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ENTROPY SOLUTIONS FOR NONLINEAR DEGENERATE
ELLIPTIC-PARABOLIC-HYPERBOLIC PROBLEMS

NING SU, LI ZHANG

ABSTRACT. We consider the nonlinear degenerate elliptic-parabolic-hyperbolic
equation
Org(u) — Ab(u) — div ®(u) = f(g(w)) in (0,T) x Q,

where g and b are nondecreasing continuous functions, ® is vectorial and con-
tinuous, and f is Lipschitz continuous. We prove the existence, comparison
and uniqueness of entropy solutions for the associated initial-boundary-value
problem where Q is a bounded domain in RY. For the associated initial-value
problem where Q = RV, N > 3, the existence of entropy solutions is proved.
Moreover, for the case when ® o g—! is locally Hélder continuous of order
1 —1/N, and |b(u)| < w(|g(u)|), where w is nondecreasing continuous with
w(0) = 0, we can prove the L!-contraction principle, and hence the unique-
ness.

1. INTRODUCTION
Let © be a bounded domain in RV, and assume that 2 has a Lipschitz boundary
I' for N > 2. Consider the initial-boundary-value problem
drg(u) — Ab(u) + div ®(u) = f(g(u)) in (0,T) x Q,
g(u) =go on {0} x €, (1.1)
b(u)=0 on (0,7) x T,
and the initial-value problem
ig(u) — Ab(u) + div @(u) = f(g(u)) in (0,T) x RY,
g(u) =go on {0} x RY,
where ¢g,b : R — R are nondecreasing continuous with ¢g(0) = b(0) = 0, & =
(¢1,...,6n) : R — RY is continuous, and f : R — R is Lipschitz continuous with
f(0)=o0.
Uniqueness is not necessarily true for weak solutions, for the problem is nonlin-
ear degenerate. To single out the correct physical solution satisfying some special

conditions, many researchers have worked on this problem from 1950s. For ex-
ample, Oleinik [I3], Vol'pert and Hudjaev [15], Kruzkov([9, [I0]) and Carrillo [4]

(1.2)
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investigated the problem and established the existence and uniqueness for a class
of generalized (entropy) solutions.

In the hyperbolic case b’ = 0, people are interested in the Cauchy problem
associated with . The works began with a simple case that g = I, and f =0 or
f is independent of u. Oleinik [I3] established uniqueness for generalized solutions
in the class of piecewise continuous functions satisfying condition ”"E” for N = 1.
In the multi-dimensional case, Kruzkov ([9} [I0]) introduced a class of generalized
(entropy) solutions, and proved existence and uniqueness. In addition, Kruzkov
and other authors ([2} [7, 8]) proved uniqueness of entropy solutions in the case that
d satisfies some Osgood’s type conditions or local Holder continuity condition of
order @ =1 — 3, and gave an counter-example in [7] to show that the local Hélder
continuity condition is sharp in a definite case. Assuming that f is continuous in
u, SU [14] studied on the problem in one-dimensional space and proved comparison
principle of entropy solutions.

In the mixed case that &’ > 0 and g’ > 0, entropy solution was introduced inspired
by Vol'pert and Hudjaev [15], and Kruzkov [10], which were researched individually
and published in 1969 and 1970 respectively. For the initial-boundary-value problem
(1.1) in the case that f is a function dependent only on z, a famous result was given
by Carrillo [4] in 1999, in which the author introduced the Kruzkov entropy solution,
and proved existence, comparison and hence uniqueness under the conditions that
® is in a class of continuous vectorial functions dependent on g and b. For the
Cauchy problem in one-dimensional space, it was studied in many articles.
Vol'pert and Hudjaev [I5] introduced a well-defined generalized solution for g = I
in 1969. For general case g # I, it is more difficult to solve the problem. In 2007,
Liu and Wang [I1] considered the problem in the case that b € C*(R) is strictly
increasing, and by using Holmgren’s approach, they established the uniqueness of
entropy solutions under some conditions on the growth of ®. For the problem in
multi-dimensional space, many researchers investigated the problem in the case
that g = I in the past few years. Karlsen and Risebro [6] established uniqueness
under the conditions that b, ¢, and f are locally Lipschitz continuous. Based on the
results of Carrillo [4], Maliki and Touré [12] proved existence of entropy solution,
and uniqueness was also established under some assumptions on the continuity of b
and ®, which was motivated by those in [2]. Under the condition that ® is locally
Hélder continuous of order o = 1 — %, Andreianov and Maliki [I] established the
uniqueness of entropy solutions. Golovaty and Nguyen [5] worked on the problem
under the conditions that N = 1 and b = AI, where ) is a nonnegative constant, and
they obtained existence, L!-contraction principle and hence uniqueness of entropy
solutions.

