‖Ax‖ ≥ ‖x‖ for x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖ for x ∈ P ∩ ∂Ω2.

Then A has at least one fixed point in P ∩ (Ω2 \ Ω1).

Lemma 3.2. Assume that (H1)–(H3) are satisfied. Then the operator A : P → P
is completely continuous.

Proof. We assert that A is a completely continuous operator. To justify this, we
first show that A : P → B is well defined. Let x ∈ P , then there exists r > 0 such
that ‖x‖ ≤ r. From condition (H1), for any t ∈ R, we have

Nr := sup{h1(x, y) : |x|+ |y| ≤ r} < +∞,
N ′r := sup{h2(x, y) : |x|+ |y| ≤ r} < +∞,
Mr := sup{h3(x, y) : |x|+ |y| ≤ r} < +∞.

Let t1, t2 ∈ R with t1 < t2, then it follows from (H2) and (H3) that

λ

∫ ∞
−∞
|G(t1, s)−G(t2, s)|q(s)u1(s)h3(x(s), x′(s))ds

≤ 2λMr

∫ ∞
−∞

G(s, s)q(s)u1(s)ds < +∞

and ∫ ∞
−∞

[v1(s)h1(x(s), x′(s)) + v2(s)h2(x(s), x′(s))]ψ(s)ds

≤
∫ ∞
−∞

[Nrv1(s) +N ′rv2(s)]ψ(s)ds < +∞.

Hence by the Lebesgue dominated convergence theorem and the fact that G(t, s) is
continuous on t, we have

|(Ax)(t1)− (Ax)(t2)|

≤ λ
∫ ∞
−∞
|G(t2, s)−G(t1, s)|q(s)f(s, x(s), x′(s))ds

+
|ϕ(t2)− ϕ(t1)|

D

∫ ∞
−∞

g1(s, x(s), x′(s))ψ(s)ds

+
|θ(t2)− θ(t1)|

D

∫ ∞
−∞

g2(s, x(s), x′(s))ψ(s)ds

≤ 2λMr

∫ ∞
−∞
|G(t2, s)−G(t1, s)|q(s)u1(s)ds

+
1
D

∫ ∞
−∞

[Nr|ϕ(t2)− ϕ(t1)|v1(s) +N ′r|θ(t2)− θ(t1)|v2(s)]ψ(s)ds

→ 0, as t1 → t2

(3.1)



EJDE-2014/19 SECOND-ORDER BOUNDARY-VALUE PROBLEMS 5

and
|(Ax)′(t1)− (Ax)′(t2)|

≤ λa2

D
| 1
p(t1)

− 1
p(t2)

|
∫ t1

−∞
θ(s)q(s)f(s, x(s), x′(s))ds

+
λa1

Dp(t1)

∫ t2

t1

ϕ(s)q(s)f(s, x(s), x′(s))ds

+
λa1

D
| 1
p(t1)

− 1
p(t2)

|
∫ ∞

t2

ϕ(s)q(s)f(s, x(s), x′(s))ds

+
λa2

Dp(t2)

∫ t2

t1

θ(s)q(s)f(s, x(s), x′(s))ds

+
a2

D
| 1
p(t1)

− 1
p(t2)

|
∫ ∞
−∞

g1(s, x(s), x′(s))ψ(s)ds

+
a1

D
| 1
p(t1)

− 1
p(t2)

|
∫ ∞
−∞

g2(s, x(s), x′(s))ψ(s)ds

≤ λa2Mr

D
| 1
p(t1)

− 1
p(t2)

|
∫ t1

−∞
θ(s)q(s)u1(s)ds

+
λa1Mr

Dp(t1)

∫ t2

t1

ϕ(s)q(s)u1(s)ds+
λa1Mr

D
| 1
p(t1)

− 1
p(t2)

|
∫ ∞

t2

ϕ(s)q(s)u1(s)ds

+
λa2Mr

Dp(t2)

∫ t2

t1

θ(s)q(s)u1(s)ds+
a2Nr

D
| 1
p(t1)

− 1
p(t2)

|
∫ ∞
−∞

v1(s)ψ(s)ds

+
a1N

′
r

D
| 1
p(t1)

− 1
p(t2)

|
∫ ∞
−∞

v2(s)ψ(s)ds→ 0 as t1 → t2.

