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APPROXIMATE SOLUTIONS OF GENERAL PERTURBED
KDV-BURGERS EQUATIONS

BAOJIAN HONG, DIANCHEN LU

Abstract. In this article, we present some approximate analytical solutions

to the general perturbed KdV-Burgers equation with nonlinear terms of any

order by applying the homotopy analysis method (HAM). While compared
with the Adomain decomposition method (ADM) and the homotopy pertur-

bation method (HPM), the HAM contains the auxiliary convergence-control
parameter ~ and the control function H(x, t), which provides a useful way to

adjust and control the convergence region of solution series. The numerical

results reveal that HAM is accurate and effective when it is applied to the
perturbed PDEs.

1. Introduction

With the development of soliton theory in nonlinear science, searching for analyt-
ical solitary wave solutions or approximate solutions of nonlinear partial differential
equations (NLPDEs) plays an important and significant role in the study of dynam-
ics of those nonlinear phenomena [10]. Many authors presented various powerful
method to deal with this problem, such as inverse scattering transformation [4],
Hirota bilinear method [23], homogeneous balance method [27], Bäcklund transfor-
mation [26], Darboux transformation [19], the elliptic integral method [6], the first
integral method [7, 8] and so on. Because of the complexity of NLPDEs, It is diffi-
cult for us to find exact solutions in a straightforward way. One has to propose and
develop some approximate methods for nonlinear theory, such as the multiple-scale
method [24], the variational iteration method [9], the indirect matching method
[28], the renormalization method [20], and the homotopy perturbation method [13]
etc. The common essential point of these methods is to study nonlinear systems
by using the approximation method.

The homotopy analysis method (HAM) was introduced in 1992 [16, 17], which
yields a fast convergence for most of the selected problems. It also shows a high
accuracy and a rapid convergence to solutions of the nonlinear partial evolution
equations. After this, many types of nonlinear problems were solved with the aid
of HAM, such as the nonlinear Vakhnenko equation [29], the Glauert-jet problem
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[5], a generalized Hirota-Satsuma coupled KdV equation [2], and a smoking habit
model [11, 31] etc.

The rest of this article is organized as follows. In Section 2, we obtain some
exact solutions of the general perturbed KdV-Burgers equation by using the map-
ping deformation method. In Section 3, we apply HAM to construct approximate
solutions for the general perturbed KdV-Burgers equation. In Section 4, we discuss
the accuracy of these solutions with the small perturbation term as illustrations.
Also we present a short conclusion.

2. Exact solutions

Consider the general perturbed KdV-Burgers equation

ut + αupux + βu2pux + γuxx + δuxxx = f(u), (2.1)

where α, β, γ, δ, p are arbitrary constants, and f = f(u) is a perturbed term, which
is a sufficiently smooth function in a corresponding domain. If we let f = 0, we
can get the well-known KdV-Burgers equation with nonlinear terms of any order
[12, 6, 14, 15, 25, 30]:

ut + αupux + βu2pux + γuxx + δuxxx = 0. (2.2)

This equation with p ≥ 1 arises in modeling waves generated by a wavemaker
in a channel and waves incoming from deep water into nearshore zones and some
profound results have been described in [22]. In fact, if one takes different values
for α, β, γ, δ, p and f , equation (2.1) includes quite a few equations as particular
cases such as KdV equation, MKdV equation, CKdV equation, Burgers equation,
and KdV-Burgers equation as follows: Fitzhugh-Nagumo equation [3]:

ut − uxx = f = u(u− α)(1− u); (2.3)

Burgers-Huxley equation [21]:

ut + αuδux − λuxx = f = βu(1− uδ)(ηuδ − γ); (2.4)

Burgers-Fisher equation [21]:

ut + αuδux − uxx = f = βu(1− uδ). (2.5)

By using the general mapping deformation method [8], we know that (2.2) admits
the following solutions:

u1 = {A1(K −
√
K2 tanh[(

pγ

2K(2 + p)δ
± pα

2K2(2 + p)

√
−K2(1 + 2p)

(1 + p)βδ
)
√
K2ξ1]}1/p;

