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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO
SECOND-ORDER DIFFERENTIAL EQUATIONS WITH

FRACTIONAL DERIVATIVE PERTURBATIONS

EVA BRESTOVANSKÁ, MILAN MEDVEĎ

Abstract. In this article we study the asymptotic behavior of solutions to
nonlinear second-order differential equations having perturbations that involve

Caputo’s derivatives of several fractional orders. We find sufficient conditions
for all solutions to be asymptotic to a straight line.

1. Introduction

The aim of this article is to study the asymptotic properties of solutions to
scalar second-order ordinary differential equations that are perturbed with a term
involving fractional derivatives. In these equations, the fractional derivatives most
frequently used are the Riemann-Liouville and the Caputo’s fractional derivatives.
For basic definitions of fractional calculus and fundamentals of the theory of frac-
tional differential equations, we refer the reader to the monographs [28, 29].

Fractional derivatives play the role of a damping force in vibrating systems in
viscous fluids; which is the case in the well known Bargley-Torvik equation,

u′′(t) +AcD3/2u(t) = au(t) + φ(t) . (1.1)

This equation models the motion of a rigid plate immersing in a viscous liquid with
the fractional damping term AcD3/2u(t) which has Caputo’s fractional derivative
(see [36]). Solutions of the linear fractionally damped oscillator equation with
the Caputo’s derivative are analyzed in [26]. Existence results on boundary-value
problems for the generalized Bagely-Torvik equation

u′′(t) +A cDαu(t) = f(t, u(t),cDβu(t), u′(t)) (1.2)

and for some other fractional differential equations can be found in [2, 3, 34, 27].
An existence and uniqueness result for the multi-fractional initial-value problem

Au′′ +
N∑
k=1

Bk
cDαku(t) = f(t, u),

u(0) = u0, u′(0) = c1, 0 < αk < 2, k = 1, 2, . . . , N

(1.3)
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can be found in [33]. Caputo’s fractional derivatives in equation (1.3) play the
role of damping terms. Abstract evolution equations with the Caputo’s fractional
derivatives in the nonlinearities are studied in [13, 14] . Fractionally damped pen-
dulums or oscillators are studied in [26, 33]. More articles devoted to this type of
equations can be found in the list of references.

The following equation for a pendulum has the ordinary damping term λx′(t)
and the fractional damping terms λ1

cDβ1x(t), . . . , λm cDβmx(t):

x′′(t) + λ1
cDβ1x(t) + . . . λm

cDβmx(t) + λx′(t) + ω2x(t) = g(t, x(t), x′(t)),

where t > 0, βi ∈ (0, 1), i = 1, 2, . . . ,m.
In [26], the equation

x′′ + λc0D
αx+ ω2x = 0, x(0) = x0, x′(0) = x1, λ > 0.

is analyzed by using the fractional version of the Laplace transformation. The
Laplace image of x(t) is

X(s) =
sx0 + x1 + λsα−1x0

s2 + λsα + ω2
,

and the characteristic equation for the fractional differential equation is

s2 + λsα + ω2 = 0.

When α = p/q this characteristic equation is was analyzed in [28]. For the linear
fractionally damped oscillator with α = 1/2 the characteristic equation is

s2 + λs1/2 + ω2 = 0,

whose analysis is much more complicated than in the case of the harmonic oscillator
with the classical damping term (see [26]). It is clear that the exact analysis of
linear fractional systems is extraordinary difficult. Some analysis and simulations
of fractional-order systems can be found in the book [28]. The form of the equation
(1.3) enables us to avoid some difficulties in the study of the stability problem by
using a desingularization method developed in [19, 20, 22].

In the asymptotic theory of the n-th order nonlinear ordinary differential equa-
tions

y(n) = f(t, y, y′, . . . , y(n−1)), (1.4)
a classical problem is to establish some conditions for the existence of a solution
which approaches a polynomial of degree 1 ≤ m ≤ n− 1 as t→∞. The first paper
concerning this problem was published by Caligo [7] in 1941. He proved that if

|A(t)| < k

t2+ρ
(1.5)

for all large t, where k, ρ are given, then any solution y(t) of the linear differential
equation

y′′(t) +A(t)y(t) = 0, t > 0, (1.6)
can be represented asymptotically as y(t) = c1t + c2 + o(1) when t → +∞, with
c1, c2 ∈ R (see [1]). The first article on the nonlinear second-order differential
equation

