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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO
SECOND-ORDER DIFFERENTIAL EQUATIONS WITH
FRACTIONAL DERIVATIVE PERTURBATIONS

EVA BRESTOVANSKA, MILAN MEDVED

ABSTRACT. In this article we study the asymptotic behavior of solutions to
nonlinear second-order differential equations having perturbations that involve
Caputo’s derivatives of several fractional orders. We find sufficient conditions
for all solutions to be asymptotic to a straight line.

1. INTRODUCTION

The aim of this article is to study the asymptotic properties of solutions to
scalar second-order ordinary differential equations that are perturbed with a term
involving fractional derivatives. In these equations, the fractional derivatives most
frequently used are the Riemann-Liouville and the Caputo’s fractional derivatives.
For basic definitions of fractional calculus and fundamentals of the theory of frac-
tional differential equations, we refer the reader to the monographs [28] 29].

Fractional derivatives play the role of a damping force in vibrating systems in
viscous fluids; which is the case in the well known Bargley-Torvik equation,

u'(t) + A°D?2u(t) = au(t) + ¢(t). (1.1)
This equation models the motion of a rigid plate immersing in a viscous liquid with
the fractional damping term A°¢D3/2y(t) which has Caputo’s fractional derivative
(see [36]). Solutions of the linear fractionally damped oscillator equation with

the Caputo’s derivative are analyzed in [26]. Existence results on boundary-value
problems for the generalized Bagely-Torvik equation

u(t) + A°Du(t) = f(t, u(t),* D7u(t), /(1)) (1.2)
and for some other fractional differential equations can be found in [2} [3} 34 27].
An existence and uniqueness result for the multi-fractional initial-value problem
N
Au" + Z By, D% u(t) = f(t,u),
k=1
w0) =ug, v(0)=c1, 0<ar<2, k=12,....,N

(1.3)
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can be found in [33]. Caputo’s fractional derivatives in equation (1.3) play the
role of damping terms. Abstract evolution equations with the Caputo’s fractional
derivatives in the nonlinearities are studied in [I3] [14] . Fractionally damped pen-
dulums or oscillators are studied in [26, [33]. More articles devoted to this type of
equations can be found in the list of references.

The following equation for a pendulum has the ordinary damping term Az’(t)
and the fractional damping terms Ay D1 2(t), ..., A\, *DPmx(t):

2" (t) + A DR a(t) 4 .. A CDPma(t) + Mo (t) + wia(t) = g(t, (), 2 (1)),

where t > 0, 3; € (0,1), i =1,2,...,m.

In [26], the equation

2"+ AND + Wi =0, x(0)=xz9, 2(0)=wx1, A>0.

is analyzed by using the fractional version of the Laplace transformation. The
Laplace image of z(t) is
sxo 4+ 1 + As g

s2 + As® + w?
and the characteristic equation for the fractional differential equation is

2+ A +w? =0.

X(s) =

)

When a = p/q this characteristic equation is was analyzed in [28]. For the linear
fractionally damped oscillator with oz = 1/2 the characteristic equation is

2+ As/? 4 w? = 0,

whose analysis is much more complicated than in the case of the harmonic oscillator
with the classical damping term (see [26]). It is clear that the exact analysis of
linear fractional systems is extraordinary difficult. Some analysis and simulations
of fractional-order systems can be found in the book [28]. The form of the equation
(1.3) enables us to avoid some difficulties in the study of the stability problem by
using a desingularization method developed in [19] 20, 22].

In the asymptotic theory of the n-th order nonlinear ordinary differential equa-
tions

y™ = flty gy, (1.4)

a classical problem is to establish some conditions for the existence of a solution
which approaches a polynomial of degree 1 < m < n—1 as t — oco. The first paper
concerning this problem was published by Caligo [7] in 1941. He proved that if

k
|A(t)] < 2 (1.5)

for all large ¢, where k, p are given, then any solution y(¢) of the linear differential
equation

y'(t) + A(t)y(t) =0, t>0, (1.6)

can be represented asymptotically as y(t) = ¢1t 4+ ¢2 + o(1) when ¢ — 400, with

c1,¢2 € R (see [I]). The first article on the nonlinear second-order differential
equation

y'(t) + ft,y(t) =0 (1.7)

was published by Trench [37] in 1963. Then there are publications by Cohen [9],

Trench [37], Kusano and Trench [I5] and [I6], Dannan [I2], Constantin [I0] and

[11], Rogovchenko [31], Rogovchenko [32], Mustafa, Rogovchenko [25], Lipovan [17]