This article is motivated by the results on [1l 2, 4, 12]. Applying the results
of Carrillo [4], we obtain existence of entropy solutions for by using the con-
traction mapping principle. Then we get comparison and uniqueness by arguing
similarly in [4]. Using the results for (L1)), where Q = B,, C RY, we prove existence
of entropy solution for by passing the limit n — +o00. And inspired by the
work of Andreianov and Maliki [I], we establish comparison principle for the case
that ® o g~ is locally Holder continuous of order 1 — 1/N, and |b(u)| < w(|g(u)]),
where w is nondecreasing continuous with w(0) = 0. And consequently, we obtain
uniqueness.
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2. ENTROPY SOLUTIONS OF THE INITIAL-BOUNDARY-VALUE PROBLEM

In this section, let © be a bounded domain in RY, and assume that Q has a
Lipschitz boundary I" for N > 2. Set T' > 0 and denote @ = (0,7) x 2. We
consider the nonlinear degenerate problem

Org(u) — Ab(u) + div ®(u) = f(g(w)) in (0,T) x Q,
g(u) =go on {0} x Q, (2.1)
b(u)=0 on (0,7) x T,

where g,b : R — R are nondecreasing continuous, ® = (¢1,...,¢x) : R — RV is
continuous, f : R — R is Lipschitz continuous, and go(z) is given.

2.1. Preliminaries. To introduce the definition of entropy solution, we give some
notation. Let v be a maximal monotone operator, which may be multi-valued. The
main section of 7, denoted by 7, is defined as follows:

min{|y[;y € y(s)}, i v(s) #0,

Yo(s) = { +o0, if [s,+00) N D(%)
—00, if (—o0,s]N D(7)

— ),
— 0.

For any continuous and non-decreasing or non-increasing function 1, we define

By(s) = {fosw(bo (g Yo(r))dr ifse€ (pob)ogl,

400 otherwise,

which is proper lower semi-continuous and convex, or upper semi-continuous and
concave, and we have (¢ ob) o g~ C OBy.
In this paper, H is a set-valued operator:

1 if s > 0,
H(s)=1410,1] ifs=0,
-1 if s < 0.

The functions H., Hy, Hyax are defined as follows:

1 if s >0,
0 ifs<o0,

1 ifs>0,

H(s) = min(s" /e, 1), Ho(s) = { 0 ifs<0.

Hmax(s) = {

Definition 2.1. Let go € LY(9).
(1) A measurable function u is called a weak subsolution (supersolution) of (2.1)),
if
g(u) € LY(Q), drg(u) € L*(0,T; H1(Q)),
b(u) € L*(0, T3 Hy(Q)),  ®(u) € (L*(Q))",
Org(u) — Ab(u) + div(®(u)) < (=) f(g(u)) in D(Q),
g9(u(0,2)) < (=)

(2) A measurable function u is called a weak solution of (2.1)) if it is both a weak
subsolution and a weak supersolution.

go(z) a.e. in Q.
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Definition 2.2. Let go € L'(Q).
(1) A weak subsolution w is called an entropy subsolution of (2.1), if

/Q Ho(u — 5){(Vb(u) — B(u) + B(s)) - VE — (g(u) — g(s))0ué
— f(g(u))€} da di — / (g0 — 9(s)) " €(0)dz < 0

for any (s,&) € Rx (L%(0,T; H3 () NW1H1(0,T; L>°(Q))) with € > 0 and £(T) =
and for any (s,£) € R x (L?(0,T; H(2)) n WH1(0,T; L>(2))) with s > 0, £ > 0
and £(T) =0

(2) A weak supersolution u is called an entropy supersolution of if

/Q Ho(—s — u){(Vb(u) — ®(u) + B(—s)) - VE — (g(u) — g(—5))E

0,

~ Flo(u)€} da dt + /Q (g0 — 9(—3))€(0)dz > 0

for any (s,&) € Rx (L2(0,T; HE () NWL1(0,T; L>°(Q))) with € > 0 and £(T) =
and for any (s,&) € R x (L2(0,T; H(2)) N WH1(0,T; L>°())) with s > 0, £ > 0
and £(T) =0

(3) u is called an entropy solution of if it is both an entropy subsolution
and an entropy supersolution.