(2.6)

u2 = {−c(1 + p)
2α

− c(1 + p)
2α

tanh
cp

γ
(x+ ct+ ξ0)}1/p, β = δ = 0; (2.7)

ξ1 = x+ [
(1 + p)γ2

(2 + p)2δ
+

(1 + 2p)α2

(1 + p)(2 + p)2β
± pαγ

K(2 + p)2β

√
−K2(1 + 2p)

(1 + p)βδ
]t+ ξ0;

(2.8)

where

A1 = − (1 + 2p)α
2K(2 + p)β

± γ

2K2(2 + p)

√
−K2(1 + p)(1 + 2p)

βδ
, K, ξ0
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and c are arbitrary constants.
Note that i tanh(iξ) = − tan ξ, tanh(ξ + π

2 i) = coth(ξ), i coth(iξ) = cot ξ, i =√
−1. Also note that the solution u1,2 contains all results presented in [15].

3. Homotopy analysis method (HAM)

To describe the basic idea of the HAM, let us consider the nonlinear equation,
in a standard form,

N [u(x, t)] = 0, (3.1)

where N is a nonlinear operator, u(x, t) is an unknown function, x and t denote
the spatial and temporal independent variables, respectively.

By using the basic idea of the traditional homotopy method [16], we construct
the zero-order deformation equation

(1− q)L[φ(x, t; q)− u0(x, t)] = q~H(x, t)N [φ(x, t; q)], (3.2)

where q ∈ [0, 1] is the embedding parameter, ~ is a nonzero auxiliary parameter,
H(x, t) is an auxiliary function, L is an auxiliary linear operator, u0(x, t) is an
initial estimate of u(x, t) and φ(x, t; q) is an unknown function. It is important that
we have much freedom to choose auxiliary things in HAM. Obviously, when q = 0
and q = 1, it holds

φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t). (3.3)

Thus, as q increases from 0 to 1, the function φ(x, t; q) varies from the initial value
u0(x, t) to the exact solution u(x, t). Expanding φ(x, t; q) in the Taylor series with
respect to q, we have

φ(x, t; q) = u0 +
∞∑
m=1

umq
m; u0 = u0(x, t), um = um(x, t), (3.4)

where

um(x, t) =
1
m!

∂m

∂qm
φ(x, t; q)

∣∣
q=0

. (3.5)

If the auxiliary linear operator, the initial estimate, the auxiliary parameter and
the auxiliary function are properly chosen such that they are smooth enough, the
Taylor’s series (3.4) with respect to q converges at q = 1, and we have

u = φ(x, t; 1) =
∞∑
m=0

um. (3.6)

The above series solutions generally converge very rapidly. A classical approach of
convergence of this type of series has already presented by Abbaoui and Cherruault
[1]. Liao proved that it must be one of the exact solutions of the original nonlinear
equation [17]. As ~ = −1 and H(x, t) = 1, equation (3.2) becomes

(1− q)L[φ(x, t; q)− u0(x, t)] + qN [φ(x, t; q)] = 0, (3.7)

which is frequently used in the homotopy perturbation method (HPM). The com-
parison between HAM and HPM can be found in [18]. As H(x, t) = 1, equation
(3.2) becomes

(1− q)L[φ(x, t; q)− u0(x, t)] = q~N [φ(x, t; q)]. (3.8)
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According to definition (3.5), the governing equation can be deduced from the
zero-order deformation equation (3.2). Define the vector

~um(x, t) = {u0, u1, u2, . . . , um}. (3.9)

Differentiating equation (3.2) m times with respect to the embedding parameter
q, then setting q = 0 and dividing them by m!, we get the mth-order deformation
equation

L[um(x, t)− χmum−1(x, t)] = ~H(x, t)Rm−1(~um−1, x, t), (3.10)

where

Rm−1(~um−1, x, t) =
1

(m− 1)!
∂m−1

∂qm−1
N [φ(x, t; q)]

∣∣
q=0

, (3.11)

χm =

{
0, m ≤ 1,
1, m ≥ 2.