(3.2)
Thus, Ax ∈ C1(R).

We can show that Ax ∈ B. Notice that

lim
t→+∞

(Ax)(t)

= λ

∫ ∞
−∞

G(s)q(s)f(s, x(s), x′(s))ds+
ϕ(+∞)
D

∫ ∞
−∞

g1(s, x(s), x′(s))ψ(s)ds

+
θ(+∞)
D

∫ ∞
−∞

g2(s, x(s), x′(s))ψ(s)ds < +∞

and

lim
t→−∞

(Ax)(t)

= λ

∫ ∞
−∞

G(s)q(s)f(s, x(s), x′(s))ds+
ϕ(−∞)
D

∫ ∞
−∞

g1(s, x(s), x′(s))ψ(s)ds

+
θ(−∞)
D

∫ ∞
−∞

g2(s, x(s), x′(s))ψ(s)ds < +∞.

In addition, we have

|(Ax)′(t)|

≤ 1
D

[λ
∫ t

−∞
|ϕ′(t)|θ(s)q(s)f(s, x(s), x′(s))ds
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+ λ

∫ ∞
t

|θ′(t)|ϕ(s)q(s)f(s, x(s), x′(s))ds

+ |ϕ′(t)|
∫ ∞
−∞

g1(s, x(s), x′(s))ψ(s)ds+ θ′(t)
∫ ∞
−∞

g2(s, x(s), x′(s))ψ(s)ds]

≤ max{a1, a2}
min{b1, b2}

[
λ

p(t)

∫ ∞
−∞

G(s, s)q(s)f(s, x(s), x′(s))ds

+
max{θ(+∞), ϕ(−∞)}

Dp(t)

∫ ∞
−∞

[g1(s, x(s), x′(s)) + g2(s, x(s), x′(s))]ψ(s)ds]

≤ max{a1, a2}
min{b1, b2}

sup
t∈R

1
p(t)

[λMr

∫ ∞
−∞

G(s, s)q(s)u1(s)ds

+
max{θ(+∞), ϕ(−∞)}

D

∫ ∞
−∞

[Nrv1(s) +N ′rv2(s)]ψ(s)ds] < +∞,

so, we have limt→∓∞(Ax)′(t) < +∞. Hence, A : P → B is well defined.
Now, we prove that A : P → P . It is obvious that Ax(t) ≥ 0 for any t ∈ R. Let

x ∈ P , then for all t ∈ R, we have

|Ax(t)|

≤ λ
∫ ∞
−∞

G(s, s)q(s)f(s, x(s), x′(s))ds

+
max{θ(+∞), ϕ(−∞)}

D

∫ ∞
−∞

[g1(s, x(s), x′(s)) + g2(s, x(s), x′(s))]ψ(s)ds.

On the other hand, for any k > 0, t ∈ [−k, k] ⊂ R, we obtain

|Ax(t)|

≥ wλ
∫ ∞
−∞

G(s, s)q(s)f(s, x(s), x′(s))ds

+
min{ϕ(k), θ(−k)}

D

∫ ∞
−∞

[g1(s, x(s), x′(s)) + g2(s, x(s), x′(s))]ψ(s)ds

= w
[
λ

∫ ∞
−∞

G(s, s)q(s)f(s, x(s), x′(s))ds

+
max{θ(+∞), ϕ(−∞)}

D

∫ ∞
−∞

[g1(s, x(s), x′(s)) + g2(s, x(s), x′(s))]ψ(s)ds
]

≥ w sup
t∈R
|Ax(t)|.

