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ENTROPY SOLUTIONS FOR NONLINEAR DEGENERATE
ELLIPTIC-PARABOLIC-HYPERBOLIC PROBLEMS

NING SU, LI ZHANG

Abstract. We consider the nonlinear degenerate elliptic-parabolic-hyperbolic

equation

∂tg(u)−∆b(u)− div Φ(u) = f(g(u)) in (0, T )× Ω,

where g and b are nondecreasing continuous functions, Φ is vectorial and con-
tinuous, and f is Lipschitz continuous. We prove the existence, comparison

and uniqueness of entropy solutions for the associated initial-boundary-value

problem where Ω is a bounded domain in RN . For the associated initial-value
problem where Ω = RN , N ≥ 3, the existence of entropy solutions is proved.

Moreover, for the case when Φ ◦ g−1 is locally Hölder continuous of order

1 − 1/N , and |b(u)| ≤ ω(|g(u)|), where ω is nondecreasing continuous with
ω(0) = 0, we can prove the L1-contraction principle, and hence the unique-

ness.

1. Introduction

Let Ω be a bounded domain in RN , and assume that Ω has a Lipschitz boundary
Γ for N ≥ 2. Consider the initial-boundary-value problem

∂tg(u)−∆b(u) + div Φ(u) = f(g(u)) in (0, T )× Ω,

g(u) = g0 on {0} × Ω,

b(u) = 0 on (0, T )× Γ,
(1.1)

and the initial-value problem

∂tg(u)−∆b(u) + div Φ(u) = f(g(u)) in (0, T )× RN ,

g(u) = g0 on {0} × RN ,
(1.2)

where g, b : R → R are nondecreasing continuous with g(0) = b(0) = 0, Φ =
(φ1, . . . , φN ) : R → RN is continuous, and f : R → R is Lipschitz continuous with
f(0) = 0.

Uniqueness is not necessarily true for weak solutions, for the problem is nonlin-
ear degenerate. To single out the correct physical solution satisfying some special
conditions, many researchers have worked on this problem from 1950s. For ex-
ample, Oleinik [13], Vol’pert and Hudjaev [15], Kruzkov([9, 10]) and Carrillo [4]
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investigated the problem and established the existence and uniqueness for a class
of generalized (entropy) solutions.

In the hyperbolic case b′ ≡ 0, people are interested in the Cauchy problem
associated with (1.1). The works began with a simple case that g = I, and f ≡ 0 or
f is independent of u. Oleinik [13] established uniqueness for generalized solutions
in the class of piecewise continuous functions satisfying condition ”E” for N = 1.
In the multi-dimensional case, Kruzkov ([9, 10]) introduced a class of generalized
(entropy) solutions, and proved existence and uniqueness. In addition, Kruzkov
and other authors ([2, 7, 8]) proved uniqueness of entropy solutions in the case that
Φ satisfies some Osgood’s type conditions or local Hölder continuity condition of
order α = 1− 1

N , and gave an counter-example in [7] to show that the local Hölder
continuity condition is sharp in a definite case. Assuming that f is continuous in
u, SU [14] studied on the problem in one-dimensional space and proved comparison
principle of entropy solutions.

In the mixed case that b′ ≥ 0 and g′ ≥ 0, entropy solution was introduced inspired
by Vol’pert and Hudjaev [15], and Kruzkov [10], which were researched individually
and published in 1969 and 1970 respectively. For the initial-boundary-value problem
(1.1) in the case that f is a function dependent only on x, a famous result was given
by Carrillo [4] in 1999, in which the author introduced the Kruzkov entropy solution,
and proved existence, comparison and hence uniqueness under the conditions that
Φ is in a class of continuous vectorial functions dependent on g and b. For the
Cauchy problem (1.2) in one-dimensional space, it was studied in many articles.
Vol’pert and Hudjaev [15] introduced a well-defined generalized solution for g = I
in 1969. For general case g 6= I, it is more difficult to solve the problem. In 2007,
Liu and Wang [11] considered the problem in the case that b ∈ C1(R) is strictly
increasing, and by using Holmgren’s approach, they established the uniqueness of
entropy solutions under some conditions on the growth of Φ. For the problem in
multi-dimensional space, many researchers investigated the problem in the case
that g = I in the past few years. Karlsen and Risebro [6] established uniqueness
under the conditions that b, φ, and f are locally Lipschitz continuous. Based on the
results of Carrillo [4], Maliki and Touré [12] proved existence of entropy solution,
and uniqueness was also established under some assumptions on the continuity of b
and Φ, which was motivated by those in [2]. Under the condition that Φ is locally
Hölder continuous of order α = 1 − 1

N , Andreianov and Maliki [1] established the
uniqueness of entropy solutions. Golovaty and Nguyen [5] worked on the problem
under the conditions that N = 1 and b = λI, where λ is a nonnegative constant, and
they obtained existence, L1-contraction principle and hence uniqueness of entropy
solutions.