(3.12)

It is notable that the m-th order deformation equation (3.10) is linear, and
um(x, t) for m ≥ 1 can be easily solved by the boundary conditions and the symbolic
computation software such as Mathematica and Matlab.

To solve (2.1) by means of HAM, we choose the initial approximation

u0(x, t) = ũ0(x, t)
∣∣
t=0

= g(x), (3.13)

where ũ0(x, t) is an arbitrary exact solution of (2.2). According to (2.1), we define
the nonlinear operator

N [φ] = φt + αφpφx + βφ2pφx + γφxx + δφxxx − f(φ), φ = φ(x, t; q). (3.14)

By following the process above, it is straightforward to choose H(x, t) = 1, the base
functions gn(x)tn, n ≥ 0, and the linear operator

L[φ(x, t; q)] =
∂φ(x, t; q)

∂t
, (3.15)

with the condition
L[c(x)] = 0. (3.16)

From equations (3.10), (3.11) and (3.14), we have

Rm−1(~um−1, x, t) = um−1,t + γum−1,xx + δum−1,xxx + αDm−1(φpφx)

+ βDm−1(φ2pφx)− F (u0, u1, . . . , um−1),
(3.17)

where

Dm−1(φnφx) =
n∑

k1=0

k1∑
k2=0

k2∑
k3=0

· · ·
km−2∑
km−1=0

m−1∑
i=0

Ck1n C
k2
k1
Ck3k2 . . .

× Ckm−1
km−2

un−k10 uk1−k21 uk2−k32 . . . u
km−2−kn−1
m−2 u

km−1
m−1 uiξ,

and n ≥ k1 ≥ k2 ≥ · · · ≥ km−1 ≥ 0 ∈ N , with
∑m−1
j=1 kj + i = m− 1, i = 0, . . . ,m−

1. Furthermore, we have

F (u0, u1, . . . , um−1) =
1

(n− 1)!
∂(m−1)

∂qm−1
f(φ)

∣∣
q=0

.
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The solution of them-th order deformation equation (3.10) with the initial condition
um(x, 0) = 0 for m ≥ 1 becomes

um = χmum−1 + L−1[~Rm−1(~um−1, x, t)]. (3.18)

Thus, from equations (3.13), (3.17) and (3.18), we can successively obtain

u0 = ũ0(x, 0) = g(x), (3.19)

u1 = −~t[c̃0(x) + f(u0)], c̃0(x) =
∂

∂t
ũ0(x, t)

∣∣
t=0

, (3.20)

u2 = (1 + ~)u1 + ~t[αup0u1,x + βu2p
0 u1,x + γu1,xx + δu1,xxx − fu(u0)u1], (3.21)

. . .

um = (1 + ~)um−1 + ~t[γu1,xx + δu1,xxx + αDm−1(φpφx)

+ βDm−1(φ2pφx)− F (u0, u1, . . . , um−1)].
(3.22)

Consequently, we obtain the following m-th order approximate solution, and exact
solution of (2.1):

um,appr =
m∑
k=0

uk, uexact = φ(x, t; 1) = lim
m→∞

m∑
k=0

uk. (3.23)

4. Examples and discussion

In this section, three specific examples about equation (2.1) are presented to
illustrate the effectiveness of the HAM. We plot the ~-curves of u′′appr(0, 0) and
u′′′appr(0, 0) to discover the valid region of ~, which corresponds to the line segment
nearly parallel to the horizontal axis. A comparison among the initial exact solution
for the traditional unperturbed equation when f = 0, the exact solution for the
perturbed equation when f 6= 0 and the fourth order of approximate solution for
the perturbed equation is given through numerical simulations.