0,

For proving the existence and uniqueness of entropy solutions to (2.1)), we need
some of the following assumptions.

(H1) g, b: R — R are continuous and nondecreasing with ¢g(0) = b(0) = 0;
(H2) & = (¢y,...,¢n) € C(R;RY), 6;(0) =0, V1<j<N;

(H3) D((g+b)7") =R;

(H4) there exist @), &) ¢ C(R; RY) with b, 1)( 0)=0,1<j <N, such that

®(s) = 2 (g(s)) + 2 (g(5))b(s), Vs € R;

(H5) f:R — R is Lipschitz continuous with Lipschitz constant L, and f(0) =0
(H6) Assume that there is an integer ig with 1 < iy < N, for which at least one
of the following holds:

(1) g(s) = g(r) implies ¢;,(s) = ¢;,(r) for all s,r € R;
(2) ¢, is monotone, that is, nondecreasing or nonincreasing;
(3) There exists a constant C > 0 such that

[pio ($) — ¢ig ()] < Clg(s) +b(s) —g(r) —b(r)] Vs,reR.

Assumption (H4) was introduced by Carrillo [4], who considered the nonlinear
degenerate problem

Org(u) — Ab(u) 4+ div @(u) = f(z) in (0,T) x £,
g(u) =go on {0} x €, (2.2)
b(u)=0 on (0,7)xT
and gave existence, comparison and uniqueness of entropy solutions as follows.

Lemma 2.3. Let (H1), (H3) and (H4) hold. Let go € L*®()) and go € R(g),
f € L>®(Q). Then there exists an entropy solution u of problem (2.2]) such that
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v=g(u) € C([0,T]; L*(Q)) and
llg(u)llze=(q@) < llgollzo ) + Tl fllze(q)-

Lemma 2.4. Let (H1) and (H2) hold. Let gio € LY(Q2), gio € R(g), and f; €
L2((0,T); H-Y(Q) N LY(2)). Let u; be an entropy solution of [2.2)) for i = 1,2.
Then there exists some k € H(u; — uz) such that

/Q{V(b(ul) — bug))* - VE+ Ho(ur — ug)(P(ug) — ®(uq)) - VE
— (g(ur) — g(u2))*0,&} da dt — / (910 — 920) T€(0)dz
Q

S/Q(fl—fg)lifdxdt

for any nonnegative £ € D([0,T) x ).

Lemma 2.5. Let (H1) and (H2) hold. Let gio € L*(2), gio € R(g)(gio = g(wi0)),
let f; € L*>((0,T); H-1(2) N LY(Q)), and let u; be an entropy solution of for
i =1,2. Then there exists some k € H(uj — us) such that

/Q (9(us (1)) — glua(t)))*de < / (910 — g20)*d + / ( — fo)rdadt

for each t € [0, T). Therefore,

t
g(u1(t)) — g(u2(@)lz2(0) < llg10 — 920/l 22 (02) +/0 1f1 = fallr@)dt.
In particular, if g10 < gog almost everywhere in 2, and f1 < fo in Q, then
g(ur) < g(uz) a.e. in Q.
Moreover, if fi = fo and gio = g0, then g(u1) = g(ug).
2.2. Existence of entropy solutions.

Theorem 2.6. Let (H1), (H3), (H4) and (H5) hold. Let go € L>®(Q2) and gy €
R(g). Then there exists an entropy solution u of problem (2.1)).

Proof. Fix h > 0, which will be determined latter. Define an operator
T :C([0,h]; L () — €([0, h]; L' (2))

as follows: w € 7 (v) if and only if there exits u € L*°((0, h) x Q) such that w = g(u)
and u is an entropy solution of

Jg(u)
ot

— Ab(u) + div ®(u) = f(v) in (0,h) x €,
g(u) = go on {0} x Q, (2.3)
b(u) =0 on (0,h) xT.

According to Carrillo [], for any go € L*(Q2) and v € L*>((0,h) x ), there exists
an entropy solution of ([2.3). Moreover,

lwl| Loe (0,0)x2) < 190l Loe () + LA oo ((0,n)x2)
llwlle(o,ng;r ) < llgollzr@) + Lllvlleo,n;zr @)
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If 7 is contractive, it has a unique fixed point w € C([0, h]; L(€2)), that is, there
exists a measurable function u such that w = g(u), and v is an entropy solution of
(2.1) on [0,h]. In fact, we can prove that 7T is a contraction if we choose h small
enough. For any v; € C([0,h]; L' (2)), w; = g(w;) € T(v;), i = 1,2, applying the
comparison for the solutions of , we have

h
[Jwi(t) — w2 (t)ll L1 (0) S/O [f(v1(2)) = fo2(t))l| L2 (o dt
< Lh[jvi(t) — v2(t)lle(jo,n);1 (2))-
Therefore, for any 0 < o < 1, we have

w1 (t) — w2 (t)lleqo,ngr @) < allvi(t) —va(t)llego,n;n @)

only if we choose 0 < h < a/L.