Therefore, A : P → P is well defined.
Next we prove that A : P → P is continuous. Let xn, x ∈ P with ‖xn − x‖ → 0

as n→∞. We will show that ‖Axn −Ax‖ → 0 as n→∞ in P .
From (H1)–(H3) we obtain

λ

∫ ∞
−∞

G(s, s)q(s)|f(s, xn(s), x′n(s))− f(s, x(s), x′(s))|ds

≤ 2λMr0

∫ ∞
−∞

G(s, s)q(s)u1(s)ds < +∞,∫ ∞
−∞
|g1(s, xn(s), x′n(s))− g1(s, x(s), x′(s))|ψ(s)ds
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≤ 2Nr0

∫ ∞
−∞

v1(s)ψ(s)ds < +∞,∫ ∞
−∞
|g2(s, xn(s), x′n(s))− g2(s, x(s), x′(s))|ψ(s)ds

≤ 2N ′r0

∫ ∞
−∞

v2(s)ψ(s)ds < +∞,

where r0 > 0 is a real number such that r0 ≥ maxn∈N−{0}{‖xn‖, ‖x‖}. Therefore,

|(Axn)(t)− (Ax)(t)|

≤ λ
∫ ∞
−∞

G(s, s)q(s)|f(s, xn(s), x′n(s))− f(s, x(s), x′(s))|ds

+
ϕ(−∞)
D

∫ ∞
−∞
|g1(s, xn(s), x′n(s))− g1(s, x(s), x′(s))|ψ(s)ds

+
θ(+∞)
D

∫ ∞
−∞
|g2(s, xn(s), x′n(s))− g2(s, x(s), x′(s))|ψ(s)ds→ 0 as n→∞.

Similarly, we can see that when ‖xn − x‖ → 0 as n→ +∞,

lim
n→∞

sup
t∈R
|(Axn)′(t)− (Ax)′(t)| = 0.

This implies that A : P → P is a continuous operator.
Now, we show that A maps bounded subsets into bounded subsets. Let D ⊂ P

be bounded and x ∈ D, then there exists R > 0 such that ‖x‖ ≤ R, for any x ∈ D.
Furthermore, for t ∈ R, we obtain

|(Ax)(t)| ≤ λ
∫ ∞
−∞

G(s, s)q(s)f(s, x(s), x′(s))ds

+
max{θ(+∞), ϕ(−∞)}

D

∫ ∞
−∞

[
g1(s, x(s), x′(s))

+ g2(s, x(s), x′(s))
]
ψ(s)ds

≤ λMR

∫ ∞
−∞

G(s, s)q(s)u1(s)ds

+
max{θ(+∞), ϕ(−∞)}

D

∫ ∞
−∞

[NRv1(s) +N ′Rv2(s)]ψ(s)ds

(3.3)

and

|(Ax)′(t)| ≤ max{a1, a2}
min{b1, b2}

sup
t∈R

1
p(t)

[
λ

∫ ∞
−∞

G(s, s)q(s)f(s, x(s), x′(s))ds

+
max{θ(+∞), ϕ(−∞)}

D

∫ ∞
−∞

[
g1(s, x(s), x′(s))

+ g2(s, x(s), x′(s))
]
ψ(s)ds

]
.

(3.4)

Inequalities (3.3) and (3.4) imply

|Ax(t)|+ |(Ax)′(t)|

≤ (1 +
max{a1, a2}
min{b1, b2}

sup
t∈R

1
p(t)

)
[
λ

∫ ∞
−∞

G(s, s)q(s)f(s, x(s), x′(s))ds
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+
max{θ(+∞), ϕ(−∞)}

D

∫ ∞
−∞

[g1(s, x(s), x′(s)) + g2(s, x(s), x′(s))]ψ(s)ds
]

≤ (1 +
max{a1, a2}
min{b1, b2}

sup
t∈R

1
p(t)

)
[
λMR

∫ ∞
−∞

G(s, s)q(s)u1(s)ds

+
max{θ(+∞), ϕ(−∞)}

D

∫ ∞
−∞

[NRv1(s) +N ′Rv2(s)]ψ(s)ds
]
.