y′′(t) + f(t, y(t)) = 0 (1.7)
was published by Trench [37] in 1963. Then there are publications by Cohen [9],
Trench [37], Kusano and Trench [15] and [16], Dannan [12], Constantin [10] and
[11], Rogovchenko [31], Rogovchenko [32], Mustafa, Rogovchenko [25], Lipovan [17]
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and others. In the proofs of their results the key role is played by the Bihari in-
equality [6] which is a generalization of the Gronwall inequality. Some results on the
existence of solutions of the n-th order differential equation approaching a polyno-
mial function of the degree m with 1 ≤ m ≤ n− 1 are proved by Philos, Purnaras
and Tsamatos [30]. Their proofs are based on an application of the Schauder
Fixed Point Theorem. The paper by Agarwal, Djebali, Moussaoui and Mustafa
[1] surveys the literature concerning the topic in asymptotic integration theory of
ordinary differential equations. Several conditions under which all solutions of the
one-dimensional p-Laplacian equation

(|y′|p−1y′)′ = f(t, y, y′), p > 1 (1.8)

are asymptotic to a + bt as t → ∞ for some real numbers a, b are proved in [24].
Some sufficient conditions for the existence of such solutions of the equation

(Φ(y(n))′ = f(t, y), n ≥ 1, (1.9)

where Φ : R→ R is an increasing homeomorphism with a locally Lipschitz inverse
satisfying Φ(0) = 0 are given in the paper [21].

In the papers [22, 23] the fractional differential equation of the Caputo’s type
cDα

ax(t) = f(t, x(t)), a ≥ 1, α ∈ (1, 2) (1.10)

is studied. In [23] a higher order fractional differential equation is studied. In
the both papers sufficient conditions under which all solutions of these equations
are asymptotic to at + b, is proved. The problem of asymptotic integration of
fractional differential equations of the Riemann-Liouville type is studied in [4, 5].
The obtained results are proved by an application of the fixed point method.

The aim of this paper is to give some conditions under which all solutions of a
nonlinear second order differential equations perturbed by the Riemann-Liouville
integral of a nonlinear function are asymptotic to at+ b. The proof of this result is
based on a desingularization method proposed by the author in the paper [19] (see
also [20]).

2. second-order ODEs perturbed with a fractional derivative

In this section we study the following fractional initial-value problem

u′′(t) + f(t, u(t), u′(t)) +
m∑
i=1

ri(t)
∫ t

0

(t− s)αi−1hi(τ, u(τ), u′(τ))dτ = 0, (2.1)

u(1) = c1 u′(1) = c2, (2.2)

where t > 0 and 0 < α < 1.

Definition 2.1. A function u : [0, T )→ R, 0 < T ≤ ∞, is called a solution of (2.1)
if u ∈ C2 on the interval (0, T ), limτ→0+ u(t) exists and u(t) satisfies (2.1) on the
interval (0, T ). This solution is called global if it exists for all t ∈ [0,∞).

We assume the following hypotheses:
(H1) Every solution of the equation (2.1) is global;
(H2) The functions f(t, u, v), hi(t, u, v), i = 1, 2, . . . ,m are continuous on D =

{(t, u, v) : t ∈ [0,∞), u, v ∈ R} and the functions ri(t), i = 1, 2, . . . ,m are
continuous on the interval [0,∞);
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(H3) There exist continuous, nonnegative functions hi : [0,∞) → R, i = 1, 2, 3
and continuous, positive and nondecreasing functions gj : [0,∞)→ R such
that

|f(t, u, v)| ≤ Se−γt
(
h1(t)g1

( |u|
t

)
+ h2(t)g2(|v|) + h3(t)

)
, t > 0,

where S, γ > 0;
(H4) There exist continuous, nonnegative functions hij : [0,∞) → R, i =