Take oo = 1/2, and choose an integer M large enough such that h = T/M < a/L.
Divide the interval [0,T] into [0,h], [h,2h], ..., [(M — 1)h, Mh], and repeat the
procedure above, we eventually get an entropy solution on [0, 7. (]

2.3. Comparison and uniqueness of entropy solutions. We prove some prop-
erties and refer the reader to [4] for related results.

Theorem 2.7. Let (H1), (H2) and (H5) hold. Let gio € L'(2), gio € R(g), and

u; be an entropy solution of (2.1), i=1,2.
(1) There exists some k € H(u1 — uz), such that

L (7 0000) — b)) - T+ Holor — ) ()~ @) -
— (g9(ur) — g(u2))*9,&} da dt — /9(910 — 920) " €(0)dz (2.4)
< [ (o)) = Flg(u))et o d
Q
for any nonnegative & € D([0,T) x Q). Therefore,

[ (600 - gtua®))* o
i (2.5)

< [oo—gtae+ [ [ (o)) = flatua))n o
that is,

g (®)) — g(ua()* 1o: o

< (910 — 920)* 1200, + | (o)) — Fgluz)))do dt.
In particular, if gi10 < gog a.e. in Q and f1 < fo, then

g(ur) < g(uz) a.e. in Q.

(2) If g10 = g20 a.e. in Q, and (H4) holds, then b(ui) = b(ug) a.e. in Q. Thus,
there exists a unique pair (g(u),b(u)) such that u is an entropy solution of (2.1)).
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Proof. (1) The proof of (2.4) and (2.5) can be found in []. If g19 < go0, applying
(2.5), we have

(g (ur () — g(ua(t))) [l

< lI(g10 = 920) "l L2 (0 +/O /Q(f(g(m)) — f(g(u2)))r dz dt

t
< L/O 1(g(ur(1)) = g(uz(m))) " |22 (0 dr
Consequently, we deduce that

sup [|(g(ur(t)) — g(ua(t)) L1 () <0,

0<t<h |

which implies g(u1) < g(us2) a.e. in Q.
(2) If g10 = go20, then g(u1) = g(uz). From (2.4) and (H4), we have

/Q [V (b{ur) — bluz))* - VE + Holu — u2) (®(uz) — B(ur)) - VE
< / (f(g(ur)) — F(g(un)))ié ddt < L / o(ur) — glu)|sédzdt  (2.6)
Q Q

) /Q (9(w) — gluz)) "€ dwdt = 0

for any nonnegative £ € D([0,T) x Q). Applying (2.6), we can deduce that (see [4]
Corollary 14])

/Q (b(ur) — b(u2))H{—AE — ) (g(uy)) - Ve} dwdt = 0.

AT for some i with 1 < i < N, and some

A> 192 (g(u1) L= (@),
we deduce that (b(u1) — b(ug))™ = 0. O

Then by choosing £ = e

Applying the results in [4], we can also deduce the comparison of b(u).

Lemma 2.8. Let (H1), (H2),(H5) and (H6) hold. Let gio € L*(Q), gio € R(9)
such that g19 < goo a. e. in . Let u; be an entropy solution of fori=1,2.
Then

b(ur) < b(uz) a. e. in Q.
Moreover, if g0 = ga0, then b(uy) = b(uz).

Arguing as Carrillo [4], we can get a generalized comparison theorem, which will
be used in section 3.

