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OSCILLATION OF SOLUTIONS OF LINEAR IMPULSIVE
PARTIAL DIFFERENCE EQUATIONS WITH

CONTINUOUS VARIABLES

BAŞAK KARPUZ

Abstract. This article studies oscillation of linear partial difference equa-

tions with continuous arguments under impulse perturbations through both

variables. The results improve on previously established results; furthermore
a new connection is established between impulsive partial difference equations

with continuous arguments and the more developed area of partial difference
equations with discrete variables.

1. Introduction

The theory of impulsive equations is an important area of scientific activity.
Since every nonimpulsive equation can be regarded as an impulsive equation with
no impulse effect, this fact makes the theory of impulsive equations more interesting
than the corresponding theory of nonimpulsive equations. Moreover, such equations
appear in the modeling of several real-world phenomena in many areas such as
physics, biology and engineering.

To the best of our knowledge, first paper on impulsive equations was published
on the oscillation differential equations [1]. From the publication of this paper up to
the present time, impulsive delay differential equations started receiving attention
of many mathematicians and numerous papers have been published on various types
of equations. Most of the publications are devoted to first-order impulsive delay
differential equations and there is just a few works in the direction of impulsive
partial difference equations with continuous arguments (IPDEWCA). In [2], the
authors studied the oscillation of solutions to IPDEWCA
p1z(t+ a, s+ b) + p2z(t+ a, s) + p3z(t, s+ b)

− p4z(t, s) + p(t, s)z(t− τ, s− σ) = 0 for (t, s) ∈
(
R+

0 \{tk}k∈N0)
)
× R+

0

z(t+k , s) = αkz(t−k , s) for k ∈ N0 and s ∈ R+
0 ,

(1.1)

where the impulse points {tk}k∈N0 are assumed to be placed equidistancely through
the first axes. Note that only the first variable of the unknown function is exposed
to impulse effects.
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In this article, we shall draw our attention to the qualitative behavior of solutions
to IPDEWCA by introducing impulse effects to both of the variables of the unknown
function, which is more compatible with the nature of partial difference equations
with continuous arguments. Here, we shall adopt a method, which is similar to
that of [3], for building a bridge between the solutions of IPDEWCA and the
solutions of partial difference equations with continuous arguments (PDEWCA),
and combining this technique with the one in [4], we will be able to establish a new
connection between oscillation of IPDEWCA and difference equations with discrete
arguments (PDEWDA). Therefore, the detailed process taking place in the proofs
for IPDEWCA will be cleared away. Finally, we would like to mention that our
main result is also new even for the nonimpulsive case, improves the ones in [2] for
the autonomous case, and includes the results of [5]. For fundamental results in
the theory of PDEWDA and PDEWCA, the readers are referred to the books [6, 7]
and the survey [8] devoted to the study of various (including qualitative) properties
of the solutions.

This article is organized as follows: In Section 2, we study the oscillation of
PDEWDA by removing a condition in the well-known oscillation criteria introduced
in [7]; in Section 3, we construct a connection between the oscillation of PDEWCA
and the oscillation of PDEWDA, which extends almost all of the oscillation re-
sults given for PDEWDA to PDEWCA. In Section 4, we relate the oscillation of
IPDEWCA with the oscillation of PDEWCA, so that the results for the oscillation
of PDEWDA can be also applied to reveal the oscillation of IPDEWCA. Finally
in Section 5, we make our final comments and compare our results with the ones
introduced in [2], and an illustrative example concerning the autonomous case is
given to mention the importance of our results.

2. Oscillation of PDEWDA

In this section, we confine our attention to the difference inequality with discrete
arguments

p1A(m+ 1, n+ 1) + p2A(m+ 1, n) + p3A(m,n+ 1)

− p4A(m,n) + p(m,n)A(m− κ, n− `) ≤ 0 for (m,n) ∈ Z0 × Z0,
(2.1)

where Zk := {n ∈ Z : n ≥ k} for k ∈ Z, under the following conditions:

(A1) p1 ≥ 0 and p2, p3, p4 > 0;
(A2) κ, ` ∈ Z0;
(A3) p : N0 × N0 → R+

0 .

Definition 2.1. A double sequence A : Z−κ×Z−` → R satisfying (2.1) identically
on Z0 × Z0 is called a solution of (2.1).

Definition 2.2. A solution A of (2.1) is called eventually positive if there exists
(m0, n0) ∈ Z0 × Z0 such that A(m,n) > 0 for all (m,n) ∈ Zm0 × Zn0 . and is
called eventually negative if negative of A is eventually positive. A solution neither
eventually positive nor negative is called oscillatory. If every solution of (2.1)
oscillates, then it is called oscillatory.