EJDE-2014/201 ASYMPTOTIC BEHAVIOR OF SOLUTIONS 3

and others. In the proofs of their results the key role is played by the Bihari in-
equality [6] which is a generalization of the Gronwall inequality. Some results on the
existence of solutions of the n-th order differential equation approaching a polyno-
mial function of the degree m with 1 < m < n — 1 are proved by Philos, Purnaras
and Tsamatos [30]. Their proofs are based on an application of the Schauder
Fixed Point Theorem. The paper by Agarwal, Djebali, Moussaoui and Mustafa
[1] surveys the literature concerning the topic in asymptotic integration theory of
ordinary differential equations. Several conditions under which all solutions of the
one-dimensional p-Laplacian equation

(P~ = fty,y'), p>1 (1.8)

are asymptotic to a 4+ bt as t — oo for some real numbers a,b are proved in [24].
Some sufficient conditions for the existence of such solutions of the equation

(@™ = f(ty), n>1, (1.9)

where ® : R — R is an increasing homeomorphism with a locally Lipschitz inverse
satisfying ®(0) = 0 are given in the paper [21].
In the papers [22] 23] the fractional differential equation of the Caputo’s type

‘DSx(t) = f(t,z(t)), a>1, a€(1,2) (1.10)

is studied. In [23] a higher order fractional differential equation is studied. In
the both papers sufficient conditions under which all solutions of these equations
are asymptotic to at 4+ b, is proved. The problem of asymptotic integration of
fractional differential equations of the Riemann-Liouville type is studied in [4] [5].
The obtained results are proved by an application of the fixed point method.

The aim of this paper is to give some conditions under which all solutions of a
nonlinear second order differential equations perturbed by the Riemann-Liouville
integral of a nonlinear function are asymptotic to at +b. The proof of this result is
based on a desingularization method proposed by the author in the paper [19] (see
also [20]).

2. SECOND-ORDER ODES PERTURBED WITH A FRACTIONAL DERIVATIVE

In this section we study the following fractional initial-value problem

u’ () + f(t,u(t),u'(t) + Zri(t)/o (t — &) hi(r,u(r), v (7))dr =0, (2.1)

u(l)=c1 (1) = ca, (2.2)
where t > 0 and 0 < o < 1.

Definition 2.1. A function v : [0,7) — R, 0 < T < o0, is called a solution of (2.1)
if u € C? on the interval (0,7, lim,_ o+ u(t) exists and u(t) satisfies (2.1)) on the
interval (0,7"). This solution is called global if it exists for all ¢ € [0, 00).

We assume the following hypotheses:

(H1) Every solution of the equation is global;

(H2) The functions f(t,u,v),h;(t,u,v), i = 1,2,...,m are continuous on D =
{(t,u,v) : t € [0,00), u,v € R} and the functions 7;(¢), ¢ = 1,2,...,m are
continuous on the interval [0, co);
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(H3) There exist continuous, nonnegative functions h; : [0,00) — R, i = 1,2, 3
and continuous, positive and nondecreasing functions g; : [0, 00) — R such
that

_ U
|f(t,u,v)| < Se™ (hl(t)gl(¥) + ha(t) g2 (|v]) + hg(t)), t>0,
where S,y > 0;

(H4) There exist continuous, nonnegative functions h;; : [0,00) — R, i =
1,2,...,m; 7 = 1,2,3 and continuous positive, nondecreasing functions
Gij 1 [0,00) = R, i =1,2,...,m; j = 1,2, 3 such that

u

|fi(t,u7v)| < hli(t)Gij(g) + hzi(t)GQi(l'UD + hgi(t), t > 0;
for all (t,u,v) € D,i=1,2,...,m;

(H5) |r;i(t)| < S;e~wit, ¢t >0, where S; >0, w; > 1,i=1,2,...,m;

(H6) There exist numbers p; > 1, ¢ = 1,2,...,m such that p;(c; —1)+1 > 0
with

oo oo
/ hi(s)q<oo,/ hij(s)? <oo, i=1,2,...,m; j=1,2,3,
0 0

Whereq:CI1QZ~-~Qm7 qlzpl/(pl_1)77’:1527am7

(H7)
/°° T4 1dr C
0 w(7) ’
where o
w(w) = g1(w)? + g2(w)? + Z Z Gij(w)?.
i=1 j=1

Theorem 2.2. If the conditions (H1)—(HT7) are satisfied then for every global so-
lution u(t) of (2.1) there exist real numbers a,b such that u(t) = at + b+ o(t) as

t — oo.
For the proof of this theorem we use the following lemma, proved in [19].