Lemma 2.9. Let (H1), (H2) and (H5) hold. Let gio € L*(Q) with gio € R(g). Let
uy be an entropy subsolution of (2.1) for gio, and us be an entropy supersolution

of (2.1) for gao. Then

(1) There exists some k € H(uy — uz), such that

/Q{V(b(ul) — b(ug))* - VE+ Ho(ur — ug)(P(ug) — ®(uq)) - VE

— (glur) — glus)) €} dur dt — / (910 — g0) HE(0)d
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< / (Flg(u)) — F(g(uz)))A€ da dt
Q

for any nonnegative & € D([0,T) x Q).
(2) Moreover, if g1o < gao a. e. in ), then

gu) € gw), a.e. in Q. (2.7)
(3) In addition, let (H6) hold. If g10 < g20 a. e. in Q, then
b(ur) < b(ug), a.e in Q. (2.8)

3. ENTROPY SOLUTION OF THE INITIAL-VALUE PROBLEM

Let N >3, and Q = (0,7) x RY with T > 0. In this section, we consider the

initial-value problem
Org(u) — Ab(u) + div®(u) = f(g(u)) in (0,T) x RY, 3.1)
g(u) =go on {0} x RY, ’

where N > 3, g,b are nondecreasing continuous, ® = (¢1,...,¢y) is continuous,
and f: R — R is Lipschitz continuous.

3.1. Existence of entropy solutions.

Definition 3.1. Let gy € L>(RY).
(1) A measurable function u is called a weak subsolution (supersolution) of (3.1)),
if
g(u) € L¥(Q), dug(u) € L*(0,T; Hyy o (RY)),
b(u) € L*(0,T; Lip (RY) N L=(Q),  Vb(u) € (Lie(Q))™,
O(u) € (LipeRY)N N (L=(Q))Y,
Org(u) — Ab(u) + div(®(u)) < (=) f(g(u)) in D(Q),
g(u(0,2)) < (>) go(x) ae. in RV,

(2) A measurable function u is called a weak solution of (3.1) if it is both a weak
subsolution and a weak supersolution.

Definition 3.2. Let gy € L>(RY).
(1) A weak subsolution w is called an entropy subsolution of (3.1), if

L Holo = b — (0 +005)) - V&~ (g0 — g1s))02E
~ fa)e}dadt = [ (g0 = 9(s))"€(0)dn <0

for any (s,&) € R x D([0,T) x RY), with £ > 0.
(2) A weak supersolution u is called an entropy supersolution of (3.1)), if

/Q Ho(—s — u){(Vb(u) — () + B(—s)) - VE — (g(u) — g(—5))Oi€

- Haw)e}dudt+ [ a0 —o(=5))"€0)dr >0

for any (s,&) € R x D([0,T) x RY), with £ > 0.
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(3) w is called an entropy solution of (3.1 if it is both an entropy subsolution
and an entropy supersolution.

For any R > 0, let Bg = {r € RY;|z| < R}, Tr = 0Bg = {z € RY;|z| = R},
Qr = (0,T) x Bg. For any positive integer n, let go, be a truncation of gg on By,
that is, gon(z) = go(x) for any z € B, and extended to R by zero. We consider
the approximate problem for :

Org(u) — Ab(u) + div®(u) = f(g(w)) in (0,T) X By,
g(u) = gon on {0} x By, (3.2)
b(u)=0 on (0,7) x Ty,
Let (H1), (H3), (H4) and (H5) hold, then there exists a pair (g(u,), b(uy)) such

that wu,, is an entropy solution of ([3.2). We extend u, to RY by zero, and still
denote it by u,,.

Lemma 3.3. Let (H1), (H2), (H5), (H6) hold. Assume that
(H7) There exists a nondecreasing function | : RY — R such that
b(r)] < 1(lg(r)]), VreR.

Assume go > 0 and go € L*(RN) (L= (RY). Then, we have:
(1) g(un) >0 and b(u,) > 0 a.e. in RY;
(2) g(un(t)) and b(un,(t)) are nondecreasing in n, that is, for any n < m,
9(un(t) < glum(t),  blun(t)) < b(um(t)) a.e. in RY;
(3) There ezists a constant C such that
llg(un)llL=q) < C,
lg(wn)llLos 0,501 YY) < C,
[Vb(un)||L2@yy < C,
16| Loe (@) < C-

Proof. (1) If go = 0, then u = 0 is an entropy solution of ([3.2). From Lemma
we have g(u,(t)) >0, b(u,) > 0 a.e. in Q,, and so is in RY.
(2) For any n < m, it is clear that w, is an entropy subsolution of (3.2]). From

and , we have
Gin(®)) < glum(®),  blun(t) < bum(t) ae. mRY.
(3) Since go € L'(RN) N L>°(RY), for any 0 < h < 1/(2L),

1g(un)llLoe ((0.h)x Br) < llgonllzoe(Br) + LRllg(un)ll Lo ((0,n)x BR)s

h
llg(un)llLoe0,n:L1 (Br)) < lI9onllLr(Br) +L/O lg(un (T2 (BR)dT,
and hence, we have
||9(Un)|\L°°((0,h)xBR) < OHgOn||L°°(BR) < C'||90||L°<>(1RN),
l9(un )|l 0,n:1(BR)) < Cllgonllr(Br) < CllgollLrmry-