Theorem 2.3 ([7, Theorem 2.15]). Assume that (A1)–(A3) hold, and that

(i) lim supm→∞
n→∞

p(m,n) > 0;
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(ii) (a) If κ ≥ ` ≥ 1, then

lim sup
m→∞
n→∞

sup
λ∈E

{
λ
∏̀
i=1

[
p4 − λp(m− i, n− i)

]
×
κ−∏̀
j=1

[
p4 − λp(m− `− j, n− `)

]}
<
(
p1 + 2

p2p3

p4

)`
pκ−`2 ,

where

E :=
{
λ > 0 : p4 − λp(m,n) > 0 for all large (m,n) ∈ Z0 × Z0

}
.

(b) If ` ≥ κ ≥ 1, then

lim sup
m→∞
n→∞

sup
λ∈E

{
λ

κ∏
i=1

[
p4 − λp(m− i, n− i)

]
×
`−κ∏
j=1

[
p4 − λp(m− κ, n− κ− j)

]}
<
(
p1 + 2

p2p3

p4

)k
p`−κ3 .

Then (2.1) has no eventually positive solutions.

The proof of Theorem 2.3 uses the property that the set E is bounded, which
is ensured by (i) in Theorem 2.3. In the following result, we shall remove the
requirement for (i) in Theorem 2.3 by introducing a new proof. To this end, we
need to introduce

Λ(m,n) :=
{
λ > 0 : p4−λp(i, j) > 0 for all (i, j) ∈ [m−κ,m)×[n−`, n)∩Z0×Z0

}
.

(2.2)

Theorem 2.4. Assume that (A1)–(A3) hold. Assume also that

lim sup
m→∞
n→∞

sup
λ∈Λ(m,n)

{
λ
∏̀
i=1

[
p4 − λp(m− i, n− i)

]
×
κ−∏̀
j=1

[
p4 − λp(m− `− j, n− `)

]}
< pκ−`2

(
p1 + 2

p2p3

p4

)`
if κ ≥ ` ≥ 1,

(2.3)

or

lim sup
m→∞
n→∞

sup
λ∈Λ(m,n)

{
λ

κ∏
i=1

[
p4 − λp(m− i, n− i)

]
×
`−κ∏
j=1

[
p4 − λp(m− κ, n− κ− j)

]}
< p`−κ3

(
p1 + 2

p2p3

p4

)k
if ` ≥ κ ≥ 1.

Then (2.1) has no eventually positive solutions.

Proof. We shall only give a proof for the case κ ≥ ` since the remaining case follows
by using similar arguments. Let A be an eventually positive solution of (2.1). We
may find (m0, n0) ∈ Z0 ×Z0 such that A(m,n) > 0 and A(m− κ, n− `) > 0 for all
(m,n) ∈ Zm0 × Zn0 . Now, define

B(m,n) :=
A(m− κ, n− `)

A(m,n)
> 0 for (m,n) ∈ Zm0 × Zn0 . (2.4)
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We shall first show that
lim
m→∞
n→∞

B(m,n) =∞. (2.5)

Using (2.4), we may rewrite (2.1) as

p1A(m+ 1, n+ 1) + p2A(m+ 1, n) + p3A(m,n+ 1)

≤
[
p4 −B(m,n)p(m,n)

]
A(m,n)

(2.6)

for all (m,n) ∈ Zm0 × Zn0 . It follows from (2.1) that

A(m+ 1, n) ≤ p4

p2
A(m,n) and A(m,n+ 1) ≤ p4

p3
A(m,n) (2.7)

for all (m,n) ∈ Zm0 × Zn0 . Using (2.7) in (2.6), we obtain(
p1 + 2

p2p3

p4

)
A(m+ 1, n+ 1) ≤

[
p4 −B(m,n)p(m,n)

]
A(m,n)

for all (m,n) ∈ Zm0 × Zn0 , or

A(m+ 1, n+ 1) ≤
(
p1 + 2

p2p3

p4

)−1[
p4 −B(m,n)p(m,n)

]
A(m,n)

for all (m,n) ∈ Zm0 × Zn0 . This yields

A(m,n)

≤
(
p1 + 2

p2p3

p4

)−1[
p4 −B(m− 1, n− 1)p(m− 1, n− 1)

]
A(m− 1, n− 1)

≤
(
p1 + 2

p2p3

p4

)−2[
p4 −B(m− 1, n− 1)p(m− 1, n− 1)

]
×
[
p4 −B(m− 2, n− 2)p(m− 2, n− 2)

]
A(m− 2, n− 2)

. . .