Lemma 2.3. Let p;,a;, j =1,2,...,m satisfy (H4). Then
t
/ (t—s)P (@ Debisds < QzePi’, £>0,j=1,2,...,m,
0
where

L1+ pjla; —1))
p1+Pj(aJ_1)

Q] = )
and ~
I(z) = / s le7dds, x>0
0

which is the Euler gamma function.

Proof of Theorem[2.3 Let u(t) be a solution of (2.1)) corresponding to the initial
conditions (2.2)). Then
t

' (t) =co — : f(s,u(s),u'(s))ds

- Z/lt 7i(s) /Os(s — 1) i, u(r), W/ (1)) drds,



EJDE-2014/201 ASYMPTOTIC BEHAVIOR OF SOLUTIONS 5
t
u(t) =i +ealt = 1) = [ (= 5)(s,ulo).u(5))ds
1
- é/lt(t - s)ri(s)</os(s = ) i ulr), (7)) dr ) ds.

From conditions (H3)—(H5) it follows that for ¢t > 1,

(2.4)

W (8)] < Jes] + / r8)an () 1 o) () + ()]s
3 [ o e (0

¥ R (7) Gl (o (7)) + hgi(r)] drds

and

+3° [ Ints) / (s = myet [hh-(T)GM(‘u:)')

+ hoi(T)Ga; (Ju/(1)]) + hgi(T)] drds,

where C' = |c1| + |c2|. If ¢; = pi/(p; — 1) then using Lemma and the Holder
inequality we estimate

/3(5 - T)ai_lku(T)Gu(‘u(T)l )dr
0 T
< (/S(S — T)pi(ai_l)epdeT) He (/S e_qiThli(T)Qi Gli(|u(7—)| )qidr) 1/q:
0 0 T
<@ ([ ermmtrm ey ar)
/Os(s — 7)Y oy (1) Goy ([0 (7)) dT < Qie“‘(/os €_q’i7h2i(7)in2i(|u’(7)|)q'id7)1/%7
/Os(s — 7)* T hy(T)dr < Qies(/os e_qiThSi(T)qidT>1/qi,

These inequalities yield

|u§t )| <C+ S/ —vs 1(3)91(@) + ha(8)g2(|v/(s)]) + h3(8)>ds
+ ZSiQi/l e_(“i‘l)s{(/os 6_q”hu(7)‘”G1i(MT;)')%CH)”‘“
+ (/OS 6_(]”]121’(7)‘“Gzi(\UI(T)indT)qu + (/OS e_qiThgi(T)qidT)l/qi}ds

Since w; > 1 and v > 0, we have the estimate

‘“Ef” <C+S/ ‘75 1(8)9 |u(5)|)+h (s)g (IU'(8)|)+h3(8))d8
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’ zzin; & Wz‘Q—i 1 { ( /Ot eiqiThli(T)inu(w(TN )QidT) 1/4;

T

¢ 1/q; t 1/q;
+( / e~ hog(7) Gaa(u' () ) 7))+ ( / e~ hy(r)tdr) " dr .
0 0
Denoting by z(t) the right-hand side of this inequality, we have

|u(®)]

t

<z(t), (@) <z(t), t>0.

Since g1, g2, G145, G2;, G3; are nondecreasing functions these inequalities yield
t
A0 <C+8 [ e (M) + ha(s)gao() + o) ds
0
) i —qiTh . qi ) qi
+3si 1{(/0 € hay () G (=()) i

+ (/Ot 6_‘“%2@‘(7)(’@%(Z(T))(“dT)qu + (/Ote_q”hgi(T)q"dT)l/qidr}.