Then we obtain (3.3) and (3.4) by arguing inductively and letting R — oo. In
virtue of (HT7), (3.3)) implies (3.6).
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Viewing that u,, is an entropy solution (and hence a weak solution) of (3.2)), we

have
/Ot /B at(g(un))b(un)dxdT—f—/Ot /Bn V()| dedr
+/0t /Bn D(uy,) - Vb(uy,)dzdr
= /Ot /B f(g(un))b(un)dzdr

t
<L / gt o (3 [1DCtn) | 22+ (3, T,

where ¢ = 2n/(n + 2).
Applying [4, Lemma 4],

// O (g(un))b(un dxdr—/ Bi(g )dm—/ Bir(gon)dz,
B B

n n

where By(g(u,)) € L*(0,T;L'(B,)), since g(uy) is uniformly bounded in the
spaces L>(0,T; L' (B,)) and L*((0,T) x B,,). For the third term, from [3],

(A ];n@@M)~Vb@M)dxdt:0_

sup ||g(un(t)|lLa(s,) < C sup ||g(un()llLr(,) < CllgollLr @y,
0<t<T 0<t<T

T T 1/2
//|Vb(un)\2dxdt§01+02(/ / |Vb(un)|2da:dt) :
0 JB, 0 JBy
/2
//|Vbun \Qda:dt<01+02 / / Vb () 2 da:dt) :
]RN

then we obtain . O

Theorem 3.4. Let (H1)-(H7) hold. Let go € L*(RN) N L>®(RYM), 0 < go € R(g).
Then there exists an entropy solution of (13.1).

Proof. Let u, be an entropy solution of (3.2). From Lemma it follows that
g(uy) and b(u,,) are nonnegative, nondecreasing and uniformly bounded in L™ (Q).
Hence, there exist v € L>(Q) and w € L?(0,T; HE (RY)), such that

loc

g(un) — v, in Lj, (Q),
b(u,) — w, in L?(0,T; L3 (RY)),
Vb(u,) — Vw, weakly in (L%(Q))Y,

Considering that

we have

that is,

where 1 < p < +o0. Since bo g~! is maximal monotone, w € bo g~1(v), that is,

there exists & € g~!(v) such that w = b(@). Set
= ((b+9)" (v +w),
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which is measurable, and such that v = g(u), w = b(u). Since ®(u) = &M (g(u)) +
O (g(u))b(u), we deduce that
®(un) — @(u) in (L*(0, T Li,(R™))N.
For any ¢ € D([0,T) x RY), choose R large enough such that supp(t) C Bg,
then it follows that

; {=9(un)0i& + (Vb(un) — ®(uy)) - VE}da dt

= [ Flolun))edudt + / Gon€(0)dz,

Qr Br
for any integer n > R. By letting n — +o00, we have

; {—9(u)0& + (Vb(u) — ®(u)) - VE} da dt

= flow)eded+ / G0€(0) .

Qr Br
From the choice of R, it holds that

/Q{—g(w@ts + (Vb(u) — ®(u)) - VE} da dt

:/ f(g(u)){dxdt+/ 90€(0)dz,
Q RY

and hence we deduce that
O(g(un)) — g(u)e weakly in L?(0,T; H o (RY)).

loc
Therefore, u is a weak solution of (3.1)).
For any nonnegative ¢ € D([0,T) x RY) and s € R, take R so large that
supp £(t) C Bg. Since u,, is an entropy subsolution of (3.2)), we have

o Ho(un — $){=(9(un) — 9(5))0:§ + (Vb(un) — ®(un) + P(s)) - V¢

= Hloue} dodt — [ (g~ g(5)"€(0)dx <0
Br

for any integer n > R.

Since g(un) + b(u,) — g(uw) + b(u) in LE (Q), and

Ho(un — s) € H(g(u) + b(u) — g(s) — b(s)),
we have
Ho(up — s) — xu,s weak *in L>(Q),

and Xu,s € H(g(u) +b(u) — g(s) — b(s)).

Because Vb(u,,) — Vb(u) weakly in L2(Q)", it follows that

Hoy(up — $)Vb(uy,) - VEdz dt = V(b(u,) —b(s))T - VEdx dt
Qr Qr

— V(b(u) — b(s))t - VEda dt
Qr

= Ho(u — s)Vb(u) - V& dx dt.
Qr
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By letting n — 400, we have

{—Xu,sf(9(u))§ + Ho(u — s)(—(g(u) — g(s))0&
@n (3.7)
+ (Vb(u) — ¢(u) + ¢(s)) - V&) } dr dt — / (90 — 9(s))"€(0)dz < 0.