This article is motivated by the results on [1, 2, 4, 12]. Applying the results
of Carrillo [4], we obtain existence of entropy solutions for (1.1) by using the con-
traction mapping principle. Then we get comparison and uniqueness by arguing
similarly in [4]. Using the results for (1.1), where Ω = Bn ⊂ RN , we prove existence
of entropy solution for (1.2) by passing the limit n → +∞. And inspired by the
work of Andreianov and Maliki [1], we establish comparison principle for the case
that Φ ◦ g−1 is locally Hölder continuous of order 1− 1/N , and |b(u)| ≤ ω(|g(u)|),
where ω is nondecreasing continuous with ω(0) = 0. And consequently, we obtain
uniqueness.
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2. Entropy solutions of the initial-boundary-value problem

In this section, let Ω be a bounded domain in RN , and assume that Ω has a
Lipschitz boundary Γ for N ≥ 2. Set T > 0 and denote Q = (0, T ) × Ω. We
consider the nonlinear degenerate problem

∂tg(u)−∆b(u) + div Φ(u) = f(g(u)) in (0, T )× Ω,

g(u) = g0 on {0} × Ω,

b(u) = 0 on (0, T )× Γ,
(2.1)

where g, b : R → R are nondecreasing continuous, Φ = (φ1, . . . , φN ) : R → RN is
continuous, f : R→ R is Lipschitz continuous, and g0(x) is given.

2.1. Preliminaries. To introduce the definition of entropy solution, we give some
notation. Let γ be a maximal monotone operator, which may be multi-valued. The
main section of γ, denoted by γ0, is defined as follows:

γ0(s) =


min{|y|; y ∈ γ(s)}, if γ(s) 6= ∅,
+∞, if [s,+∞) ∩D(γ) = ∅,
−∞, if (−∞, s] ∩D(γ) = ∅.

For any continuous and non-decreasing or non-increasing function ψ, we define

Bψ(s) =

{∫ s
0
ψ(b ◦ (g−1)0(r))dr if s ∈ (ψ ◦ b) ◦ g−1,

+∞ otherwise,

which is proper lower semi-continuous and convex, or upper semi-continuous and
concave, and we have (ψ ◦ b) ◦ g−1 ⊂ ∂Bψ.

In this paper, H is a set-valued operator:

H(s) =


1 if s > 0,
[0, 1] if s = 0,
−1 if s < 0.

The functions Hε, H0, Hmax are defined as follows:

Hε(s) = min(s+/ε, 1), H0(s) =

{
1 if s > 0,
0 if s ≤ 0,

Hmax(s) =

{
1 if s ≥ 0,
0 if s < 0.

Definition 2.1. Let g0 ∈ L1(Ω).
(1) A measurable function u is called a weak subsolution (supersolution) of (2.1),

if

g(u) ∈ L1(Q), ∂tg(u) ∈ L2(0, T ;H−1(Ω)),

b(u) ∈ L2(0, T ;H1
0 (Ω)), Φ(u) ∈ (L2(Q))N ,

∂tg(u)−∆b(u) + div(Φ(u)) ≤ ( ≥ ) f(g(u)) in D′(Q),

g(u(0, x)) ≤ ( ≥ ) g0(x) a.e. in Ω.

(2) A measurable function u is called a weak solution of (2.1) if it is both a weak
subsolution and a weak supersolution.
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Definition 2.2. Let g0 ∈ L1(Ω).
(1) A weak subsolution u is called an entropy subsolution of (2.1), if∫

Q

H0(u− s){(∇b(u)− Φ(u) + Φ(s)) · ∇ξ − (g(u)− g(s))∂tξ

− f(g(u))ξ} dx dt−
∫

Ω

(g0 − g(s))+ξ(0)dx ≤ 0

for any (s, ξ) ∈ R×(L2(0, T ;H1
0 (Ω))∩W 1,1(0, T ;L∞(Ω))) with ξ ≥ 0 and ξ(T ) = 0,

and for any (s, ξ) ∈ R × (L2(0, T ;H1(Ω)) ∩W 1,1(0, T ;L∞(Ω))) with s ≥ 0, ξ ≥ 0
and ξ(T ) = 0.

(2) A weak supersolution u is called an entropy supersolution of (2.1) if∫
Q

H0(−s− u){(∇b(u)− Φ(u) + Φ(−s)) · ∇ξ − (g(u)− g(−s))∂tξ

− f(g(u))ξ} dx dt+
∫

Ω

(g0 − g(−s))−ξ(0)dx ≥ 0

for any (s, ξ) ∈ R×(L2(0, T ;H1
0 (Ω))∩W 1,1(0, T ;L∞(Ω))) with ξ ≥ 0 and ξ(T ) = 0,

and for any (s, ξ) ∈ R × (L2(0, T ;H1(Ω)) ∩W 1,1(0, T ;L∞(Ω))) with s ≥ 0, ξ ≥ 0
and ξ(T ) = 0.

(3) u is called an entropy solution of (2.1) if it is both an entropy subsolution
and an entropy supersolution.

For proving the existence and uniqueness of entropy solutions to (2.1), we need
some of the following assumptions.

(H1) g, b : R→ R are continuous and nondecreasing with g(0) = b(0) = 0;
(H2) Φ = (φ1, . . . , φN ) ∈ C(R; RN ), φj(0) = 0, ∀ 1 ≤ j ≤ N ;
(H3) D((g + b)−1) = R;
(H4) there exist Φ(1),Φ(2) ∈ C(R; RN ) with φ

(1)
j (0) = 0, 1 ≤ j ≤ N , such that

Φ(s) = Φ(1)(g(s)) + Φ(2)(g(s))b(s), ∀s ∈ R;

(H5) f : R→ R is Lipschitz continuous with Lipschitz constant L, and f(0) = 0.
(H6) Assume that there is an integer i0 with 1 ≤ i0 ≤ N , for which at least one

of the following holds:
(1) g(s) = g(r) implies φi0(s) = φi0(r) for all s, r ∈ R;
(2) φi0 is monotone, that is, nondecreasing or nonincreasing;
(3) There exists a constant C > 0 such that

|φi0(s)− φi0(r)| ≤ C|g(s) + b(s)− g(r)− b(r)| ∀s, r ∈ R.