Hence, we obtain supt∈R[|Ax(t)|+|(Ax)′(t)|] < +∞; that is, A is uniformly bounded.
Using the similar proof as the one for (3.1) and (3.2), for any N ∈ (0,∞),

t, t1 ∈ [−N,N ] and x ∈ D, we have ‖Ax(t)− Ax(t1)‖ → 0 as t→ t1. Thus, AD is
equicontinuous on any compact interval of R.

By (H2), (H3) and the Lebesgue dominated convergence theorem, we have

|(Ax)(t)− (Ax)(+∞)|

≤ λ
∫ ∞
−∞
|G(t, s)−G(s)|q(s)f(s, x(s), x′(s))ds

+
|ϕ(t)− ϕ(+∞)|

D

∫ ∞
−∞

g1(s, x(s), x′(s))ψ(s)ds

+
|θ(t)− θ(+∞)|

D

∫ ∞
−∞

g2(s, x(s), x′(s))ψ(s)ds

≤ λMR

∫ ∞
−∞
|G(t, s)−G(s)|q(s)u1(s)ds +

1
D

∫ ∞
−∞

[NR|ϕ(t)− ϕ(+∞)|v1(s)

+N ′R|θ(t)− θ(+∞)|v2(s)]ψ(s)ds→ 0 as t→∞

and

|(Ax)′(t)− (Ax)′(∞)|

≤ 1
D

[| 1
p(t)
− 1
p(∞)

|
∫ t

−∞
a2θ(s)q(s)f(s, x(s), x′(s))ds

+ | 1
p(t)
− 1
p(∞)

|
∫ ∞

t

a1ϕ(s)q(s)f(s, x(s), x′(s))ds

+ max{a1, a2}|
1
p(t)
− 1
p(∞)

|
∫ ∞
−∞

[g1(s, x(s), x′(s)) + g2(s, x(s), x′(s))]ψ(s)ds]

≤ 1
D

[| 1
p(t)
− 1
p(∞)

|MR

∫ t

−∞
a2θ(s)q(s)u1(s)ds

+ | 1
p(t)
− 1
p(∞)

|MR

∫ ∞
t

a1ϕ(s)q(s)u1(s)ds

+ max{a1, a2}|
1
p(t)
− 1
p(∞)

|
∫ ∞
−∞

(NRv1(s) +N ′Rv2(s))ψ(s)ds]→ 0 as t→∞.

Therefore, {Ax : x ∈ D} and {(Ax)′ : x ∈ D} are equiconvergent at +∞. Similarly,
we can show that AD is equiconvergent at −∞. Hence, we conclude that A : P → P
is completely continuous. Therefore, Lemma 3.2 is proved. �

For convenience, we denote

A = w2γ0

∫ k

−k

G(s, s)q(s)u1(s)ds, B = 2(1 + sup
t∈R

c

p(t)
)
∫ ∞
−∞

G(s, s)q(s)u1(s)ds,
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C =
2(1 + supt∈R

c
p(t) ) max{θ(+∞), ϕ(−∞)}

D

∫ ∞
−∞

(v1(s) + v2(s))ψ(s)ds,

where

c =
max{a1, a2}
min{b1, b2}

, (3.5)

k > 0 is a real number and w is defined by (2.6).
In the next theorem, we also assume the following conditions on hi(x, y) (i =

1, 2, 3).
(H4) There exist numbers 0 < r < R < +∞ such that for all t ∈ R,

h3(x, y) ≥ |x|+ |y|
λA

for R ≤ |x|+ |y| < +∞, 0 ≤ |x|+ |y| ≤ r.

(H5) There exist numbers 0 < r < p1 < R < +∞ (r < Ap1
B ) such that for all

t ∈ R,

h3(x, y) ≤ p1

λB
, hi(x, y) ≤ p1

C
, (i = 1, 2) 0 ≤ |x|+ |y| ≤ p1.