Br
Similarly to the proof of [4, Theorem 12], applying , we can deduce that

/Q Holu — 5){(Vb(u) — () + D(s)) - VE — (g(u) — g(5))0u€

~ a()e}dndt = [ (g0 = g(s))"€(0)dn <0

for any nonnegative £ € D([0,7) x RY) and any s € R.
Since u,, is also an entropy supersolution of (3.2)), arguing as above, we have

/QHo(S — u){(Vb(u) — ®(u) + ®(=s)) - V& = (9(u) — g(—5))0i&

~ o€} dudt+ [ (a0 g(=5))"€0)d > 0
for any nonnegative ¢ € D([0,7) x RY) and any s € R. O

3.2. Comparison and uniqueness of entropy solutions. We will give the com-
parison and uniqueness of entropy solutions of (3.1]) based on the works in [1J.
To prove the comparison, instead of (H7), we assume that

(H7’) For M > 0, there exists a nondecreasing continuous function w : RT — R+
with w(0) = 0, such that
b(2)] < w(lg(@)]), Vo el[-M, M]

Remark 3.5. (1) From (H7’), g(z) = 0 implies b(z) = 0 for any = € R.

(2) Since the entropy solution u of satisfies g(u) € L>(Q), we can assume
that M is fixed, w is strictly concave, continuous, and extended to R*. Moreover,
for any = € R such that b(z) > 0, and any r € RT, we have

b(x)r < g(z) + Q" (r),
where Q* is strictly increasing and convex (see [I]). From the convexity of Q*, for
any R > 0, we have
Q*(r) < (' (R)r, Yre€|0,R]
where (2*) is increasing and (Q*)'(r) — 0 ast | 0.

Theorem 3.6. Assume (H1), (H5), (H7’). Assume that ®(u) = U(g(u)), where

U : R — RY s locally Hélder continuous of order 1 — 2, and ¥(0) = 0. Let N > 3.

Let gio € L*RN) N L>®RY), and uy be an entropy subsolution of (3.1) for gio,
and ug be an entropy supersolution of (3.1)) for gag. Then for a.e. t € (0,T), there
exists some k € H(uy — ug) such that

(g (ur(8)) — g(uz(t)) [l 2 o)

< (10 — g20)* | ) + / (Flo(u)) — F(g(uz)))sda dt.

In particular, if gio < g20, then g(u1) < g(uz).

(3.8)
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The comparison principle implies the following uniqueness of entropy solutions.

Corollary 3.7. Assume b, g, ®, f and g;o as above, and let u; be an entropy
solution of (3.1)) fori=1,2. If gio = g20, then g(u1) = g(uz).

Remark 3.8. Our result is different from [I]. In fact, our problem can be rewritten
of the form in [I] with the replacement of f(z,t) with f(u), if g(x) = g(y) implies
b(xz) = b(y) for any z,y € R, which maybe is invalid, unfortunately, although g and
b satisty (H7’).

FIGURE 1.

For example, assume that both g and b are odd functions, and for any x > 0,

0, 0<x <1, 0, 0<x <2

20 -2, 1<x <2, r—2, 2<x<3,
g9(z) = b(z) =

2, 2 <x <3, 1, 3<x <4,

r—1, x>3. rz—3, >4

Then (H7’) is satisfied since |b(x)| < |g(x)|. However, b(z) is strictly increasing on
[2, 3] where g = 2 is constant. (see Figure |1

Proof of Theorem[3.6 We need to prove only (3.8]). We begin our proof by applying
the Kato’s Inequality; that is, there exists some k € H(u; — us) such that

/Q{V(b(ul) — b(u2)) " - VE+ Ho(ur — uo)(®(uz) — ®(uy)) - V€
~(glur) — g(u))*O,E} dardt — / (910 — g20) HE(0) e
]RN

< / (Flg(un)) — F(g(uz)))mé da di
Q

for any nonnegative ¢ € D([0,T) x RY).
Let L > R > 0 and € € (0,1). We take &(t,x) = p(t)pe r(x), where p €
D([0,T))*, and

pevL(x) = RN72+6((maX |1’|, R)szfe _ L27N76)+'