Assumption (H4) was introduced by Carrillo [4], who considered the nonlinear
degenerate problem

∂tg(u)−∆b(u) + div Φ(u) = f(x) in (0, T )× Ω,

g(u) = g0 on {0} × Ω,

b(u) = 0 on (0, T )× Γ,
(2.2)

and gave existence, comparison and uniqueness of entropy solutions as follows.

Lemma 2.3. Let (H1), (H3) and (H4) hold. Let g0 ∈ L∞(Ω) and g0 ∈ R(g),
f ∈ L∞(Q). Then there exists an entropy solution u of problem (2.2) such that



EJDE-2014/198 ENTROPY SOLUTIONS 5

v = g(u) ∈ C([0, T ];L1(Ω)) and

‖g(u)‖L∞(Q) ≤ ‖g0‖L∞(Ω) + T‖f‖L∞(Q).

Lemma 2.4. Let (H1) and (H2) hold. Let gi0 ∈ L1(Ω), gi0 ∈ R(g), and fi ∈
L2((0, T );H−1(Ω) ∩ L1(Ω)). Let ui be an entropy solution of (2.2) for i = 1, 2.
Then there exists some κ ∈ H(u1 − u2) such that∫

Q

{∇(b(u1)− b(u2))+ · ∇ξ +H0(u1 − u2)(Φ(u2)− Φ(u1)) · ∇ξ

− (g(u1)− g(u2))+∂tξ} dx dt−
∫

Ω

(g10 − g20)+ξ(0)dx

≤
∫
Q

(f1 − f2)κξ dx dt

for any nonnegative ξ ∈ D([0, T )× Ω).

Lemma 2.5. Let (H1) and (H2) hold. Let gi0 ∈ L1(Ω), gi0 ∈ R(g)(gi0 = g(ui0)),
let fi ∈ L2((0, T );H−1(Ω) ∩ L1(Ω)), and let ui be an entropy solution of (2.2) for
i = 1, 2. Then there exists some κ ∈ H(u1 − u2) such that∫

Ω

(g(u1(t))− g(u2(t)))+dx ≤
∫

Ω

(g10 − g20)+dx+
∫ t

0

(f1 − f2)κ dx dt

for each t ∈ [0, T ]. Therefore,

‖g(u1(t))− g(u2(t))‖L1(Ω) ≤ ‖g10 − g20‖L1(Ω) +
∫ t

0

‖f1 − f2‖L1(Ω)dt.

In particular, if g10 ≤ g20 almost everywhere in Ω, and f1 ≤ f2 in Q, then

g(u1) ≤ g(u2) a.e. in Q.

Moreover, if f1 = f2 and g10 = g20, then g(u1) = g(u2).

2.2. Existence of entropy solutions.

Theorem 2.6. Let (H1), (H3), (H4) and (H5) hold. Let g0 ∈ L∞(Ω) and g0 ∈
R(g). Then there exists an entropy solution u of problem (2.1).

Proof. Fix h > 0, which will be determined latter. Define an operator

T : C([0, h];L1(Ω))→ C([0, h];L1(Ω))

as follows: w ∈ T (v) if and only if there exits u ∈ L∞((0, h)×Ω) such that w = g(u)
and u is an entropy solution of

∂g(u)
∂t

−∆b(u) + div Φ(u) = f(v) in (0, h)× Ω,

g(u) = g0 on {0} × Ω,

b(u) = 0 on (0, h)× Γ.

(2.3)

According to Carrillo [4], for any g0 ∈ L∞(Ω) and v ∈ L∞((0, h)×Ω), there exists
an entropy solution of (2.3). Moreover,

‖w‖L∞((0,h)×Ω) ≤ ‖g0‖L∞(Ω) + Lh‖v‖L∞((0,h)×Ω),

‖w‖C([0,h];L1(Ω)) ≤ ‖g0‖L1(Ω) + L‖v‖C([0,h];L1(Ω)).
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If T is contractive, it has a unique fixed point w ∈ C([0, h];L1(Ω)), that is, there
exists a measurable function u such that w = g(u), and u is an entropy solution of
(2.1) on [0, h]. In fact, we can prove that T is a contraction if we choose h small
enough. For any vi ∈ C([0, h];L1(Ω)), wi = g(ui) ∈ T (vi), i = 1, 2, applying the
comparison for the solutions of (2.3), we have

‖w1(t)− w2(t)‖L1(Ω) ≤
∫ h

0

‖f(v1(t))− f(v2(t))‖L1(Ω)dt

≤ Lh‖v1(t)− v2(t)‖C([0,h];L1(Ω)).

Therefore, for any 0 < α < 1, we have

‖w1(t)− w2(t)‖C([0,h];L1(Ω)) ≤ α‖v1(t)− v2(t)‖C([0,h];L1(Ω)),

only if we choose 0 < h < α/L.
Take α = 1/2, and choose an integer M large enough such that h = T/M < α/L.

Divide the interval [0, T ] into [0, h], [h, 2h], . . . , [(M − 1)h,Mh], and repeat the
procedure above, we eventually get an entropy solution on [0, T ]. �

2.3. Comparison and uniqueness of entropy solutions. We prove some prop-
erties and refer the reader to [4] for related results.