≤
(
p1 + 2

p2p3

p4

)−`(∏̀
i=1

[
p4 −B(m− i, n− i)p(m− i, n− i)

])
A(m− `, n− `)

(2.8)
for all (m,n) ∈ Zm0+` × Zn0+`. Using (2.6), we obtain

A(m+ 1, n) <
1
p2

[
p4 −B(m,n)p(m,n)

]
A(m,n) for all (m,n) ∈ Zm0 × Zn0 ,

which yields

A(m− `, n− `)

<
1
p2

[
p4 −B(m− `− 1, n− `)p(m− `− 1, n− `)

]
A(m− `− 1, n− `)

. . .

≤ 1
pκ−`2

( κ−∏̀
j=1

[
p4 −B(m− `− j, n− `)p(m− `− j, n− `)

])
A(m− κ, n− `)

(2.9)
for all (m,n) ∈ Zm0+κ × Zn0+κ. Define

C(m,n) := min
{
B(i, j) : (i, j) ∈ [m− κ,m]× [n− `, n] ∩ Z2

}
(2.10)
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for (m,n) ∈ Zm0 × Zn0 . Using (2.8), (2.9) and (2.10), we obtain

A(m,n) ≤ 1
pκ−`2

(
p1 + 2

p2p3

p4

)−`(∏̀
i=1

[
p4 −B(m− i, n− i)p(m− i, n− i)

])
×
( κ−∏̀
j=1

[
p4 −B(m− `− j, n− `)p(m− `− j, n− `)

])
A(m− κ, n− `)

≤ 1
pκ−`2

(
p1 + 2

p2p3

p4

)−`(∏̀
i=1

[
p4 − C(m,n)p(m− i, n− i)

])
×
( κ−∏̀
j=1

[
p4 − C(m,n)p(m− `− j, n− `)

])
A(m− κ, n− `)

or equivalently

1 ≤ 1
pκ−`2

(
p1 + 2

p2p3

p4

)−`(∏̀
i=1

[
p4 − C(m,n)p(m− i, n− i)

])
×
( κ−∏̀
j=1

[
p4 − C(m,n)p(m− `− j, n− `)

])
B(m,n)

(2.11)

for all (m,n) ∈ Zm0+2κ × Zn0+2κ. It follows from (2.6) and (2.10) that

C(m,n) ∈ Γ(m,n) for all (m,n) ∈ Zm0+2κ × Zn0+2κ. (2.12)

Then from (2.11) and (2.12), we have

C(m,n) ≤ 1
pκ−`2

(
p1 + 2

p2p3

p4

)−`
C(m,n)

(∏̀
i=1

[
p4 − C(m,n)p(m− i, n− i)

])
×
( κ−∏̀
j=1

[
p4 − C(m,n)p(m− `− j, n− `)

])
B(m,n)

(2.13)

for all (m,n) ∈ Zm0+2κ×Zn0+2κ. The condition (2.3) implies existence of a constant
µ < 1 and (m1, n1) ∈ Zm0+2κ × Zn0+2κ such that

1
pκ−`2

(
p1 + 2

p2p3

p4

)−`
C(m,n)

∏̀
i=1

[
p4 − C(m,n)p(m− i, n− i)

]
×
κ−∏̀
j=1

[
p4 − C(m,n)p(m− `− j, n− `)

]
< µ

(2.14)

for all (m,n) ∈ Zm1 × Zn1 . Using (2.14) in (2.13), we obtain

C(m,n) ≤ µB(m,n) for all (m,n) ∈ Zm1 × Zn1 . (2.15)

To prove that (2.5) is true assume the contrary; i.e.,

ρ := lim inf
m→∞
n→∞

B(m,n) <∞. (2.16)
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Note that from (2.10), we have

lim inf
m→∞
n→∞

C(m,n) = ρ. (2.17)

First assume that ρ > 0. Then taking lim inf on both sides of (2.15), we obtain
ρ ≤ µρ, which is a contradiction since µ < 1. Next assume that ρ = 0, then there
exists (m2, n2) ∈ Zm1 × Zn1 such that

min{B(i, j) : (i, j) ∈ [m1,m2]× [n1, n2] ∩ Z0 × Z0} = B(m2, n2). (2.18)

Then (2.10), (2.15) and (2.18) yield that

µB(m2, n2) ≥ C(m2, n2)

≥ min{B(i, j) : (i, j) ∈ [m1,m2]× [n1, n2] ∩ Z0 × Z0} = B(m2, n2),

which is a contradiction since µ < 1. Therefore, we have just proved that (2.5) is
true. Now, we show that (2.3) implies

lim sup
m→∞
n→∞

m−1∑
i=m−κ

n−1∑
j=n−`

p(i, j) > 0. (2.19)

If (2.19) is not true, then we have

lim
m→∞
n→∞

p(m,n) = 0. (2.20)

We may find (m2, n2) ∈ Zm1 × Zn1 such that

p(m,n) < ε for all (m,n) ∈ Zm2 × Zn2 , (2.21)

where

ε :=
1

2κ

( p4κ

κ+ 1

)κ+1 1
pκ−`2

(
p1 + 2

p2p3

p4

)−`
> 0. (2.22)