Let @ = max{ S?Cﬁ,i =1,2,...,m} and ¢ = ¢1G2...Gm. Then using the in-

1/qi

Wi
equality (E?ffrz a;)? < (3m+ 2)q_1(zf’fl+2 al) for any nonnegative numbers a;,
i=1,2,...,3m + 2, we obtain the estimate

z()1

< (3m +2)17! <Cq + 59 /lt 6ws(/lt(hl(S)gl(z(s)) 1 hao(s8)ga(2(s)) + hS(S))dS)q
+Q17 i { ( [)t eiqiThli(T)qiGli(Z(T))qidT) G

i=1

+( /0 te—qwh%(T)%GQZ-(Z(T))MT)Qi +( /0 te—q”hgi(T)%dT)@dT},

where §; = q1q2 -+ - Gi—1¢Qiz1 - - - Gm- I Py = Q,qil and p = ﬁ, then using the Holder

inequality we obtain the following inequalities

/Ot 6*75{ /15 <h1 (1) g1(2(7)) + ha(1)g2(2(7)) + hg(T))dT}qu
1

<
B (p’Y

)1/11 /Ot (hl(S)g1(Z(8)) + ha(s)g2(2(s)) + hs(s))qu

<3 ()7 [ (1000 o(0))" (o) gao(0))" + ()" .

Gi

</ot e hy(7) " Ga(2(7)) " )

< (/Ot e_i”qisds)i (/Ot hli(s)qui(z(s))qu)

1 t
: W/O hli(S)un(z(S»qu’
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([ e matnmantenran)” < ot [ hasGatetoas

t 1 t
~tsha(s)lids < ———— | hyi(s)eds.
/Oe 55(5) S—@iqi—l)vm/o 2i(5)0ds

From these inequalities and (HG6) it follows that there exist a constant A > 0 such
that

t
2(t)T < A+ A/ [h1 ()91 (2(5))? + ha(s)?g2(2(s5)) + hs(s)]ds
0
m t m t
Ay / hai(5)1Gi(2(5))1ds + A / i (5)1 G ((5)) ds.
i=170 i=170
This inequality implies that the function v(t) = z(¢)? satisfy the inequality

v(t)§A+/O F(s)w(v(s)®)ds, t>0,

where

w(z) = g1(2)? + ga(z quiGu )T+ Gai(2)],

i=1
F(t) :A(hl( )T+ ha(t q+§:hu )T + hai(t) ])-
i=1

From (H6) it follows that fo s)ds < 00, and from the Bihari inequality we obtain

v(t) < Ko =0 / F(s)ds] < oo, t>0,
where

Note that Q(A) + [;° F(s)ds is always in the range of 271, as w(co) = oo by (HT).
This implies that there is a constant K > 0 such that

/()] < 2(t) < K, |“(tt)| <) <K, t>0.

In conclusion, we obtain the existence of the limit

lim M*

t—o0 t ’

which completes the proof. (I
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3. EXAMPLE

The following example is a fractional modification of the Caligo’s example men-
tioned in the introduction.

u'(t) + Se‘Vt{wzmi)H;(U(t)> + k1 1)1U/(t) + k‘2t1%%}

P a1 M u(8)\q Vai
+;S¢e /0 (t—9) {(8+11)1+qli In [ ( . )+ 2] (3.1)

+ Ll(ln [u/(s)]% + 2)1/% + L}ds =0,

(s+ 1) (s+1)*w
where S, v, w, k1, ka2, 014, N2, N33, @ = 1,2,...,m are positive numbers and -, w;,
q, qi, o satisfy the conditions in Theorem Here
ki Nji
hi(t) — 727 h‘i(t) — 4’
(t+ 1)1+% J (t+ 1)1-‘1—,%_

i=1,2...,m j =123 gu) = gi(u) = [ +2)]7, g(u) = gai(u) =
[In(u% + 2)]'/4. Since

hi(s)ids = | ——ds =~
/0 (S) S /0 (S+1)1+q S p

/Oooq_ldo_/oo o= do _1/00 dr o
o g1(0)1 o M(e?+2)] ¢y In(r+2) 7

all conditions of Theorem are satisfied and therefore for any solution of (3.1))
there exist constants a,b € R such that u(t) = at + b+ o(t) as t — oo.

and
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