Theorem 2.7. Let (H1), (H2) and (H5) hold. Let gi0 ∈ L1(Ω), gi0 ∈ R(g), and
ui be an entropy solution of (2.1), i = 1, 2.

(1) There exists some κ ∈ H(u1 − u2), such that∫
Q

{∇(b(u1)− b(u2))+ · ∇ξ +H0(u1 − u2)(Φ(u2)− Φ(u1)) · ∇ξ

− (g(u1)− g(u2))+∂tξ} dx dt−
∫

Ω

(g10 − g20)+ξ(0)dx

≤
∫
Q

(f(g(u1))− f(g(u2)))κξ dx dt

(2.4)

for any nonnegative ξ ∈ D([0, T )× Ω). Therefore,∫
Ω

(g(u1(t))− g(u2(t)))+dx

≤
∫

Ω

(g10 − g20)+dx+
∫ t

0

∫
Ω

(f(g(u1))− f(g(u2)))κ dx dt;
(2.5)

that is,

‖(g(u1(t))− g(u2(t)))+‖L1(Ω)

≤ ‖(g10 − g20)+‖L1(Ω) +
∫ t

0

(f(g(u1))− f(g(u2)))κ dx dt.

In particular, if g10 ≤ g20 a.e. in Ω and f1 ≤ f2, then

g(u1) ≤ g(u2) a.e. in Q.

(2) If g10 = g20 a.e. in Ω, and (H4) holds, then b(u1) = b(u2) a.e. in Q. Thus,
there exists a unique pair (g(u), b(u)) such that u is an entropy solution of (2.1).
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Proof. (1) The proof of (2.4) and (2.5) can be found in [4]. If g10 ≤ g20, applying
(2.5), we have

‖(g(u1(t))− g(u2(t)))+‖L1(Ω)

≤ ‖(g10 − g20)+‖L1(Ω) +
∫ t

0

∫
Ω

(f(g(u1))− f(g(u2)))κ dx dt

≤ L
∫ t

0

‖(g(u1(τ))− g(u2(τ)))+‖L1(Ω)dτ.

Consequently, we deduce that

sup
0≤t≤h

‖(g(u1(t))− g(u2(t)))+‖L1(Ω) ≤ 0,

which implies g(u1) ≤ g(u2) a.e. in Q.
(2) If g10 = g20, then g(u1) = g(u2). From (2.4) and (H4), we have∫

Q

{∇(b(u1)− b(u2))+ · ∇ξ +H0(u1 − u2)(Φ(u2)− Φ(u1)) · ∇ξ

≤
∫
Q

(f(g(u1))− f(g(u2)))κξ dx dt ≤ L
∫
Q

|g(u1)− g(u2)|κξ dx dt

= L

∫
Q

(g(u1)− g(u2))+ξ dx dt = 0

(2.6)

for any nonnegative ξ ∈ D([0, T )×Ω). Applying (2.6), we can deduce that (see [4,
Corollary 14])∫

Q

(b(u1)− b(u2))+{−∆ξ − Φ(2)(g(u1)) · ∇ξ} dx dt = 0.

Then by choosing ξ = eλxi for some i with 1 ≤ i ≤ N , and some

λ > ‖Φ(2)(g(u1))‖L∞(Q),

we deduce that (b(u1)− b(u2))+ = 0. �

Applying the results in [4], we can also deduce the comparison of b(u).

Lemma 2.8. Let (H1), (H2),(H5) and (H6) hold. Let gi0 ∈ L1(Ω), gi0 ∈ R(g)
such that g10 ≤ g20 a. e. in Ω. Let ui be an entropy solution of (2.1) for i = 1, 2.
Then

b(u1) ≤ b(u2) a. e. in Q.

Moreover, if g10 = g20, then b(u1) = b(u2).

Arguing as Carrillo [4], we can get a generalized comparison theorem, which will
be used in section 3.

Lemma 2.9. Let (H1), (H2) and (H5) hold. Let gi0 ∈ L1(Ω) with gi0 ∈ R(g). Let
u1 be an entropy subsolution of (2.1) for g10, and u2 be an entropy supersolution
of (2.1) for g20. Then

(1) There exists some κ ∈ H(u1 − u2), such that∫
Q

{∇(b(u1)− b(u2))+ · ∇ξ +H0(u1 − u2)(Φ(u2)− Φ(u1)) · ∇ξ

− (g(u1)− g(u2))+∂tξ} dx dt−
∫

Ω

(g10 − g20)+ξ(0)dx
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≤
∫
Q

(f(g(u1))− f(g(u2)))κξ dx dt

for any nonnegative ξ ∈ D([0, T )× Ω).
(2) Moreover, if g10 ≤ g20 a. e. in Ω, then

g(u1) ≤ g(u2), a.e. in Q. (2.7)

(3) In addition, let (H6) hold. If g10 ≤ g20 a. e. in Ω, then

b(u1) ≤ b(u2), a.e. in Q. (2.8)

3. Entropy solution of the initial-value problem

Let N ≥ 3, and Q = (0, T ) × RN with T > 0. In this section, we consider the
initial-value problem

∂tg(u)−∆b(u) + div Φ(u) = f(g(u)) in (0, T )× RN ,

g(u) = g0 on {0} × RN ,
(3.1)

where N ≥ 3, g, b are nondecreasing continuous, Φ = (φ1, . . . , φN ) is continuous,
and f : R→ R is Lipschitz continuous.