Then we can deduce that

/ / (9(u1) — g(uz)) " pe,L(—Op) da dt
o JrN
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T
< [ Holw = w)(w) - @)V slndeade
0 RN

T
—|—/ / (b(u1) — b(ua)) T A p, ppdx dt
0o Jrw

)~ b))V — 2 LN
|z|=L

T
* /o /Rw(f(g(“l)) — flg(uz)))kpe Ly dx dt

JF/ (910 — 920) " pe,L1(0)da,
RN

where A“p, 1, is the absolutely continuous part of the measure Ap. 1. By letting
L — 00, we have

T
/ / (g(ur) — g(u2)) " pe(—Opp) d dt
o Jr¥

T
< c/ / Ho(ur — )| ®(us) — ®(uy)||z|~Lp. da dt
0 |z|>R (39)

T
—|—C’e/0 /|I|>R(b(u1) — b(uz)) | 2p. dav dt

T
s [ (rtatun) - fomndsdt+ [ (g0 ) (01

where p.(z) = (max %‘7 1)2-N-e,

In particular, by taking ga0 = uz = 0, we have
T
/ / (g(ul))JrPe(*af,,U/) dx dt
0 Jrx

<c / / Ho ()9 (g ) |2 pe i dit
0 Jlzl>R (3.10)

T
+C’e// (b(un)) 2| 2pe da dt
0 |z|>R

T
sr [ [ tuytudeds [ gl
0 RN RN

Since ¥ : R — RV is locally Holder continuous of order (1 — +) with ¥(0) = 0,
applying Young’s inequality, we have

N

C Ho(u1) ¥ (g(ur))|l2| ™" < %Ho(m)\‘l’(g(m))IN*l +COn(Cla| )Y

(3.11)

< 5(g(u)™ + 202 7HY,

1
2

where
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Considering (H7’) and Remark [3.5], we have
Ce(b(ur))*|x[ 7% = CeHo(b(ur))b(ur)|x| >

€€ a2

< Ho(ur)(dg(ur) + 09" (|21 7%) (3.12)

< 8(g))* + @Y (FR)al

where (Q*)’(%R*Q) — 0 as € — 0, for any R > 1 and given §. Combining
(3.10),(3.11) and (3.12), we have

T
| tatw) pul-ou) e
0o JrN
1 (T . T iy
<o [ [ wntadas [ oW g
|w\>R |z|>R
+ Ce(2 / / ||~ 2pﬁ,uda;dt—i—L/ / g(up)) T pdx dt
|z|>R RN

+ / grom(0)da.
RN

For any R > 1, it holds that

T
/ / 2C|z| YN peppda dt < C,
|z|>R

ey (SR / /x|>R'””' 2pepdrdt < 007 (5

as € — 0. We now choose an integer M large enough such that h = T/M < 1/(2L),
and take § < 1, p(t) = (h —t)*, then by letting e — 0, we deduce that

h
[ stwoyan < omlghlos + €
0 Jlz|<R

Letting R — +00, we have (g(u1))* € LY((0,h) x RY).

Let h;(t) be such that h;(t) = h for t € [0,(j — 1)h], and h;(t) = (jh —t)" for
te[(fj—1hT],1<j< M. By arguing similarly and inductively, we conclude
that

R 2)RN-2 0,

g(ur), g(uz) € L'((0,T) x RY). (3.13)

We now claim that g(u1) < g(usg) in virtue of (3.9) and (3.13). In fact, applying
(3.9), we have

//(g(ul)—g(uz))+pe(—3tu)dxdt
0 JRN

T
<[ [ N(f(g(m)))—f(g(uz)))fwdxdt+ [ 0oy

+ Ce(V) (=R7?) / / ||~ 2p6udxdt—|—05/ / lz| ™ pepu da dt
|z|>R |z|>R

5) / /z|>R('g(“l)' + lg () e .
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Since g(u1), g(uz) € L*((0,T) x RY), for any § > 0, we have

h
C(6) / /$>R<|g<u1>| + lg(us)) da dt — 0,

as R — oco. Then by the facts that

T
/ / || "N pepda < C,
0 |z|>R
Ce

T
Ce(29)( 5 sz)/o / R|x\72p€,udxdt—>0 as € — 0,
z|>

we have

/o /]RN (9(u1) — g(u2)) ™ (—Opp) dz dt
T
< /RN (910 — g20) T (0)dz +/O /RN(.f(g(Ul)) ~ flg(u2)))kp dz dt,

by taking ¢ small, € small, and R large. In the end, applying Gronwall’s inequality,
we can deduce (3.8]). O
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