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GROWTH OF SOLUTIONS OF LINEAR DIFFERENTIAL
EQUATIONS WITH ANALYTIC COEFFICIENTS OF [p, q]-ORDER

IN THE UNIT DISC

HUI HU, XIU-MIN ZHENG

Abstract. In this article, we study the growth of solutions of homogeneous

linear differential equation in which the coefficients are analytic functions of
[p, q]-order in the unit disc. We obtain results about the (lower) [p, q]-order of

the solutions, and the (lower) [p, q]-convergence exponent for the sequence of

distinct zeros of f(z)− ϕ(z).

1. Introduction

We study the growth of solutions of the following two equations, for n ≥ 2,

f (n) +An−1(z)f (n−1) + · · ·+A1(z)f ′ +A0(z)f = 0, (1.1)

and
f (n) +An−1(z)f (n−1) + · · ·+A1(z)f ′ +A0(z)f = F (z), (1.2)

where An(z), . . . , A1(z), A0(z) (6≡ 0) and F (z)( 6≡ 0) are meromorphic functions in
the complex plane C or in the unit disc ∆ = {z ∈ C : |z| < 1}.

As is well known, the theory of meromorphic solutions of linear differential equa-
tions (1.1) and (1.2) in C becomes mature and the results are fruitful, but the theory
of meromorphic solutions of equations (1.1) and (1.2) in ∆ is not as developed as
the one in C. The reason may be that the properties of meromorphic functions
in C or ∆ are of some differences, which result in that some important tools in C
are ineffective in ∆. However, we also discover that for meromorphic solutions of
equations (1.1) and (1.2) in ∆, there are many similar properties as the ones of
meromorphic solutions of equations (1.1) and (1.2) in C. For example, it is well
known that when the coefficients are entire functions, the solutions of equations
(1.1) and (1.2) are entire functions. Similarly, when the coefficients are analytic
functions in ∆, the solutions of equations (1.1) and (1.2) are analytic functions in
∆, and there are exactly n linearly independent solutions of equation (1.1) (see
e.g. [8]). Hence, it is interesting to investigate meromorphic solutions of linear
differential equations (1.1) and (1.2) in ∆.
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Typically, Heittokangas [8] investigated meromorphic solutions of linear differ-
ential equations (1.1) and (1.2) in ∆ by introducing the definition of the function
spaces and his results also gave some important tools for further investigations on
the theory of meromorphic solutions of equations (1.1) and (1.2) in ∆. After that,
many papers (see e.g. [2, 3, 4, 5, 9, 16]) focused on this topic. We proceed in this
way in this paper, inspired by the relative case in C; that is, we try to find some
results similar to the one in Liu-Tu-Shi [15], which is stated as follows.

Theorem 1.1 ([15]). Let A0(z), . . . , An−1(z) be entire functions satisfying

max{σ[p,q](Aj) : j = 1, . . . , n− 1} ≤ σ[p,q](A0) <∞,
max{τ[p,q](Aj) : σ[p,q](Aj) = σ[p,q](A0) > 0, j 6= 0} < τ[p,q](A0).

Then every nontrivial solution f(z) of (1.1) satisfies σ[p+1,q](f) = σ[p,q](A0).

Liu-Tu-Shi [15] used the [p, q]-type of A0(z) to dominate the [p, q]-types of other
coefficients, and got the result about σ[p+1,q](f). Thus, the following questions arise
naturally: (1) Whether the results similar to Theorem 1.1 can be obtained in ∆?
(2) If we use the lower [p, q]-type of A0(z) to dominate other coefficients, what can
be said about µ[p+1,q](f)? (3) Can we find some other conditions to dominate other
coefficients? In this paper, we give some answers to the above questions.

Before we give our main results in the next section, it is necessary to introduce
some notation. In this paper, we assume that the readers are familiar with the
standard notation and the fundamental results of the Nevanlinna’s theory in C
and ∆ (see e.g. [7, 8, 13, 14]). Moreover, in [11, 12], Juneja and his co-authors
investigated some properties of entire functions of [p, q]-order, and obtained some
results. In [15], in order to keep accordance with the general definition of an
entire function f(z) of iterated p-order, Liu-Tu-Shi gave a minor modification to
the original definition of [p, q]-order given in [11, 12]. Further, in [2, 3], Beläıdi
defined [p, q]-order of analytic and meromorphic functions in ∆. For conveniences,
we list the following concepts (see e.g. [2, 3, 10]).

Definition 1.2. Let p, q be integers such that p ≥ q ≥ 1, and f(z) be a meromor-
phic function in ∆. The [p, q]-order and the lower [p, q]-order of f(z) are defined
respectively by

σ[p,q](f) = lim sup
r→1−

log+
p T (r, f)

logq
1

1−r
, µ[p,q](f) = lim inf

r→1−

log+
p T (r, f)

logq
1

1−r
.

For an analytic function f(z) in ∆, we also define

σM,[p,q](f) = lim sup
r→1−

log+
p+1M(r, f)
logq

1
1−r

, µM,[p,q](f) = lim inf
r→1−

log+
p+1M(r, f)
logq

1
1−r

.