From (2.21), we have

p4 −
p4

ε
p(m,n) > 0 for all (m,n) ∈ Zm2 × Zn2 , (2.23)

which implies (0, p4/ε) ⊂ Λ(m,n) for all (m,n) ∈ Zm2 × Zn2 . Then, using (2.22)
and (2.23), we have

sup
λ∈Λ(m,n)

{
λ
∏̀
i=1

[
p4 − λp(m− i, n− i)

] κ−∏̀
j=1

[
p4 − λp(m− `− j, n− `)

]}
≥ sup
λ∈(0,p4/ε)

{
λ
(
p4 − λε

)κ} =
1
εκ

( p4κ

κ+ 1

)κ+1

≥ 2pκ−`2

(
p1 + 2

p2p3

p4

)`
for all (m,n) ∈ Zm2 × Zn2 . This contradicts (2.3), and proves that (2.19) is true.
Now, we will use (2.19) to show

lim inf
m→∞
n→∞

B(m,n) <∞. (2.24)
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The proof will be completed if we can show that (2.24) holds, which contradicts
(2.5). From (2.19), there exist a constant δ > 0 and an increasing divergent double
sequence {(ξr, ζr)}r∈N0 ⊂ Zm2 × Zn2 such that

ξr−1∑
i=ξr−κ

ζr−1∑
j=ζr−`

p(i, j) ≥ δ for all r ∈ N0. (2.25)

Dirichlet’s Pigeonhole principle implies existence of a sequence {(αr, βr)}r∈N0 ⊂
Z0 × Z0 such that

ξr − κ ≤ αr < ξr, ζr − ` ≤ βr < ζr, p(αr, βr) >
δ

κ`
for all r ∈ N0. (2.26)

From (2.1), for all r ∈ N0, we obtain

0 ≥ p1A(αr + 1, βr + 1) + p2A(αr + 1, βr) + p3A(αr, βr + 1)

− p4A(αr, βr) + p(αr, βr)A(αr − κ, βr − `)

> −p4A(αr, βr) +
δ

κ`
A(αr − κ, αr − `),

which yields

B(αr, βr) =
A(αr − κ, βr − `)

A(αr, βr)
≤ 1
δ
p4κ` for all r ∈ N0. (2.27)

Letting r →∞ in (2.27), we reach at (2.24), and thus the proof is complete. �

Remark 2.5. Under the assumptions of Theorem 2.4, every solution of the follow-
ing PDEWDA

p1A(m+ 1, n+ 1) + p2A(m+ 1, n) + p3A(m,n+ 1)

− p4A(m,n) + p(m,n)A(m− κ, n− `) = 0 for (m,n) ∈ Z0 × Z0

is oscillatory. This result therefore improves Theorem 2.3.

3. Oscillation of PDEWCA via PDEWDA

In this section, we reduce the oscillation of PDEWCA to the oscillation of
PDEWDA, which is a relatively more developed area. Let us consider the PDEWCA

p1z(t+ a, s+ b) + p2z(t+ a, s) + p3z(t, s+ b)

− p4z(t, s) + p(t, s)z(t− τ, s− σ) ≤ 0 for (t, s) ∈ R+
0 × R+

0

(3.1)

under the following assumptions:
(A4) a, b > 0 and τ, σ > 0;
(A5) p2, p3 ≥ p4;
(A6) p : R+

0 × R+
0 → R+

0 is a continuous function.

Definition 3.1. A continuous function z : [−τ,∞)× [−σ,∞)→ R satisfying (3.1)
identically on R+

0 × R+
0 is called a solution of (3.1).

Definition 3.2. A solution z of (3.1) is called eventually positive if there exists
(t0, s0) ∈ R+

0 × R+
0 such that z(t, s) > 0 for all (t, s) ∈ [t0,∞) × [s0,∞). and is

called eventually negative if negative of z is eventually positive. A solution neither
eventually positive nor negative is called oscillatory. If every solution of (3.1)
oscillates, then it is called oscillatory.