Theorem 3.3. Assume that (H1)-(H5) are satisfied. Then (1.3)-(1.4) has at least
two nonnegative solutions x1, x2, t ∈ R such that

0 < ‖x1‖ ≤ p1 ≤ ‖x2‖.

Proof. Let x ∈ P with ‖x‖ = r, then by (H4), we have

‖Ax‖ ≥ |Ax(t)|

≥ λw
∫ k

−k

G(s, s)q(s)f(s, x(s), x′(s))ds

≥ λw
∫ k

−k

G(s, s)q(s)u2(s)h3(x(s), x′(s))ds

≥ 1
λA

λw

∫ k

−k

G(s, s)q(s)u2(s)[x(s) + |x′(s)|]ds

≥ w2γ0

A
‖x‖

∫ k

−k

G(s, s)q(s)u1(s)ds = ‖x‖.

If we let Ω1 = {x ∈ B : ‖x‖ < r}, then

‖Ax‖ ≥ ‖x‖ for all x ∈ P ∩ ∂Ω1. (3.6)

Further, let x ∈ P with ‖x‖ = p1. Then from (H5), we obtain

‖Ax‖ ≤ (1 + sup
t∈R

c

p(t)
)
[
λ

∫ ∞
−∞

G(s, s)q(s)f(s, x(s), x′(s))ds

+
max{θ(+∞), ϕ(−∞)}

D

∫ ∞
−∞

[g1(s, x(s), x′(s)) + g2(s, x(s), x′(s))]ψ(s)ds
]

≤ (1 + sup
t∈R

c

p(t)
)
[ p1

λB
λ

∫ ∞
−∞

G(s, s)q(s)u1(s)ds

+
p1 max{θ(+∞), ϕ(−∞)}

CD

∫ ∞
−∞

(v1(s) + v2(s))ψ(s)ds
]

= p1 = ‖x‖.
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Thus,
‖Ax‖ ≤ ‖x‖ for all x ∈ P ∩ ∂Ω2, (3.7)

where Ω2 = {x ∈ B : ‖x‖ < p1}. Lemma 3.1, (3.6) and (3.7) imply that there exists
a fixed point x1 in P ∩ (Ω2 \ Ω1) satisfying r ≤ ‖x1‖ ≤ p1.

On the other hand, let R1 = R/w and Ω3 = {x ∈ B : ‖x‖ < R1}. Then x ∈ P
with ‖x‖ = R1, k ∈ (0,∞), t ∈ [−k, k] implies

|x(t)|+ |x′(t)| ≥ w‖x‖ = R for t ∈ [−k, k].

Therefore, from (H4) again, we have

‖Ax‖ ≥ λw
∫ k

−k

G(s, s)q(s)f(s, x(s), x′(s))ds

≥ 1
λA

λw

∫ k

−k

G(s, s)q(s)u2(s)[x(s) + |x′(s)|]ds

≥ w2γ0

A
‖x‖

∫ k

−k

G(s, s)q(s)u1(s)ds = ‖x‖.

Therefore,
‖Ax‖ ≥ ‖x‖ for all x ∈ P ∩ ∂Ω3. (3.8)

Lemma 3.1, (3.7) and (3.8) imply that there exists a fixed point x2 in P ∩ (Ω3 \Ω2)
satisfying p1 ≤ ‖x2‖ ≤ R1.

Both x1 and x2 are nonnegative solutions of (1.3)-(1.4) and 0 < ‖x1‖ ≤ p1 ≤
‖x2‖ holds. �

In Theorem 3.4, we will assume the following conditions on hi(x, y) (i = 1, 2, 3).
(H6) There exist numbers 0 < r < R < +∞ such that for all t ∈ R,

h3(x, y) ≤ |x|+ |y|
λB

, hi(x, y) ≤ |x|+ |y|
C

(i = 1, 2)

for 0 ≤ |x|+ |y| ≤ r and 0 ≤ |x|+ |y| ≤ R.
(H7) There exist numbers 0 < r < p2 < R < +∞ (r < A

B p2) such that for all
t ∈ R,

h3(x, y) ≥ |x|+ |y|
λA

, 0 ≤ |x|+ |y| ≤ p2.