3.1. Existence of entropy solutions.

Definition 3.1. Let g0 ∈ L∞(RN ).
(1) A measurable function u is called a weak subsolution (supersolution) of (3.1),

if

g(u) ∈ L∞(Q), ∂tg(u) ∈ L2(0, T ;H−1
loc (RN )),

b(u) ∈ L2(0, T ;L2
loc(RN )) ∩ L∞(Q), ∇b(u) ∈ (L2

loc(Q))N ,

Φ(u) ∈ (L2
loc(RN ))N ∩ (L∞(Q))N ,

∂tg(u)−∆b(u) + div(Φ(u)) ≤ ( ≥ ) f(g(u)) in D′(Q),

g(u(0, x)) ≤ ( ≥ ) g0(x) a.e. in RN .

(2) A measurable function u is called a weak solution of (3.1) if it is both a weak
subsolution and a weak supersolution.

Definition 3.2. Let g0 ∈ L∞(RN ).
(1) A weak subsolution u is called an entropy subsolution of (3.1), if∫

Q

H0(u− s){(∇b(u)− Φ(u) + Φ(s)) · ∇ξ − (g(u)− g(s))∂tξ

− f(g(u))ξ} dx dt−
∫

RN

(g0 − g(s))+ξ(0)dx ≤ 0

for any (s, ξ) ∈ R×D([0, T )× RN ), with ξ ≥ 0.
(2) A weak supersolution u is called an entropy supersolution of (3.1), if∫

Q

H0(−s− u){(∇b(u)− Φ(u) + Φ(−s)) · ∇ξ − (g(u)− g(−s))∂tξ

− f(g(u))ξ} dx dt+
∫

RN

(g0 − g(−s))−ξ(0)dx ≥ 0

for any (s, ξ) ∈ R×D([0, T )× RN ), with ξ ≥ 0.
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(3) u is called an entropy solution of (3.1) if it is both an entropy subsolution
and an entropy supersolution.

For any R > 0, let BR = {x ∈ RN ; |x| < R}, ΓR = ∂BR = {x ∈ RN ; |x| = R},
QR = (0, T )×BR. For any positive integer n, let g0n be a truncation of g0 on Bn,
that is, g0n(x) = g0(x) for any x ∈ Bn, and extended to R by zero. We consider
the approximate problem for (3.1):

∂tg(u)−∆b(u) + div Φ(u) = f(g(u)) in (0, T )×Bn,
g(u) = g0n on {0} ×Bn,
b(u) = 0 on (0, T )× Γn.

(3.2)

Let (H1), (H3), (H4) and (H5) hold, then there exists a pair (g(un), b(un)) such
that un is an entropy solution of (3.2). We extend un to RN by zero, and still
denote it by un.

Lemma 3.3. Let (H1), (H2), (H5), (H6) hold. Assume that
(H7) There exists a nondecreasing function l : R+ → R+ such that

|b(r)| ≤ l(|g(r)|), ∀r ∈ R.

Assume g0 ≥ 0 and g0 ∈ L1(RN )
⋂
L∞(RN ). Then, we have:

(1) g(un) ≥ 0 and b(un) ≥ 0 a.e. in RN ;
(2) g(un(t)) and b(un(t)) are nondecreasing in n, that is, for any n < m,

g(un(t)) ≤ g(um(t)), b(un(t)) ≤ b(um(t)) a.e. in RN ;

(3) There exists a constant C such that

‖g(un)‖L∞(Q) ≤ C, (3.3)

‖g(un)‖L∞(0,T ;L1(RN )) ≤ C, (3.4)

‖∇b(un)‖L2(RN ) ≤ C, (3.5)

‖b(un)‖L∞(Q) ≤ C . (3.6)

Proof. (1) If g0 ≡ 0, then u ≡ 0 is an entropy solution of (3.2). From Lemma 2.9,
we have g(un(t)) ≥ 0, b(un) ≥ 0 a.e. in Qn, and so is in RN .

(2) For any n < m, it is clear that un is an entropy subsolution of (3.2). From
(2.7) and (2.8), we have

g(un(t)) ≤ g(um(t)), b(un(t)) ≤ b(um(t)) a.e. in RN .

(3) Since g0 ∈ L1(RN ) ∩ L∞(RN ), for any 0 < h < 1/(2L),

‖g(un)‖L∞((0,h)×BR) ≤ ‖g0n‖L∞(BR) + Lh‖g(un)‖L∞((0,h)×BR),

‖g(un)‖L∞(0,h;L1(BR)) ≤ ‖g0n‖L1(BR) + L

∫ h

0

‖g(un(τ))‖L1(BR)dτ,

and hence, we have

‖g(un)‖L∞((0,h)×BR) ≤ C‖g0n‖L∞(BR) ≤ C‖g0‖L∞(RN ),

‖g(un)‖L∞(0,h;L1(BR)) ≤ C‖g0n‖L1(BR) ≤ C‖g0‖L1(RN ).