1, 2, . . . ,m; j = 1, 2, 3 and continuous positive, nondecreasing functions
Gij : [0,∞)→ R, i = 1, 2, . . . ,m; j = 1, 2, 3 such that

|fi(t, u, v)| ≤ h1i(t)Gij
( |u|
t

)
+ h2i(t)G2i(|v|) + h3i(t), t > 0;

for all (t, u, v) ∈ D, i = 1, 2, . . . ,m;
(H5) |ri(t)| ≤ Sie−ωit, t ≥ 0, where Si > 0, ωi > 1, i = 1, 2, . . . ,m;
(H6) There exist numbers pi > 1, i = 1, 2, . . . ,m such that pi(αi − 1) + 1 > 0

with∫ ∞
0

hi(s)q <∞,
∫ ∞

0

hij(s)q <∞, i = 1, 2, . . . ,m; j = 1, 2, 3,

where q = q1q2 . . . qm, qi = pi/(pi − 1), i = 1, 2, . . . ,m;
(H7) ∫ ∞

0

τ q−1dτ

ω(τ)
=∞,

where

ω(w) = g1(w)q + g2(w)q +
m∑
i=1

2∑
j=1

Gij(w)q.

Theorem 2.2. If the conditions (H1)–(H7) are satisfied then for every global so-
lution u(t) of (2.1) there exist real numbers a, b such that u(t) = at + b + o(t) as
t→∞.

For the proof of this theorem we use the following lemma, proved in [19].

Lemma 2.3. Let pj , αj, j = 1, 2, . . . ,m satisfy (H4). Then∫ t

0

(t− s)pj(αj−1)epjsds ≤ Qjepjt, t ≥ 0, j = 1, 2, . . . ,m,

where

Qj =
Γ(1 + pj(αj − 1))

p1+pj(αj−1)
,

and
Γ(x) =

∫ ∞
0

sx−1e−sds, x > 0

which is the Euler gamma function.

Proof of Theorem 2.2. Let u(t) be a solution of (2.1) corresponding to the initial
conditions (2.2). Then

u′(t) = c2 −
∫ t

1

f(s, u(s), u′(s))ds

−
m∑
i=1

∫ t

1

ri(s)
∫ s

0

(s− τ)αi−1fi(τ, u(τ), u′(τ))dτds,
(2.3)
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u(t) = c1 + c2(t− 1)−
∫ t

1

(t− s)f(s, u(s), u′(s))ds

−
m∑
i=1

∫ t

1

(t− s)ri(s)
(∫ s

0

(s− τ)αi−1fi(τ, u(τ), u′(τ))dτ
)
ds.

(2.4)

From conditions (H3)–(H5) it follows that for t ≥ 1,

|u′(t)| ≤ |c2|+
∫ t

1

[h1(s)g1

( |u(s)|
s

)
+ h2(s)g2(|u′(s)|) + h3(s)]ds

+
m∑
i=1

∫ t

1

|ri(s)|
∫ s

0

(s− τ)αi−1
[
h1i(τ)G1i

( |u(τ)|
τ

)
+ h2i(τ)G2i(|u′(τ)|) + h3i(τ)

]
dτds

and

|u(t)|
t
≤ C +

∫ t

1

[h1(s)g1

( |u(s)|
s

)
+ h2(s)g2(|u′(s)|) + h3(s)]ds

+
m∑
i=1

∫ t

1

|ri(s)|
∫ s

0

(s− τ)αi−1
[
h1i(τ)G1i

( |u(τ)|
τ

)
+ h2i(τ)G2i(|u′(τ)|) + h3i(τ)

]
dτds,

where C = |c1| + |c2|. If qi = pi/(pi − 1) then using Lemma 2.3 and the Hölder
inequality we estimate∫ s

0

(s− τ)αi−1k1i(τ)G1i

( |u(τ)|
τ

)
dτ

≤
(∫ s

0

(s− τ)pi(αi−1)epiτdτ
)1/pi

(∫ s

0

e−qiτh1i(τ)qiG1i

( |u(τ)|
τ

)qi
dτ
)1/qi

≤ Qies
(∫ s

0

e−qiτh1i(τ)qiG1i

( |u(τ)|
τ

)qi
dτ
)1/qi

,∫ s

0

(s− τ)αi−1h2i(τ)G2i(|u′(τ)|)dτ ≤ Qies
(∫ s

0

e−qiτh2i(τ)qiG2i(|u′(τ)|)qidτ
)1/qi

,∫ s

0

(s− τ)αi−1h3i(τ)dτ ≤ Qies
(∫ s

0

e−qiτh3i(τ)qidτ
)1/qi

.