8 B. KARPUZ EJDE-2014/190

We define the minimized function q of p by

q(t, s) := min
{
p(η, ζ) : (η, ζ) ∈ [t, t+ a]× [s, s+ b]

}
for (t, s) ∈ R+

0 × R+
0 . (3.2)

For simplicity of notation, we let

υ :=
⌊τ
a

⌋
and ν :=

⌊σ
b

⌋
, (3.3)

where b·c : R→ Z denotes the least integer function.
Below, we quote one of the most important results for oscillation of the PDEWCA

p1z(t+ a, s+ b) + p2z(t+ a, s) + p3z(t, s+ b)

− p4z(t, s) + p(t, s)z(t− τ, s− σ) = 0 for (t, s) ∈ R+
0 × R+

0 .
(3.4)

Theorem 3.3 ([7, Theorem 2.37]). Assume that (A4)–(A6) hold, and that
(i) lim supt→∞

s→∞
q(t, s) > 0;

(ii) (a) If υ ≥ ν ≥ 1, then

lim sup
t→∞
s→∞

sup
λ∈E

{
λ
∏̀
i=1

[
p4 − λq(t− ai, s− bi)

]
×
κ−∏̀
j=1

[
p4 − λq(t− a`− aj, n− b`)

]}
<
(
p1 + 2

p2p3

p4

)`
pκ−`2 ,

where

E :=
{
λ > 0 : p4 − λq(t, s) > 0 for all large (t, s) ∈ R+

0 × R+
0

}
. (3.5)

(b) If ν ≥ υ ≥ 1, then

lim sup
t→∞
s→∞

sup
λ∈E

{
λ

κ∏
i=1

[
p4 − λp(t− ai, s− bi)

]
×
`−κ∏
j=1

[
p4 − λp(t− aκ, s− bκ− bj)

]}
<
(
p1 + 2

p2p3

p4

)k
p`−κ3 .

Then (3.4) is oscillatory.

The removal of the condition (i) of Theorem 3.3 is just a simple corollary of the
main result of this section.

Lemma 3.4 ([7, Lemma 2.36]). Assume that (A1), (A4)–(A6) hold. If z is an
eventually positive solution of the partial difference inequality with continuous vari-
ables

p1z(t+ a, s+ b) + p2z(t+ a, s) + p3z(t, s+ b)

− p4z(t, s) + p(t, s)z(t− τ, s− σ) ≤ 0 for (t, s) ∈ R+
0 × R+

0 ,
(3.6)

then z eventually satisfies the partial difference inequality with continuous variables

p1z(t+ a, s+ b) + p2z(t+ a, s) + p3z(t, s+ b)

− p4z(t, s) + q(t, s)z(t− aυ, s− bν) ≤ 0 for (t, s) ∈ R+
0 × R+

0 .
(3.7)

Corollary 3.5. Assume that (A1), (A4)–(A6) hold. If (3.7) has no eventually
positive solutions, then (3.6) also has no eventually positive solutions.
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For the next result, which builds a bridge between the oscillation of PDEWCA
and of PDEWDA, we introduce

rt,s(m,n) := q(t+ am, s+ bn) for (m,n) ∈ Z0 × Z0, (3.8)

where (t, s) ∈ R+
0 × R+

0 .

Theorem 3.6. Assume that (A1), (A4)–(A6) hold. Moreover, assume that for
some fixed (η, ζ) ∈ [0, a)× [0, b), the partial difference inequality with discrete vari-
ables

p1A(m+ 1, n+ 1) + p2A(m+ 1, n) + p3A(m,n+ 1)

− p4A(m,n) + rη,ζ(m,n)A(m− υ, n− ν) ≤ 0 for (m,n) ∈ N0 × N0
(3.9)

has no eventually positive solutions. Then, (3.7) has no eventually positive solu-
tions.

Proof. Assume the contrary that z is an eventually positive solution of (3.7). Now
we define the double sequence

A(m,n) := z(η + am, ζ + bn) for (m,n) ∈ N0 × N0.

Then A is eventually positive. Substituting (t, s) = (η + am, ζ + bn) for (m,n) ∈
N0 × N0 into (3.7), we see that the double sequence A satisfies (3.9). This is a
contradiction. �

Corollary 3.7. Assume that (A1), (A4)–(A6) hold. Assume also that there exists
(η, ζ) ∈ [0, a)× [0, b) such that

lim sup
m→∞
n→∞

sup
λ∈Λη,ζ

{
λ

ν∏
i=1

[
p4 − λrη,ζ(m− i, n− i)

]
×
υ−ν∏
j=1

[
p4 − λrη,ζ(m− ν − j, n− ν)

]}
< pυ−ν2

(
p1 + 2

p2p3

p4

)ν (3.10)

if υ ≥ ν ≥ 1, or

lim sup
m→∞
n→∞

sup
λ∈Λη,ζ

{
λ

υ∏
i=1

[
p4 − λrη,ζ(m− i, n− i)

]
×
ν−υ∏
j=1

[
p4 − λrη,ζ(m− υ, n− υ − j)

]}
< pν−υ3

(
p1 + 2

p2p3

p4

)k (3.11)

if ν ≥ υ ≥ 1, where

Λt,s := {λ > 0 : p4 − λrt,s(m,n) > 0f or all large (m,n) ∈ N0 × N0}
for (t, s) ∈ R+

0 × R+
0 . Then, (3.7) has no eventually positive solutions.