Then we obtain (3.3) and (3.4) by arguing inductively and letting R → ∞. In
virtue of (H7), (3.3) implies (3.6).
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Viewing that un is an entropy solution (and hence a weak solution) of (3.2), we
have ∫ t

0

∫
Bn

∂t(g(un))b(un)dxdτ +
∫ t

0

∫
Bn

|∇b(un)|2dxdτ

+
∫ t

0

∫
Bn

Φ(un) · ∇b(un)dxdτ

=
∫ t

0

∫
Bn

f(g(un))b(un)dxdτ

≤ L
∫ t

0

‖g(un)‖Lq(Bn)‖b(un)‖L2∗ (Bn)dτ,

where q = 2n/(n+ 2).
Applying [4, Lemma 4],∫ t

0

∫
Bn

∂t(g(un))b(un)dxdτ =
∫
Bn

BI(g(un(t)))dx−
∫
Bn

BI(g0n)dx,

where BI(g(un)) ∈ L∞(0, T ;L1(Bn)), since g(un) is uniformly bounded in the
spaces L∞(0, T ;L1(Bn)) and L∞((0, T )×Bn). For the third term, from [3],∫ t

0

∫
Bn

Φ(un) · ∇b(un) dx dt = 0.

Considering that

sup
0≤t≤T

‖g(un(t))‖Lq(Bn) ≤ C sup
0≤t≤T

‖g(un(t))‖L1(Bn) ≤ C‖g0‖L1(RN ),

we have ∫ T

0

∫
Bn

|∇b(un)|2 dx dt ≤ C1 + C2

(∫ T

0

∫
Bn

|∇b(un)|2 dx dt
)1/2

;

that is, ∫ T

0

∫
RN

|∇b(un)|2 dx dt ≤ C1 + C2

(∫ T

0

∫
RN

|∇b(un)|2 dx dt
)1/2

;

then we obtain (3.5). �

Theorem 3.4. Let (H1)-(H7) hold. Let g0 ∈ L1(RN ) ∩ L∞(RN ), 0 ≤ g0 ∈ R(g).
Then there exists an entropy solution of (3.1).

Proof. Let un be an entropy solution of (3.2). From Lemma 3.3, it follows that
g(un) and b(un) are nonnegative, nondecreasing and uniformly bounded in L∞(Q).
Hence, there exist v ∈ L∞(Q) and w ∈ L2(0, T ;H1

loc(RN )), such that

g(un)→ v, in Lploc(Q),

b(un)→ w, in L2(0, T ;L2
loc(RN )),

∇b(un)→ ∇w, weakly in (L2(Q))N ,

where 1 ≤ p < +∞. Since b ◦ g−1 is maximal monotone, w ∈ b ◦ g−1(v), that is,
there exists ũ ∈ g−1(v) such that w = b(ũ). Set

u = ((b+ g)−1)0(v + w),
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which is measurable, and such that v = g(u), w = b(u). Since Φ(u) = Φ(1)(g(u)) +
Φ(2)(g(u))b(u), we deduce that

Φ(un)→ Φ(u) in (L2(0, T ;L2
loc(RN )))N .

For any ξ ∈ D([0, T ) × RN ), choose R large enough such that supp ξ(t) ⊂ BR,
then it follows that∫

QR

{−g(un)∂tξ + (∇b(un)− Φ(un)) · ∇ξ} dx dt

=
∫
QR

f(g(un))ξ dx dt+
∫
BR

g0nξ(0)dx,

for any integer n > R. By letting n→ +∞, we have∫
QR

{−g(u)∂tξ + (∇b(u)− Φ(u)) · ∇ξ} dx dt

=
∫
QR

f(g(u))ξ dx dt+
∫
BR

g0ξ(0)dx.

From the choice of R, it holds that∫
Q

{−g(u)∂tξ + (∇b(u)− Φ(u)) · ∇ξ} dx dt

=
∫
Q

f(g(u))ξ dx dt+
∫

RN

g0ξ(0)dx,

and hence we deduce that

∂t(g(un))→ g(u)t weakly in L2(0, T ;H−1
loc (RN )).

Therefore, u is a weak solution of (3.1).
For any nonnegative ξ ∈ D([0, T ) × RN ) and s ∈ R, take R so large that

supp ξ(t) ⊂ BR. Since un is an entropy subsolution of (3.2), we have∫
QR

H0(un − s){−(g(un)− g(s))∂tξ + (∇b(un)− Φ(un) + Φ(s)) · ∇ξ

− f(g(un))ξ} dx dt−
∫
BR

(g0n − g(s))+ξ(0)dx ≤ 0

for any integer n > R.
Since g(un) + b(un)→ g(u) + b(u) in L2

loc(Q), and

H0(un − s) ∈ H(g(u) + b(u)− g(s)− b(s)),
we have

H0(un − s)→ χu,s weak * in L∞(Q),
and χu,s ∈ H(g(u) + b(u)− g(s)− b(s)).

Because ∇b(un)→ ∇b(u) weakly in L2(Q)N , it follows that∫
QR

H0(un − s)∇b(un) · ∇ξ dx dt =
∫
QR

∇(b(un)− b(s))+ · ∇ξ dx dt

→
∫
QR

∇(b(u)− b(s))+ · ∇ξ dx dt

=
∫
QR

H0(u− s)∇b(u) · ∇ξ dx dt.
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By letting n→ +∞, we have∫
QR

{−χu,sf(g(u))ξ +H0(u− s)(−(g(u)− g(s))∂tξ

+ (∇b(u)− φ(u) + φ(s)) · ∇ξ)} dx dt−
∫
BR

(g0 − g(s))+ξ(0)dx ≤ 0.
(3.7)

Similarly to the proof of [4, Theorem 12], applying (3.7), we can deduce that∫
Q

H0(u− s){(∇b(u)− Φ(u) + Φ(s)) · ∇ξ − (g(u)− g(s))∂tξ

− f(g(u))ξ} dx dt−
∫

RN

(g0 − g(s))+ξ(0)dx ≤ 0

for any nonnegative ξ ∈ D([0, T )× RN ) and any s ∈ R.
Since un is also an entropy supersolution of (3.2), arguing as above, we have∫

Q

H0(−s− u){(∇b(u)− Φ(u) + Φ(−s)) · ∇ξ − (g(u)− g(−s))∂tξ

− f(g(u))ξ} dx dt+
∫

RN

(g0 − g(−s))−ξ(0)dx ≥ 0

for any nonnegative ξ ∈ D([0, T )× RN ) and any s ∈ R. �

3.2. Comparison and uniqueness of entropy solutions. We will give the com-
parison and uniqueness of entropy solutions of (3.1) based on the works in [1].