These inequalities yield

|u(t)|
t
≤ C + S

∫ t

1

e−γs
(
h1(s)g1

( |u(s)|
s

)
+ h2(s)g2(|u′(s)|) + h3(s)

)
ds

+
m∑
i=1

SiQi

∫ t

1

e−(ωi−1)s
{(∫ s

0

e−qiτh1i(τ)qiG1i

( |u(τ)|
τ

)qi
dτ
)1/qi

+
(∫ s

0

e−qiτh2i(τ)qiG2i(|u′(τ)|)qidτ
)1/qi

+
(∫ s

0

e−qiτh3i(τ)qidτ
)1/qi

}
ds

Since ωi > 1 and γ > 0, we have the estimate

|u(t)|
t
≤ C + S

∫ t

0

e−γs
(
h1(s)g1

|u(s)|
s

) + h2(s)g2(|u′(s)|) + h3(s)
)
ds
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+
m∑
i=1

Si
Qi

ωi − 1

{(∫ t

0

e−qiτh1i(τ)qiG1i

( |u(τ)|
τ

)qi
dτ
)1/qi

+
(∫ t

0

e−qiτh2i(τ)qiG2i(|u′(τ)|)qidτ
)1/qi

+
(∫ t

0

e−qiτh3i(τ)qidτ
)1/qi

dτ
}
.

Denoting by z(t) the right-hand side of this inequality, we have

|u(t)|
t
≤ z(t), |u′(t)| ≤ z(t), t ≥ 0.

Since g1, g2, G1i, G2i, G3i are nondecreasing functions these inequalities yield

z(t) ≤ C + S

∫ t

0

e−γs
(
h1(s)g1(z(s)) + h2(s)g2(z(s)) + h3(s)

)
ds

+
m∑
i=1

Si
Qi

ωi − 1

{(∫ t

0

e−qiτh1i(τ)qiG1i(z(τ))qidτ
)1/qi

+
(∫ t

0

e−qiτh2i(τ)qiG2i(z(τ))qidτ
)1/qi

+
(∫ t

0

e−qiτh3i(τ)qidτ
)1/qi

dτ
}
.

Let Q = max{ SiQi

ωi−1 , i = 1, 2, . . . ,m} and q = q1q2 . . . qm. Then using the in-
equality (

∑3m+2
i=1 ai)q ≤ (3m + 2)q−1(

∑3m+2
i=1 aqi ) for any nonnegative numbers ai,

i = 1, 2, . . . , 3m+ 2, we obtain the estimate

z(t)q

≤ (3m+ 2)q−1
(
Cq + Sq

∫ t

1

e−γs
(∫ t

1

(h1(s)g1(z(s)) + h2(s)g2(z(s)) + h3(s))ds
)q

+Qq
m∑
i=1

{(∫ t

0

e−qiτh1i(τ)qiG1i(z(τ))qidτ
)q̂i

+
(∫ t

0

e−qiτh2i(τ)qiG2i(z(τ))qidτ
)q̂i

+
(∫ t

0

e−qiτh3i(τ)qidτ
)q̂i

dτ
}
,

where q̂i = q1q2 . . . qi−1qi+1 . . . qm. If p̂i = q̂i

q̂i−1 and p = q
q−1 , then using the Hölder

inequality we obtain the following inequalities∫ t

0

e−γs
{∫ s

1

(
h1(τ)g1(z(τ)) + h2(τ)g2(z(τ)) + h3(τ)

)
dτ
}q
ds

≤
( 1
pγ

)1/p ∫ t

0

(
h1(s)g1(z(s)) + h2(s)g2(z(s)) + h3(s)

)q
ds

≤ 3q−1
( 1
pγ

)1/p ∫ t

0

(
h1(s)qg1(z(s))q + h2(s)qg2(z(s))q + h3(s)q

)
ds,(∫ t

0

e−qiτh1i(τ)qiG1i(z(τ))qidτ
)q̂i

≤
(∫ t

0

e−p̂iqisds
) 1

p̂i
(∫ t

0

h1i(s)qG1i(z(s))qds
)

≤ 1
(p̂iqi − 1)1/p̂i

∫ t

0

h1i(s)qG1i(z(s))qds,



EJDE-2014/201 ASYMPTOTIC BEHAVIOR OF SOLUTIONS 7(∫ t

0

e−qiτh2i(τ)qiG2i(z(τ))qidτ
)q̂i

≤ 1
(p̂iqi − 1)1/p̂i

∫ t

0

h2i(s)qG2i(z(s))qds,∫ t

0

e−qish3i(s)qids ≤ 1
(p̂iqi − 1)1/p̂i

∫ t

0

h3i(s)qds.

