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LOWER BOUNDS FOR THE BLOWUP TIME OF SOLUTIONS
TO A NONLINEAR PARABOLIC PROBLEM

HAIXIA LI, WENJIE GAO, YUZHU HAN

Abstract. In this short article, we study the blow-up properties of solu-
tions to a parabolic problem with a gradient nonlinearity under homogeneous

Dirichlet boundary conditions. By constructing an auxiliary function and by
modifying the first order differential inequality technique introduced by Payne

et al., we obtain a lower bound for the blow-up time of solutions in a bounded

domain Ω ⊂ Rn for any n ≥ 3. This article generalizes a result in [16].

1. Introduction

When dealing with a parabolic problem there are several interesting features to
analyze, one of which is the so called finite time blow-up. The question of blow-up
of solutions to nonlinear parabolic equations and systems has received considerable
attention since the elegant work of Fujita [6]. We refer to the interested readers the
survey papers [2, 7, 10] and the book [17].

In practical situations, one would like to know, among other things, whether
the solutions blow up, and if so, at what time T blow-up occurs. However, when
the solution does blow up at some finite T , this time can seldom be determined
explicitly, and much effort has been devoted to the calculation of bounds for T .
Most of the methods used until recently can only yield upper bounds for T , which
are of little value in particular situations when blow-up has to be avoided. By
using the first-order differential inequality technique, lower bounds for the blow-up
time of solutions to semilinear heat equations under different boundary conditions
and suitable constraint on the data were obtained by Payne et al. [12, 13, 14, 16].
Thereafter, the differential inequality technique was successfully employed to derive
lower bounds for the blow-up time of solutions to other parabolic problems, see
[1, 3, 5, 11, 15].

In this article, we shall study a parabolic problem with a gradient nonlinearity
of the following form

ut = ∆u+ up − |∇u|q, (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,
(1.1)
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where Ω is a bounded domain in Rn with smooth boundary ∂Ω, ∆ and ∇ are the
Laplace and gradient operator with respect to x, respectively, T is the possible
blow-up time and p, q > 1 are fixed (finite) parameters. In [4, 9], conditions on p, q
and u0(x) were given for which the solutions to (1.1) would blow up in finite time.
In fact the restrictions on p and q were

1 < p <
n+ 2
n− 2

, 1 < q <
2p
p+ 1

, for n ≥ 2,

or

p is large enough and q =
2p
p+ 1

, for n = 1.

In a recent paper Payne et al. [16] obtained lower bounds of the blow-up time of
solutions to (1.1) when n = 3. Naturally, we hope to obtain the lower bounds for
blow-up time of solutions to (1.1) with any smooth bounds Ω ⊂ Rn and any n ≥ 3.
That is what we will do in this article.

As indicated in [18] it is well known that if p ≤ q the solution will not blow
up in finite time. Also it is well known that if the initial data are small enough
the solution will actually decay exponentially as t → ∞ (see e.g.[14, 19]). Since
we are interested in a lower bound for the blow-up time T , only the case p > q is
considered.

2. A lower bound for the blow-up time

In this section we seek a lower bound for the blow-up time T of solutions to
(1.1) in some appropriate measure. The idea of the proof of the following theorem
is inspired by that in [1].

Theorem 2.1. Let u(x, t) be the nonnegative classical solution of problem (1.1) for
p > q > 1 in a smooth bounded domain Ω ⊂ Rn with n ≥ 3. Define

ϕ(t) =
∫

Ω

ukdx,

where k is a parameter restricted by the condition

k > max
{

1,
(7n− 16)(p− 1)

2
, (q − 1)(3n− 8)

}
. (2.1)

If u(x, t) blows up in the measure ϕ at the finite time T , then T is bounded from
below as

T ≥
∫ +∞

ϕ(0)

1

C1 + C2ξ
3n−6
3n−8

dξ, (2.2)

where C1 and C2 are positive constants which will be determined in the proof.
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Proof. Applying the divergence theorem to the first equation in (1.1), we have

dϕ
dt

= k

∫
Ω

uk−1utdx

= k

∫
Ω

uk−1(4u+ up − |∇u|q)dx

= k

∫
Ω

uk−14udx+ k

∫
Ω

uk+p−1dx− k
∫

Ω

uk−1|∇u|2dx

= −4(k − 1)
k

∫
Ω

|∇uk/2|2dx+ k

∫
Ω

uk+p−1dx

− kqq

(k + q − 1)q

∫
Ω

|∇u
k+q−1
q |qdx.

(2.3)

Moreover, from [12, (2.10)] it follows that∫
Ω

|∇u
k+q−1
q |qdx ≥ (

2
√
λ

q
)q
∫

Ω

uk+q−1dx, (2.4)

where the positive constant λ is the first eigenvalue of the problem

4w + λw = 0 in Ω,
w = 0 on ∂Ω.

(2.5)

Thus by combining (2.3) with (2.4) we obtain

dϕ
dt
≤ −4(k − 1)

k

∫
Ω

|∇uk/2|2dx+ k

∫
Ω

uk+p−1dx− k(2
√
λ)q

(k + q − 1)q

∫
Ω

uk+q−1dx.