Proof. Under the conditions of the corollary, (3.9) has no eventually positive so-
lutions by Theorem 2.4. Therefore, it follows from Theorem 3.6 that (3.7) has no
eventually positive solutions. Finally, an application of Corollary 3.5 completes the
proof. �

Remark 3.8. Note that for all (η, ζ) ∈ [0, a)× [0, b), we have

lim sup
m→∞
n→∞

sup
λ∈Λη,ζ

{
λ

ν∏
i=1

[
p4 − λrη,ζ(m− i, n− i)

] υ−ν∏
j=1

[
p4 − λrη,ζ(m− ν − j, n− ν)

]}
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≤ lim sup
t→∞
s→∞

sup
λ∈E

{
λ

ν∏
i=1

[
p4 − λq(t− ai, s− bi)

] υ−ν∏
j=1

[
p4 − λq(t− aν − aj, s− bν)

]}
,

where

E :=
{
λ > 0 : p4 − λq(t, s) > 0 for all large (t, s) ∈ R+

0 × R+
0

}
. (3.12)

Hence, Corollary 3.7 improves Theorem 3.3.

4. Oscillation of IPDEWCA via PDEWDA

The primary assumptions of this section are as follows:
(A7) {tk}k∈N0 and {s`}`∈N0 are increasing divergent sequences of nonnegative

reals;
(A8) {αk}k∈N0 and {β`}`∈N0 are sequences of real numbers, which involve no

zero terms;
(A9) p : R+

0 × R+
0 → R is a continuous function.

For simplicity of notation, we define

D :=
(
(R+

0 \{tk}k∈N0)× R+
0

)
∪
(
R+

0 × (R+
0 \{s`}`∈N0)

)
.

This section is concerned with the oscillation of solutions of the IPDEWCA
p1z(t+ a, s+ b) + p2z(t+ a, s) + p3z(t, s+ b)

− p4z(t, s) + p(t, s)z(t− τ, s− σ) = 0 for (t, s) ∈ D
z(t+k , s) = αkz(t−k , s) for k ∈ N0 and s ∈ R+

0

z(t, s+
` ) = β`z(t, s−` ) for ` ∈ N0 and t ∈ R+

0 .

(4.1)

Definition 4.1. A function z : [−τ,∞)× [−σ,∞)→ R is called a solution of (4.1)
provided that each of the following conditions are satisfied:

(i) z is continuous on each of the intervals of the form (tk−1, tk]× (s`−1, s`] for
each k, ` ∈ N;

(ii) the limit value z(t−k , ·) for each k ∈ N0 and the limit value z(·, s−` ) for each
` ∈ N0 exist and are finite;

(iii) z satisfies
(a) the first equation in (4.1) if (t, s) ∈ (R+

0 × R+
0 )\{(tk, s`)}k,`∈N0 ;

(b) the first equation in (4.1) together with the second one if (t, s) ∈ D
with t ∈ {tk}k∈N;

(c) the first equation in (4.1) together with the third one if (t, s) ∈ D with
s ∈ {s`}`∈N;

(d) the last two equations in (4.1) if (t, s) ∈ {(tk, s`)}k,`∈N0 .

Oscillation and nonoscillation of solutions to (4.1) are defined similar to Defini-
tion 2.2. Below, we quote the first result on the oscillation of IPDEWCA.

Theorem 4.2 ([2, Theorem 1]). Assume that (A1), (A4)–(A6) and (i) of Theo-
rem 3.3 hold, and that

(i) {αk}k∈N0 is a sequence of reals such that αk > 1 for all k ∈ N0;
(ii)

∑∞
k=0(αk − 1) <∞;

(iii) (a) If υ ≥ ν ≥ 1, then

lim sup
t→∞
s→∞

sup
λ∈E

{
λ
∏̀
i=1

[
p1 + 2

p2p3

p4

∏
0<tk<t−a(i−2)

1
αk

]−1
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×
∏̀
j=1

[
p4

∏
0<tk≤t−a(i−1)

αk − λq(t− ai, s− bi)
]

×
`−κ∏
j=1

[
p4

∏
0<tk≤t−a(`+j−1)

αk − λq(t− a`− aj, s− b`)
]}

< pκ−`2 ,

where q, υ and ν are defined as in (3.2) and (3.3), and

E :=
{
λ > 0 : p4

∏
0<tk<t+a

αk − λq(t, s) > 0 for all large (t, s) ∈ R+
0 × R+

0

}
.

(b) If ν ≥ υ ≥ 1, then

lim sup
t→∞
s→∞

sup
λ∈E

{
λ

κ∏
i=1

[
p1 + 2

p2p3

p4

∏
0<tk<t−a(i−2)

1
αk

]−1

×
κ∏
j=1

[
p4

∏
0<tk≤t−a(i−1)

αk − λq(t− ai, s− bi)
]

×
`−κ∏
j=1

[
p4

∏
0<tk≤t−a(`+j−1)

αk − λq(t− aκ, s− bκ− bj)
]}

< pκ−`3 .