Example 4.1. Consider the CKdV equation with a small perturbed term

ut + 6uux − 6u2ux + uxxx = εu2, 0 < ε� 1, (4.1)

with the initial exact solution

ũ0(x, t) =
1
2
− 1

2
tanh[

1
2

(x− t)]. (4.2)

From the preceding section, we have

u0 =
1
2
− 1

2
tanh(

1
2
x), c̃0(x) =

1
4

sech2(
1
2
x),

u1 = −~t{1
4

sech2(
1
2
x) + ε[

1
2
− 1

2
tanh(

1
2
x)]2},
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u2 = −(1 + ~)~t{1
4

sech2(
1
2
x) + ε[

1
2
− 1

2
tanh(

1
2
x)]2}

− ~2t2
{

6[
1
2
− 1

2
tanh(

1
2
x)]{1

4
sech2(

1
2
x) + ε[

1
2
− 1

2
tanh(

1
2
x)]2}x

+ 6~2t2[
1
2
− 1

2
tanh(

1
2
x)]2{1

4
sech2(

1
2
x)

+ ε[
1
2
− 1

2
tanh(

1
2
x)]2}x − ~2t2{1

4
sech2(

1
2
x)

+ ε[
1
2
− 1

2
tanh(

1
2
x)]2}xxx

+ 2ε~2t2[
1
2
− 1

2
tanh(

1
2
x)]{1

4
sech2(

1
2
x) + ε[

1
2
− 1

2
tanh(

1
2
x)]2}

=
~t
32

[cosh(
x

2
)− sinh(

x

2
)] sech5(

x

2
){~(5t− 3− 3ε)− 3− 3ε

+ 2~tε(1 + ε) + 2 cosh(x)[2ε− 2− 2~(1 + ε) + ~t(2ε2 + 7ε− 3)]

+ [~(t− ε− 1 + 2tε2)− ε− 1] cosh(2x)− 2 sinh(
x

2
)[1− ε+ ~− ε~

+ ~t(2− 3ε+ 2ε2) + (1− ε) coshx+ ~(1− t− ε+ 2tε2) coshx)]
}
,

. . .

uappr =
1
2
− 1

2
tanh(

1
2
x)− ~

{1
4

sech2(
1
2
x) + ε[

1
2
− 1

2
tanh(

1
2
x)]2

}
t

+
~t
32

[cosh(
x

2
)− sinh(

x

2
)] sech5(

x

2
)
{

~(5t− 3− 3ε)− 3− 3ε+ 2~tε(1 + ε)

+ 2 cosh(x)[2ε− 2− 2~(1 + ε) + ~t(2ε2 + 7ε− 3)]

+ [~(t− ε− 1 + 2tε2)− ε− 1] cosh(2x)− 2 sinh(
x

2
)[1− ε+ ~− ε~

+ ~t(2− 3ε+ 2ε2) + (1− ε) coshx+ ~(1− t− ε+ 2tε2) coshx]}+ . . . .

The ~-curves of u′′appr(0, 0) and u′′′appr(0, 0) to equation (4.1) are shown in Figure
1. A comparison between the initial exact solution and the approximate solution of
the fourth order is provided in Figure 2 (a)-(b), which indicates that the solution
series (3.23) is convergent when −1.2 ≤ ~ < 0, and the approximate solution for
~ = −0.1 and ~ = −1 (HPM) is compared. We can see that the best value of ~ in
this case is not −1.

Example 4.2. Consider the KdV-Burgers equation with a small perturbed term

ut + 6uux + uxx − uxxx = ε sinu, 0 < ε� 1, (4.3)

with the initial exact solution

ũ0(x, t) =
1
50
{

1− coth[− 1
10

(x− 6
25
t)]
}2
. (4.4)

From the preceding section, we have

u0 =
1
50

[1− coth(− 1
10
x)]2, c̃0(x) =

3
3125

csch2(
1
10
x)[1 + coth(

1
10
x)],

u1 = −~ε sin{ 1
50

[1− coth(− 1
10
x)]2}t− 3

3125
~t csch2(

1
10
x)[1 + coth(

1
10
x)],

. . .
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u4 appr
'' H0, 0L

u4 appr
''' H0, 0L Ε =0.01

-1.5 -1.0 -0.5
Ñ

0.5

1.0

1.5

u4 appr

Figure 1. ~-curves of u′′appr(0, 0) and u′′′appr(0, 0) at the fourth or-
der approximation

approximate solution

initial exact solution

Ε =0.01, Ñ = -0.1, t=1

-10 -5 5 10 15
x

0.2

0.4

0.6

0.8

1.0

u

initial exact solution

approximate solution

Ε =0.01, Ñ = -1, t=1

-10 -5 5 10 15
x

0.2

0.4

0.6

0.8

1.0

u

(a) (b)