(2.6)
Noticing (2.1), we can apply first Hölder’s inequality and then Young’s inequality
to the second term on the right hand side of (2.3) to obtain∫

Ω

uk+p−1dx ≤ |Ω|m1

(∫
Ω

u
k(7n−14)
7n−16 dx

)m2

≤ m1|Ω|+m2

∫
Ω

u
k(7n−14)
7n−16 dx,

(2.7)

where

m1 = 1− (k + p− 1)(7n− 16)
k(7n− 14)

∈ (0, 1), m2 =
(k + p− 1)(7n− 16)

k(7n− 14)
∈ (0, 1).

Combining (2.7) and (2.6) yields

dϕ
dt
≤ −4(k − 1)

k

∫
Ω

|∇uk/2|2dx+ km1|Ω|+ km2

∫
Ω

u
k(7n−14)
7n−16 dx

− k(2
√
λ)q

(k + q − 1)q

∫
Ω

uk+p−1dx.
(2.8)

We now use Hölder’s inequality in the third term on the right hand side of (2.8):∫
Ω

u
k(7n−14)
7n−16 dx ≤

(∫
Ω

ukdx
)α(∫

Ω

u
k
2

2n
n−2 dx

)1−α
, (2.9)
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where 0 < α = 2(3n−7)
7n−16 < 1. Next, using the Sobolev inequality for W 1,2

0 ↪→ L
2n
n−2

(n ≥ 3) [20]), we obtain

‖uk/2‖
2n(1−α)
n−2

L
2n
n−2

≤ C
2n(1−α)
n−2

s ‖∇uk/2‖
2n(1−α)
n−2

L2 , (2.10)

where Cs =
(

1
n(n−2)π

)1/2( n!
2Γ(n2 +1)

)1/n is the best imbedding constant (see [8, Chap.
7]). By substituting (2.10) into (2.9), we arrive at∫

Ω

u
k(7n−14)
7n−16 dx ≤ C

2n(1−α)
n−2

s

(∫
Ω

ukdx
)α(∫

Ω

|∇uk/2|2dx
)n(1−α)

n−2
, (2.11)

which, with the help of Young’s inequality, gives∫
Ω

u
k(7n−14)
7n−16 dx ≤ C

n
3n−8
s (6n− 16)

(7n− 16)ε
n

2(3n−8)
1

(∫
Ω

ukdx
) 3n−7

3n−8
+
n(1− α)ε1

n− 2

∫
Ω

|∇uk/2|2dx.

(2.12)
Here ε1 is a positive constant to be determined later. By Hölder’s inequality, we
have ∫

Ω

uq+k−1dx ≥ |Ω|−
q−1
k

(∫
Ω

ukdx
)1+ q−1

k

. (2.13)

Combining (2.12) and (2.13) with (2.8) gives

dϕ
dt
≤ km1|Ω|+

[n(1− α)ε1km2

n− 2
− 4(k − 1)

k

] ∫
Ω

|∇uk/2|2dx

+
km2C

n
3n−8
s (6n− 16)

(7n− 16)ε
n

2(3n−8)
1

ϕ
3n−7
3n−8 − k(2

√
λ)q

(k + q − 1)q
|Ω|−

q−1
k ϕ1+ q−1

k .

(2.14)

Next, we apply Young’s inequality to the third term on the right-hand side of (2.14)
to conclude that

ϕ
3n−7
3n−8 ≤ ε2

m3
ϕ1+ q−1

k +
1
m4

ε
−m4
m3

2 ϕ
3n−6
3n−8 , (2.15)

where

m3 =
2k − (q − 1)(3n− 8)

k
, m4 =

2k − (q − 1)(3n− 8)
k − (q − 1)(3n− 8)

,

and ε2 is a positive constant to be fixed. Combining (2.15) and (2.14), we obtain

dϕ
dt
≤ C1 +

[n(1− α)ε1km2

n− 2
− 4(k − 1)

k

] ∫
Ω

|∇uk/2|2dx+ C2ϕ
3n−6
3n−8

+
[ε2km2C

n
3n−8
s (6n− 16)

(7n− 16)ε
n

2(3n−8)
1 m3

− k(2
√
λ)q|Ω|−

q−1
k

(k + q − 1)q
]
ϕ1+ q−1

k ,

(2.16)

where

C1 = km1|Ω|, C2 =
km2C

n
3n−8
s (6n− 16)ε

−m4
m3

2

(7n− 16)ε
n

2(3n−8)
1 m4

.

Therefore, by choosing

ε1 =
4(k − 1)(n− 2)
nk2m2(1− α)
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first and

ε2 =
(7n− 16)m3k(2

√
λ)q|Ω|−

q−1
k ε

n
2(3n−8)
1

km2(6n− 16)C
n

3n−8
s (k + q − 1)q

next, we obtain the differential inequality

dϕ
dt
≤ C1 + C2ϕ

3n−6
3n−8 , (2.17)

or equivalently
dϕ

C1 + C2ϕ
3n−6
3n−8

≤ dt. (2.18)

Integrating of the differential inequality (2.18) from 0 to t leads to∫ ϕ(t)

ϕ(0)

1

C1 + C2ξ
3n−6
3n−8

dξ ≤ t. (2.19)

Passing to the limit as t→ T−, we obtain∫ +∞

ϕ(0)

1

C1 + C2ξ
3n−6
3n−8

dξ ≤ T. (2.20)

Thus, the proof is complete. �

Remark 2.2. It is easy to see that when n = 3, the lower bound for the blow-up
time derived here is consistent with the one obtained by Payne et al. [16].
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