Theorem 3.4. Assume that (H1)-(H3), (H6), (H7) are satisfied. Then (1.3)-(1.4)
has at least two nonnegative solutions x1, x2, t ∈ R such that 0 < ‖x1‖ ≤ p2 ≤ ‖x2‖.

Proof. For x ∈ P with ‖x‖ = r, we have

‖Ax‖ ≤ (1 + sup
t∈R

c

p(t)
)
[
λ

∫ ∞
−∞

G(s, s)q(s)f(s, x(s), x′(s))ds

+
max{θ(+∞), ϕ(−∞)}

D

∫ ∞
−∞

[g1(s, x(s), x′(s)) + g2(s, x(s), x′(s))]ψ(s)ds
]

≤ (1 + sup
t∈R

c

p(t)
)
[ r

λB
λ

∫ ∞
−∞

G(s, s)q(s)u1(s)ds

+
max{θ(+∞), ϕ(−∞)}r

CD

∫ ∞
−∞

(v1(s) + v2(s))ψ(s)ds
]

= r = ‖x‖.
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Hence,
‖Ax‖ ≤ ‖x‖ ∀x ∈ P ∩ ∂Ω1, (3.9)

where Ω1 = {x ∈ B : ‖x‖ < r}.
On the other hand, let x ∈ P with ‖x‖ = p2, then for any t ∈ [−k, k], we have

‖Ax‖ ≥ λw
∫ k

−k

G(s, s)q(s)f(s, x(s), x′(s))ds

≥ 1
λA

λw

∫ k

−k

G(s, s)q(s)u2(s)[x(s) + |x′(s)|]ds

≥ w2γ0

A
‖x‖

∫ k

−k

G(s, s)q(s)u1(s)ds = ‖x‖.

Therefore, if we choose Ω2 = {x ∈ B : ‖x‖ < p2}, then

‖Ax‖ ≥ ‖x‖ ∀x ∈ P ∩ ∂Ω2. (3.10)

Lemma 3.1, (3.9) and (3.10) imply that there exists a fixed point x1 in P ∩(Ω2 \Ω1)
satisfying r ≤ ‖x1‖ ≤ p2.

Next set Ω3 = {x ∈ B : ‖x‖ < R}. Then x ∈ P with ‖x‖ = R, so by (H6), we
have

‖Ax‖ ≤ (1 + sup
t∈R

c

p(t)
)
[
λ

∫ ∞
−∞

G(s, s)q(s)f(s, x(s), x′(s))ds

+
max{θ(+∞), ϕ(−∞)}

D

∫ ∞
−∞

[g1(s, x(s), x′(s)) + g2(s, x(s), x′(s))]ψ(s)ds
]

≤ (1 + sup
t∈R

c

p(t)
)
[ R
λB

λ

∫ ∞
−∞

G(s, s)q(s)u1(s)ds

+
R

C

max{θ(+∞), ϕ(−∞)}
D

∫ ∞
−∞

(v1(s) + v2(s))ψ(s)ds
]

= R = ‖x‖.
Therefore,

‖Ax‖ ≤ ‖x‖ for all x ∈ P ∩ ∂Ω3. (3.11)
Lemma 3.1, (3.10) and (3.11) imply that there exists a fixed point x2 in P∩(Ω3\Ω2)
satisfying p2 ≤ ‖x2‖ ≤ R. Both x1 and x2 are nonnegative solutions of (1.3)-(1.4)
and 0 < ‖x1‖ ≤ p2 ≤ ‖x2‖ holds. �

In the next theorem, we assume the following condition on hi(x, y) (i = 1, 2, 3).
(H8) There exist numbers 0 < r < R < +∞ (r < AR/B) such that for all t ∈ R,

h3(x, y) ≥ 1
λA

[|x|+ |y|], 0 ≤ |x|+ |y| ≤ r,

h3(x, y) ≤ R

λB
, hi(x, y) ≤ R

C
, (i = 1, 2) 0 ≤ |x|+ |y| ≤ R.