From these inequalities and (H6) it follows that there exist a constant A > 0 such
that

z(t)q ≤ A+A

∫ t

0

[h1(s)qg1(z(s))q + h2(s)qg2(z(s)) + h3(s)q]ds

+A

m∑
i=1

∫ t

0

h1i(s)qG1i(z(s))qds+A

m∑
i=1

∫ t

0

h2i(s)qG2i(z(s))qds.

This inequality implies that the function v(t) = z(t)q satisfy the inequality

v(t) ≤ A+
∫ t

0

F (s)ω(v(s)
1
q )ds, t ≥ 0,

where

ω(z) = g1(z)q + g2(z)q +
m∑
i=1

[G1i(z)q +G2i(z)q],

F (t) = A
(
h1(t)q + h2(t)q +

m∑
i=1

[h1i(t)q + h2i(t)q]
)
.

From (H6) it follows that
∫∞

0
F (s)ds <∞, and from the Bihari inequality we obtain

v(t) ≤ K0 = Ω−1[Ω(A) +
∫ ∞

0

F (s)ds] <∞, t ≥ 0,

where

Ω(u) =
∫ v

v0

σ

ω(σ)
.

Note that Ω(A) +
∫∞

0
F (s)ds is always in the range of Ω−1, as ω(∞) =∞ by (H7).

This implies that there is a constant K > 0 such that

|u′(t)| ≤ z(t) ≤ K, |u(t)|
t
≤ z(t) ≤ K, t ≥ 0.

In conclusion, we obtain the existence of the limit

lim
t→∞

|u(t)|
t

= c,

which completes the proof. �
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3. Example

The following example is a fractional modification of the Caligo’s example men-
tioned in the introduction.

u′′(t) + Se−γt
{
ω2 1

(t+ 1)1+ 1
q

(u(t)
t

)
+ k1

1

(t+ 1)1+ 1
q

u′(t) + k2
1

t1+ 1
q

}
+

m∑
i=1

Sie
−ωit

∫ t

0

(t− s)αi−1
{ η1i

(s+ 1)1+ 1
qi

ln
[(u(s)

s

)qi + 2
]1/qi

+
η2i

(s+ 1)1+ 1
qi

(
ln
[
u′(s)]qi + 2

)1/qi +
η3i

(s+ 1)1+ 1
qi

}
ds = 0,

(3.1)

where S, γ, ω, k1, k2, η1i, η2i, η3i, i = 1, 2, . . . ,m are positive numbers and γ, ωi,
q, qi, αi satisfy the conditions in Theorem 2.2. Here

hi(t) =
ki

(t+ 1)1+ 1
q

, hji(t) =
ηji

(t+ 1)1+ 1
qi

,

i = 1, 2, . . . ,m, j = 1, 2, 3, g1(u) = g1(u) = [ln(uq + 2)]
1
q , g1i(u) = g2i(u) =

[ln(uqi + 2)]1/qi . Since∫ ∞
0

hi(s)qds =
∫ ∞

0

1
(s+ 1)1+q

ds =
1
q

and ∫ ∞
0

σq−1dσ

g1(σ)q
=
∫ ∞

0

σq−1dσ

[ln(σq + 2)]
=

1
q

∫ ∞
0

dτ

ln(τ + 2)
=∞,

all conditions of Theorem 2.2 are satisfied and therefore for any solution of (3.1)
there exist constants a, b ∈ R such that u(t) = at+ b+ o(t) as t→∞.
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[19] M. Medveď; A new approach to an analysis of Henry type integral inequalities and their
Bihari type versions, J. Math. Anal. Appl. Vol. 214(1997)349-366.

[20] M. Medveď; Integral inequalities and global solutions of semilinear evolution equations, J.

Math. Anal. Appl., Vol. 37, No. 4 (2002), 871–882.
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Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathe-

matics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia

E-mail address: Milan.Medved@fmph.uniba.sk


	1. Introduction
	2. second-order ODEs perturbed with a fractional derivative
	3. Example
	Acknowledgements

	References