To prove the comparison, instead of (H7), we assume that
(H7’) For M > 0, there exists a nondecreasing continuous function ω : R+ → R+

with ω(0) = 0, such that

|b(x)| ≤ ω(|g(x)|), ∀x ∈ [−M,M ].

Remark 3.5. (1) From (H7’), g(x) = 0 implies b(x) = 0 for any x ∈ R.
(2) Since the entropy solution u of (3.1) satisfies g(u) ∈ L∞(Q), we can assume

that M is fixed, ω is strictly concave, continuous, and extended to R+. Moreover,
for any x ∈ R such that b(x) ≥ 0, and any r ∈ R+, we have

b(x)r ≤ g(x) + Ω∗(r),

where Ω∗ is strictly increasing and convex (see [1]). From the convexity of Ω∗, for
any R > 0, we have

Ω∗(r) ≤ (Ω∗)′(R)r, ∀r ∈ [0, R]
where (Ω∗)′ is increasing and (Ω∗)′(r)→ 0 as t ↓ 0.

Theorem 3.6. Assume (H1), (H5), (H7’). Assume that Φ(u) = Ψ(g(u)), where
Ψ : R→ RN is locally Hölder continuous of order 1− 1

N , and Ψ(0) = 0. Let N ≥ 3.
Let gi0 ∈ L1(RN ) ∩ L∞(RN ), and u1 be an entropy subsolution of (3.1) for g10,
and u2 be an entropy supersolution of (3.1) for g20. Then for a.e. t ∈ (0, T ), there
exists some κ ∈ H(u1 − u2) such that

‖(g(u1(t))− g(u2(t)))+‖L1(RN )

≤ ‖(g10 − g20)+‖L1(RN ) +
∫ t

0

(f(g(u1))− f(g(u2)))κ dx dt.
(3.8)

In particular, if g10 ≤ g20, then g(u1) ≤ g(u2).



EJDE-2014/198 ENTROPY SOLUTIONS 13

The comparison principle implies the following uniqueness of entropy solutions.

Corollary 3.7. Assume b, g, Φ, f and gi0 as above, and let ui be an entropy
solution of (3.1) for i = 1, 2. If g10 = g20, then g(u1) = g(u2).

Remark 3.8. Our result is different from [1]. In fact, our problem can be rewritten
of the form in [1] with the replacement of f(x, t) with f(u), if g(x) = g(y) implies
b(x) = b(y) for any x, y ∈ R, which maybe is invalid, unfortunately, although g and
b satisfy (H7’).

-

6
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Figure 1.

For example, assume that both g and b are odd functions, and for any x ≥ 0,

g(x) =


0, 0 ≤ x ≤ 1,
2x− 2, 1 < x < 2,
2, 2 ≤ x ≤ 3,
x− 1, x > 3.

b(x) =


0, 0 ≤ x ≤ 2,
x− 2, 2 < x < 3,
1, 3 ≤ x ≤ 4,
x− 3, x > 4.

Then (H7’) is satisfied since |b(x)| ≤ |g(x)|. However, b(x) is strictly increasing on
[2, 3] where g = 2 is constant. (see Figure 1)

Proof of Theorem 3.6. We need to prove only (3.8). We begin our proof by applying
the Kato’s Inequality; that is, there exists some κ ∈ H(u1 − u2) such that∫

Q

{∇(b(u1)− b(u2))+ · ∇ξ +H0(u1 − u2)(Φ(u2)− Φ(u1)) · ∇ξ

− (g(u1)− g(u2))+∂tξ} dx dt−
∫

RN

(g10 − g20)+ξ(0)dx

≤
∫
Q

(f(g(u1))− f(g(u2)))κξ dx dt

for any nonnegative ξ ∈ D([0, T )× RN ).
Let L > R > 0 and ε ∈ (0, 1). We take ξ(t, x) = µ(t)ρε,L(x), where µ ∈

D([0, T ))+, and

ρε,L(x) = RN−2+ε((max |x|, R)2−N−ε − L2−N−ε)+.