Then (1.1) is oscillatory.

Now consider the following companion partial difference inequality with contin-
uous arguments

p1

( ∏
t≤ti<t+a
s≤sj<s+b

αiβj

)
ω(t+ a, s+ b) + p2

( ∏
t≤ti<t+a

αi

)
ω(t+ a, s)

+ p3

( ∏
s≤sj<s+b

βj

)
ω(t, s+ b)− p4ω(t, s)

+
( ∏

t−τ≤ti<t
s−σ≤sj<s

1
αiβj

)
p(t, s)ω(t− τ, s− σ) = 0 for (t, s) ∈ R+

0 × R+
0 .

(4.2)

Lemma 4.3. Assume that (A1), (A4), (A7)–(A9) hold.

(i) If z is a solution of (4.1), then the companion function ω defined by

ω(t, s) :=
( ∏

0≤ti<t
0≤sj<s

1
αiβj

)
z(t, s) for (t, s) ∈ R+

0 × R+
0 (4.3)

is a solution of (4.2);
(ii) If ω is a solution of (4.2), then the function z defined by

z(t, s) :=
( ∏

0≤ti<t
0≤sj<s

αiβj

)
ω(t, s) for (t, s) ∈ R+

0 × R+
0 (4.4)

is a solution of (4.1).
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Proof. We only give the proof of the part (i) since the part (ii) can be proved
similarly. Assume that z is a solution of (4.1). First, we have to show that ω
defined by (4.3) is continuous. Let (t, s) ∈ (tk−1, tk)× (s`−1, s`) for some k, ` ∈ N.
Then using (4.1), we obtain

ω(t+k , s) =
( ∏

0≤ti≤tk
0≤sj<s

1
αiβj

)
z(t+k , s) =

( ∏
0≤ti≤tk
0≤sj<s

1
αiβj

)
αkz(tk, s)

=
( ∏

0≤ti<tk
0≤sj<s

1
αiβj

)
z(tk, s) = ω(tk, s),

for k ∈ N0 and

ω(t, s+
` ) =

( ∏
0≤ti<t

0≤sj≤s`

1
αiβj

)
z(t, s+

` ) =
( ∏

0≤ti<t
0≤sj≤s`

1
αiβj

)
β`z(t, s`)

=
( ∏

0≤ti<tk
0≤sj<s

1
αiβj

)
z(t, s`) = ω(t, s`)

for ` ∈ N0. Combining the conclusion above we have ω(t+k , s
+
` ) = ω(tk, s`) for all

k, ` ∈ N. Therefore, we have just verified that ω is continuous. Now, we show that
ω solves (4.1). For all (t, s) ∈ R+

0 × R+
0 , we have

p1

( ∏
t≤ti<t+a
s≤sj<s+b

αiβj

)
ω(t+ a, s+ b) + p2

( ∏
t≤ti<t+a

αi

)
ω(t+ a, s)

+ p3

( ∏
s≤sj<s+b

βj

)
ω(t, s+ b)− p4ω(t, s) +

( ∏
t−τ≤ti<t
s−σ≤sj<s

1
αiβj

)
p(t, s)ω(t− τ, s− σ)

= p1

( ∏
t≤ti<t+a
s≤sj<s+b

αiβj

)( ∏
0≤ti<t+a
0≤sj<s+b

1
αiβj

)
z(t+ a, s+ b)

+ p2

( ∏
t≤ti<t+a

αi

)( ∏
0≤ti<t+a
0≤sj<s

1
αiβj

)
z(t+ a, s)

+ p3

( ∏
s≤sj<s+b

βj

)( ∏
0≤ti<t

0≤sj<s+b

1
αiβj

)
z(t, s+ b)− p4

( ∏
0≤ti<t
0≤sj<s

1
αiβj

)
z(t, s)

+
( ∏

t−τ≤ti<t
s−σ≤sj<s

1
αiβj

)( ∏
0≤ti<t−τ
0≤sj<s−σ

1
αiβj

)
p(t, s)z(t− τ, s− σ),

which is equal to( ∏
0≤ti<t
0≤sj<s

1
αiβj

)[
p1z(t+ a, s+ b) + p2z(t+ a, s) + p3z(t, s+ b)
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− p4z(t, s) + p(t, s)z(t− τ, s− σ)
]

= 0.

This completes the proof of the part (i). �

Next, to give a result on the oscillation we introduce the following assumption.
(A10) {αk}k∈N0 and {β`}`∈N0 are sequences of positive reals.