Figure 2. Comparison between the curves of initial exact solution
and the fourth order approximate solution with ~ = −0.1,−1.

uappr =
1
50

[1− coth(− 1
10
x)]2 − ~ε sin{ 1

50
[1− coth(− 1

10
x)]2}t

− 3
3125

~t csch2(
1
10
x)[1 + coth(

1
10
x)] + u2 + . . . .

The ~-curves of u′′appr(0, 0) and u′′′appr(0, 0) to equation (4.3) are shown in Figure
3(a). A comparison between the initial exact solution and the approximate solution
of the fourth order are shown in Figure 3(b).

Example 4.3. Consider the Burgers-Fisher equation

ut + u2ux − uxx = εu(1− u2), 0 < ε ≤ 1, (4.5)

with the initial exact solution and the exact solution

ũ0(x, t) =

√
1
2
− 1

2
tanh[

1
3
x− 1

9
t+ ξ0], (4.6)

uexact =

√
1
2
− 1

2
tanh[

1
3
x− 1 + 9ε

9
t+ ξ0]. (4.7)
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u4 appr
'' H10 ln2, 0L

u4 appr
''' H10 ln2, 0L

Ε = 0.02

( a )

-1.0 -0.8 -0.6 -0.4 -0.2 0.2
Ñ

0.0005

0.0010

0.0015

u4 appr
initial exact solution

approximate solution

Ε = 0.05, Ñ = 0.1, t = 1

( b )

-10 -5 5 10
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4
u

(a) (b)

Figure 3. (a) The ~-curves of u′′appr(10ln2, 0) and u′′′appr(10ln2, 0)
at the 4th order of approximation. (b) Comparison between the
curves of initial exact solution and the fourth order of approximate
solution.

Following the process above, we have

u0 =

√
1
2
− 1

2
tanh(

1
3
x), c̃0(x) = sech2(

1
3
x)/18

√
2− 2 tanh(

1
3
x),

u1 = −
~t sech2( 1

3x)

18
√

2− 2 tanh(1
3x)
− ~tε

√
1
2
− 1

2
tanh(

1
3
x)(

1
2

+
1
2

tanh(
1
3
x)),

. . .

uappr =

√
1
2
− 1

2
tanh(

1
3
x)−

~t sech2( 1
3x)

18
√

2− 2 tanh(1
3x)

− ~tε
√

1
2
− 1

2
tanh(

1
3
x)(

1
2

+
1
2

tanh(
1
3
x)) + u2 + . . .

The ~-curves of u′′appr(0, 0) and u′′′appr(0, 0) to equation (4.5) are shown in Figure
4(a). A comparison between the initial exact solution and the approximate solution
of the fourth order is shown in Figure 4(b).

Conclusion. In this work, the HAM has been applied to find the approximate
solutions of the general perturbed KdV-Burgers equation. Numerical simulations
show that, compared to HPM, this method provides us more accuracy and reduc-
tions in the size of calculations. In addition, the results of the HPM can be obtained
as a special case of the HAM when ~ = −1. The parameter ~ provides us with a
simpler way to adjust and control the convergence region of solution series for large
values of t. It was shown that the HAM is a very powerful and efficient technique
for solving various kinds of nonlinear systems in science and engineering without
any assumptions and restrictions, and the auxiliary parameter ~ plays a critical
role within the frame of the HAM which can be determined by the ~-curves.
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u4 appr
'' H0, 0L

u4 appr
''' H0, 0L Ε = 1

( a )

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.2
Ñ

-0.2

-0.1

0.1

0.2

u4 appr

exact solution
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Figure 4. (a) The ~-curves of u′′appr(0, 0) and u′′′appr(0, 0) at the
4th order of approximation. (b) Comparison between the curves
of initial exact solution, exact solution and the fourth order of
approximate solution.
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