Then we can deduce that∫ T

0

∫
RN

(g(u1)− g(u2))+ρε,L(−∂tµ) dx dt
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≤
∫ T

0

∫
RN

H0(u1 − u2)|Φ(u2)− Φ(u1)||∇ρε,L|µdx dt

+
∫ T

0

∫
RN

(b(u1)− b(u2))+∆acρε,Lµdx dt

+
∫
|x|=L

(b(u1)− b(u2))+(N − 2 + ε)L1−N−εµdx

+
∫ T

0

∫
RN

(f(g(u1))− f(g(u2)))κρε,Lµdx dt

+
∫

RN

(g10 − g20)+ρε,Lµ(0)dx,

where ∆acρε,L is the absolutely continuous part of the measure ∆ρε,L. By letting
L→∞, we have∫ T

0

∫
RN

(g(u1)− g(u2))+ρε(−∂tµ) dx dt

≤ C
∫ T

0

∫
|x|>R

H0(u1 − u2)|Φ(u2)− Φ(u1)||x|−1ρε dx dt

+ Cε

∫ T

0

∫
|x|>R

(b(u1)− b(u2))+|x|−2ρε dx dt

+
∫ T

0

∫
RN

(f(g(u1))− f(g(u2)))κµ dx dt+
∫

RN

(g10 − g20)+µ(0)dx,

(3.9)

where ρε(x) = (max |x|R , 1)2−N−ε.
In particular, by taking g20 = u2 = 0, we have∫ T

0

∫
RN

(g(u1))+ρε(−∂tµ) dx dt

≤ C
∫ T

0

∫
|x|>R

H0(u1)|Ψ(g(u1))||x|−1ρε dx dt

+ Cε

∫ T

0

∫
|x|>R

(b(u1))+|x|−2ρε dx dt

+ L

∫ T

0

∫
RN

(g(u1))+µdx dt+
∫

RN

g+
10µ(0)dx.

(3.10)

Since Ψ : R → RN is locally Hölder continuous of order (1 − 1
N ) with Ψ(0) = 0,

applying Young’s inequality, we have

CH0(u1)|Ψ(g(u1))||x|−1 ≤ 1
2
H0(u1)|Ψ(g(u1))|

N
N−1 + CN (C|x|−1)N

≤ 1
2

(g(u1))+ + (2C|x|−1)N ,
(3.11)

where

CN =
1
N

( N

2(N − 1)
big)−(N−1) ≤ 2N .
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Considering (H7’) and Remark 3.5 , we have

Cε(b(u1))+|x|−2 = CεH0(b(u1))b(u1)|x|−2

≤ H0(u1)(δg(u1) + δΩ∗(
Cε

δ
|x|−2))

≤ δ(g(u1))+ + Cε(Ω∗)′(
Cε

δ
R−2)|x|−2,

(3.12)

where (Ω∗)′(Cεδ R
−2) → 0 as ε → 0, for any R > 1 and given δ. Combining

(3.10),(3.11) and (3.12), we have∫ T

0

∫
RN

(g(u1))+ρε(−∂tµ) dx dt

≤ (δ +
1
2

)
∫ T

0

∫
|x|>R

(g(u1))+µdx dt+
∫ T

0

∫
|x|>R

(2C|x|−1)Nρεµdx dt

+ Cε(Ω∗)′(
Cε

δ
R−2)

∫ T

0

∫
|x|>R

|x|−2ρεµdx dt+ L

∫ T

0

∫
RN

(g(u1))+µdx dt

+
∫

RN

g+
10µ(0)dx.

For any R > 1, it holds that∫ T

0

∫
|x|>R

(2C|x|−1)Nρεµdx dt ≤ C,

Cε(Ω∗)′(
Cε

δ
R−2)

∫ T

0

∫
|x|>R

|x|−2ρεµdx dt ≤ C(Ω∗)′(
Cε

δ
R−2)RN−2 → 0,

as ε→ 0. We now choose an integer M large enough such that h = T/M < 1/(2L),
and take δ ≤ 1

2 , µ(t) = (h− t)+, then by letting ε→ 0, we deduce that∫ h

0

∫
|x|<R

g(u1(t))+dt ≤ 2h‖g+
10‖L1(RN ) + C.

Letting R→ +∞, we have (g(u1))+ ∈ L1((0, h)× RN ).
Let hj(t) be such that hj(t) = h for t ∈ [0, (j − 1)h], and hj(t) = (jh − t)+ for

t ∈ [(j − 1)h, T ], 1 ≤ j ≤ M . By arguing similarly and inductively, we conclude
that

g(u1), g(u2) ∈ L1((0, T )× RN ). (3.13)

We now claim that g(u1) ≤ g(u2) in virtue of (3.9) and (3.13). In fact, applying
(3.9), we have∫ T

0

∫
RN

(g(u1)− g(u2))+ρε(−∂tµ) dx dt

≤
∫ T

0

∫
RN

(f(g(u1)))− f(g(u2)))κµ dx dt+
∫

RN

(g10 − g20)+µ(0)dx

+ Cε(Ω∗)′(
Cε

δ
R−2)

∫ T

0

∫
|x|>R

|x|−2ρεµdx dt+ Cδ

∫ T

0

∫
|x|>R

|x|−Nρεµdx dt

+ C(δ)
∫ T

0

∫
|x|>R

(|g(u1)|+ |g(u2)|)µdx dt.
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Since g(u1), g(u2) ∈ L1((0, T )× RN ), for any δ > 0, we have

C(δ)
∫ h

0

∫
|x|>R

(|g(u1)|+ |g(u2)|) dx dt→ 0,

as R→∞. Then by the facts that∫ T

0

∫
|x|>R

|x|−Nρεµdx ≤ C,

Cε(Ω∗)′(
Cε

δ
R−2)

∫ T

0

∫
|x|>R

|x|−2ρεµdx dt→ 0 as ε→ 0,

we have∫ T

0

∫
RN

(g(u1)− g(u2))+(−∂tµ) dx dt

≤
∫

RN

(g10 − g20)+µ(0)dx+
∫ T

0

∫
RN

(f(g(u1))− f(g(u2)))κµ dx dt,

by taking δ small, ε small, and R large. In the end, applying Gronwall’s inequality,
we can deduce (3.8). �
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