Definition 1.3. Let p, q be integers such that p ≥ q ≥ 1, a ∈ C
⋃
{∞}, and f(z)

be a meromorphic function in ∆. The [p, q]-convergence exponents of the sequence
of a-points and the sequence of distinct a-points of f(z) are defined respectively by

λ[p,q](f − a) = lim sup
r→1−

log+
p N(r, 1

f−a )

logq
1

1−r
, λ[p,q](f − a) = lim sup

r→1−

log+
p N(r, 1

f−a )

logq
1

1−r
.
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The lower [p, q]-convergence exponents of the sequence of a-points and the sequence
of distinct a-points of f(z) are defined respectively by

λ[p,q](f − a) = lim inf
r→1−

log+
p N(r, 1

f−a )

logq
1

1−r
,

λ[p,q](f − a) = lim inf
r→1−

log+
p N(r, 1

f−a )

logq
1

1−r
.

Furthermore, we obtain the definitions of λ[p,q](f−ϕ), λ[p,q](f−ϕ), λ[p,q](f−ϕ) and
λ[p,q](f−ϕ) in ∆, when the constant a in Definiton 1.3 is replaced by a meromorphic
function ϕ(z) in ∆.

Definition 1.4. Let p, q be integers such that p ≥ q ≥ 1, and f(z) be a meromor-
phic function of [p, q]-order σ(0 < σ < ∞) and lower [p, q]-order µ(0 < µ < ∞) in
∆. The [p, q]-type and the lower [p, q]-type of f(z) are defined respectively by

τ[p,q](f) = lim sup
r→1−

log+
p−1 T (r, f)

(logq−1
1

1−r )σ
, τ [p,q](f) = lim inf

r→1−

log+
p−1 T (r, f)

(logq−1
1

1−r )µ
.

For an analytic function f(z) in ∆, we also define

τM,[p,q](f) = lim sup
r→1−

log+
p M(r, f)

(logq−1
1

1−r )σ
, τM,[p,q](f) = lim inf

r→1−

log+
p M(r, f)

(logq−1
1

1−r )µ
.

Different from the case in C, we have the following results for the case in ∆.

Proposition 1.5 ([2]). Let p, q be integers such that p ≥ q ≥ 1, and f(z) be an
analytic function of [p, q]-order in ∆. The following two statements hold:

(i) If p = q, then σ[p,q](f) ≤ σM,[p,q](f) ≤ σ[p,q](f) + 1.
(ii) If p > q, then σ[p,q](f) = σM,[p,q](f).

Similarly, we can get the following proposition.

Proposition 1.6. Let p, q be integers such that p ≥ q ≥ 1, and f(z) be an analytic
function of lower [p, q]-order in ∆. The following two statements hold:

(i) If p = q, then µ[p,q](f) ≤ µM,[p,q](f) ≤ µ[p,q](f) + 1;
(ii) If p > q, then µ[p,q](f) = µM,[p,q](f).

2. Main results

In this paper, we consider the case that the coefficients are analytic functions
in ∆, and obtain two main results on the growth of solutions of equation (1.1).
Moreover, we get the results about the [p, q]-convergence exponent and the lower
[p, q]-convergence exponent of the sequence of distinct zeros of f(z)− ϕ(z).

Theorem 2.1. Let p, q be integers such that p > q ≥ 2, and An−1(z), . . . , A1(z),
A0(z) (6≡ 0) be analytic functions in ∆ with 0 < µ = µ[p,q](A0) ≤ σ[p,q](A0) < ∞.
Assume that max{σ[p,q](Aj)|j = 1, . . . , n− 1} ≤ µ[p,q](A0) and that
max{τ[p,q](Aj)|σ[p,q](Aj) = µ[p,q](A0), j 6= 0} < τ [p,q](A0) = τ < ∞. If f(z) (6≡ 0)
is a solution of (1.1), then we have

λ[p+1,q](f − ϕ) = µ[p+1,q](f) = µ[p,q](A0)

≤ σ[p,q](A0) = σ[p+1,q](f) = λ[p+1,q](f − ϕ),
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where ϕ(z) (6≡ 0) is an analytic function in ∆ with σ[p+1,q](ϕ) < µ[p,q](A0).

Theorem 2.2. Let p, q be integers such that p > q ≥ 1, and An−1(z), . . . , A1(z),
A0(z) (6≡ 0) be analytic functions in ∆ with 0 < µ = µ[p,q](A0) ≤ σ[p,q](A0) < ∞.
Assume that max{σ[p,q](Aj)|j = 1, . . . , n− 1} ≤ µ[p,q](A0) and that
lim supr→1−

∑n−1
j=1 m(r,Aj)/m(r,A0) < 1. If f(z) ( 6≡ 0) is a solution of (1.1), then

we have

λ[p+1,q](f−ϕ) = µ[p+1,q](f) = µ[p,q](A0) ≤ σ[p,q](A0) = σ[p+1,q](f) = λ[p+1,q](f−ϕ),

where ϕ(z) (6≡ 0) is an analytic function in ∆ with σ[p+1,q](ϕ) < µ[p,q](A0).