Theorem 4.4. Assume that (A1), (A4), (A7), (A9), (A10) hold. Then, (4.1) is
oscillatory if and only if so is (4.2).

Proof. Clearly, (A10) implies that the transforms in (4.3) and (4.4) are oscillation
invariant. �

(A11) There exist positive constants q1, q2, q3, q4 such that( ∏
t≤ti<t+a
s≤sj<s+b

αiβj

)
≥ q1,

( ∏
t≤ti<t+a

αi

)
≥ q2,

( ∏
s≤sj<s+b

βj

)
≥ q3,

( ∏
t−τ≤ti<t+a
s−σ≤sj<s+b

1
αiβj

)
≥ q4

for all sufficiently large (t, s) ∈ R+
0 × R+

0 ;
(A12) p2q2, p3q3 ≥ p4 > 0.

Lemma 4.5. Assume that (A1), (A4), (A6), (A7), (A10)–(A12) hold. If (4.1) is
nonoscillatory, then the following difference inequality with continuous arguments

p1q1ω(t+ a, s+ b) + p2q2ω(t+ a, s) + p3q3ω(t, s+ b)

− p4ω(t, s) + q4q(t, s)ω(t− υa, s− νb) ≤ 0 for (t, s) ∈ R+
0 × R+

0 ,
(4.5)

where q, υ and ν are defined as in (3.2) and (3.3), has an eventually positive
solution.

Proof. The proof follows from Theorem 4.4 and (A11), we learn that

p1q1ω(t+ a, s+ b) + p2q2ω(t+ a, s) + p3q3ω(t, s+ b)

− p4ω(t, s) + q4q(t, s)ω(t− τ, s− σ) ≤ 0 for (t, s) ∈ R+
0 × R+

0

admits an eventually positive solution. An application of Lemma 3.4 shows that
(4.5) has an eventually positive solution. The proof is complete. �

Lemma 4.6. Assume that (A1), (A4), (A6), (A7), (A10)–(A12) hold. Moreover
assume that for some fixed η, ζ ∈ [0, a)× [0, b), the partial difference inequality with
discrete variables

p1q1A(m+ 1, n+ 1) + p2q2A(m+ 1, n) + p3q3A(m,n+ 1)

− p4A(m,n) + q4rη,ζ(m,n)A(m− υ, n− ν) ≤ 0 for (m,n) ∈ Z0 × Z0,

where r is defined as in (3.8), has no eventually positive solutions. Then, (4.1) is
oscillatory.

The proof of the above lemma follows from Theorem 3.6 and Lemma 4.5.

Corollary 4.7. Assume that (A1), (A4), (A6), (A7), (A10)–(A12) hold. Moreover,
assume that there exists η, ζ ∈ [0, a)× [0, b) such that (3.10) holds if υ ≥ ν ≥ 1 or
(3.11) holds if ν ≥ υ ≥ 1. Then, (4.1) is oscillatory.
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The proof of the above corollary follows from Corollary 3.7 and Lemma 4.6.

5. Discussion and final comments

In this section, we restrict our attention to the autonomous case for emphasizing
the significance of results. In [2], authors assumed that αk > 1 for all k ∈ N0 and∑
k∈N0

(αk − 1) < ∞, which is equivalent to the condition
∏
k∈N0

αk < ∞ (see [9,
Theorem 7.4.6]). A necessary condition for this condition is limk→∞ αk = 1 (see
[9, Corollary 7.4.3]), which is strong and not required in our results.

Example 5.1. Consider the autonomous IDEWCA
p1z(t+ a, s+ b) + p2z(t+ a, s) + p3z(t, s+ b)− p4z(t, s)

+ pz(t− υa, s− νb) = 0 for (t, s) ∈
(
R+

0 \N0

)
×
(
R+

0 \N0

)
z(k+, s) = αz(k−, s) for k ∈ N0 and s ∈ R+

0

z(t, `+) = βz(t, `−) for ` ∈ N0 and t ∈ R+
0 ,

(5.1)

where p1, p2, p3, p4 > 0, p > 0, a, b > 0, υ, ν ∈ N and α, β > 0 with p2α, p3β ≥ p4.
Then Corollary 4.7 implies that every solution of (5.1) oscillates if

p >


(αβ)ν−1pν−υ2

υ
(
p1 + 2αυβνp2p3

)ν ( υp4

υ + 1

)υ+1

if υ ≥ ν

(αβ)υ−1pυ−ν3

ν
(
p1 + 2αυβνp2p3

)υ ( νp4

ν + 1

)ν+1

if ν ≥ υ.

If we let β = 1, then (5.1) reduces to a particular case of the equation studied in
[2]. But unfortunately all the results therein fail to apply to this equation because
of the condition α > 1 (see (ii) of Theorem 4.2).
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