Theorem 3.5. Assume that (H1)-(H3), (H8) are satisfied. Then (1.3)-(1.4) has at
least one nonnegative solution x(t), t ∈ R such that

wr ≤ x(t) ≤ R, t ∈ [−k, k];

0 ≤ x(t) ≤ R, t ∈ (−∞,−k) ∪ (k,∞),

−R ≤ x′(t) ≤ R, t ∈ R.
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In the next theorem, we assume the following condition on hi(x, y) (i = 1, 2, 3).
(H9) There exist numbers 0 < r < R < +∞ such that for all t ∈ R,

h3(x, y) ≤ r

λB
, hi(x, y) ≤ r

C
, (i = 1, 2) 0 ≤ |x|+ |y| ≤ r,

h3(x, y) ≥ R

λA
, R ≤ |x|+ |y| <∞.

Theorem 3.6. Assume that (H1)-(H3), (H9) are satisfied. Then (1.3)-(1.4) has at
least one nonnegative solution x(t), t ∈ R such that

wr ≤ x(t) ≤ R

w
, t ∈ [−k, k];

0 ≤ x(t) ≤ R

w
, t ∈ (−∞,−k) ∪ (k,∞), −R

w
≤ x′(t) ≤ R

w
, t ∈ R.

The proofs of Theorem 3.5 and 3.6 are similar to those of Theorem 3.3 and 3.4.
So, they are omitted.

Remark 3.7. If

lim
|x|+|y|→0+

hi(x, y)
|x|+ |y|

= 0 (i = 1, 2, 3)

and

lim
|x|+|y|→∞

h3(x, y)
|x|+ |y|

=∞

for all t ∈ R, then (H9) will be satisfied for r > 0 sufficiently small and R > 0
sufficiently large.

Example. Consider the second-order integral boundary-value problem

((1 + t2)x′(t))′ + λ
[x(t) + |x′(t)|]2

t2 + 1
= 0, t ∈ R, (3.12)

lim
t→−∞

x(t)− lim
t→−∞

(1 + t2)x′(t) =
∫ ∞
−∞

[x(t) + |x′(t)|]2

(t2 + 1)2
dt,

lim
t→+∞

(1 + t2)x′(t) = 0.
(3.13)

Here, p(t) = 1 + t2, q(t) = 1, a1 = 1, a2 = 0, b1 = b2 = 1, ψ(t) = 1
1+t2 ,

f(t, x(t), y(t)) = g1(t, x(t), y(t)) =
[x(t) + |y(t)|]2

t2 + 1
, g2(t, x, y) = 0.

It is obvious that f, g1, g2 ∈ C(R × [0,∞) × R, [0,∞)). Set h1(x, y) = h3(x, y) =
(x + |y|)2, h2(x, y) = 0, u1(t) = v1(t) = 1

t2+1 , and v2(t) = 0. It is clear that
hi ∈ C([0,∞)× R, [0,∞)) (i = 1, 2, 3), u1, v1 ∈ L(R, (0,∞)) and∫ ∞

−∞
G(s, s)q(s)u1(s)ds =

π(π + 2)
2

< +∞ (i = 1, 2).

In addition to this, it is easy to see that

lim
|x|+|y|→0+

hi(x, y)
|x|+ |y|

= 0, (i = 1, 2, 3),

lim
|x|+|y|→∞

h3(x, y)
|x|+ |y|

=∞
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for all t ∈ R; that is, condition (H9) is satisfied for r > 0 sufficiently small and
R > 0 sufficiently large. Hence, by Remark 3.7 and Theorem 3.6, the boundary-
value problem (3.12)-(3.13) has at least one nonnegative solution.
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