Remark 2.3. In Theorems 2.1 and 2.2, we just consider the case p > q to make
sure the Lemmas 3.8 and 3.11 hold. Moreover, q ≥ 2 in Theorem 2.1 is necessary
for using Lemma 3.10.

3. Preliminary lemmas

Lemma 3.1 ([9]). Let Aj(z), j = 0, . . . , n− 1 be analytic functions in DR (DR =
{z ∈ C

∣∣|z| < R}), where 0 < R ≤ ∞, and f(z) be a solution of (1.1) in DR,
1 ≤ p <∞. Then for all 0 ≤ r < R,

mp(r, f)p ≤ C
( n−1∑
j=0

∫ 2π

0

∫ r

0

|Aj(seiθ)|
p

n−j dsdθ + 1
)
,

where C = C(n) > 0 is a constant depending on p, and on the initial values of f(z)
at the point zθ, where Aj(zθ) 6= 0 for some j = 0, . . . , n− 1.

Lemma 3.2 ([8, 16]). Let f(z) be a meromorphic function in ∆, and k ∈ N. Then

m(r,
f (k)

f
) = S(r, f),

where S(r, f) = O(log+ T (r, f) + log 1
1−r ), possibly outside a set E1 ⊂ [0, 1) with∫

E1

dr
1−r <∞. If f(z) is of finite order (namely, finite iterated 1-order), then

m(r,
f (k)

f
) = O(log

1
1− r

).

Lemma 3.3 ([2]). Let p, q be integers such that p ≥ q ≥ 1, k ≥ 1 be an integer and
f(z) be a meromorphic function in ∆ such that σ[p,q](f) = σ <∞. Then

m(r,
f (k)

f
) = O

(
expp−1{(σ + ε) logq

1
1− r

}
)

holds for any ε > 0 and all r → 1− outside a set E2 ⊂ [0, 1) with
∫
E2

dr
1−r <∞.

Lemma 3.4 ([1]). Let g : (0, 1) → R and h : (0, 1) → R be monotone increasing
functions such that g(r) ≤ h(r) holds outside an exceptional set E3 ⊂ [0, 1) with∫
E3

dr
1−r <∞. Then there exists a constant d ∈ (0, 1) such that if s(r) = 1−d(1−r),

then g(r) ≤ h(s(r)) for all r ∈ [0, 1).

Lemma 3.5. Let p, q be integers such that p ≥ q ≥ 1 and An−1(z), . . . , A1(z),
A0(z) ( 6≡ 0), F (z) ( 6≡ 0) be meromorphic functions in ∆. If f(z) is a meromorphic
solution of (1.2) satisfying

max{σ[p,q](F ), σ[p,q](Aj)|j = 0, . . . , n− 1} < σ[p,q](f) = σ <∞,
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then λ[p,q](f) = λ[p,q](f) = σ[p,q](f).

Proof. By (1.2), we have

1
f

=
1
F

(
f (n)

f
+An−1(z)

f (n−1)

f
+ · · ·+A0(z)

)
. (3.1)

If f(z) has a zero at z0 ∈ ∆ of order γ(> n) and An−1(z), . . . , A1(z), A0(z) are all
analytic at z0, then F (z) has a zero at z0 of order at least γ − n. Hence, we have

N(r,
1
f

) ≤ nN(r,
1
f

) +N(r,
1
F

) +
n−1∑
j=0

N(r,Aj). (3.2)

By (3.1), we have

m(r,
1
f

) ≤ m(r,
1
F

) +
n−1∑
j=0

m(r,Aj) +
n∑
j=1

m(r,
f (j)

f
) +O(1). (3.3)

Lemma 3.3 gives

m(r,
f (j)

f
) = O

(
expp−1{(σ + ε) logq

1
1− r

}
)
, j = 1, . . . , n, (3.4)

holds for any ε > 0 and all r → 1− outside a set E2 ⊂ [0, 1) with
∫
E2

dr
1−r < ∞.

Therefore, by (3.2)-(3.4) and the first fundamental theorem,

T (r, f) = T (r,
1
f

) +O(1) ≤ nN(r,
1
f

) + T (r, F ) +
n−1∑
j=0

T (r,Aj)

+O
(

expp−1{(σ + ε) logq
1

1− r
}
) (3.5)

holds for all r → 1−, r 6∈ E2. Set ρ = max{σ[p,q](F ), σ[p,q](Aj)|j = 0, . . . , n − 1},
then for r → 1−, we have

n−1∑
j=0

T (r,Aj) + T (r, F ) ≤ (n+ 1) expp{(ρ+ ε) logq
1

1− r
}. (3.6)

Thus, by (3.5) and (3.6), for all r → 1−, r 6∈ E2, we have

T (r, f) ≤ nN(r,
1
f

) + (n+ 1) expp{(ρ+ ε) logq
1

1− r
}

+O
(

expp−1{(σ + ε) logq
1

1− r
}
)

≤ nN(r,
1
f

) + expp{(ρ+ 2ε) logq
1

1− r
}.

(3.7)

Hence, by Lemma 3.4 and (3.7), for all r → 1−, we have

T (r, f) ≤ nN(s(r),
1
f

) + expp{(ρ+ 2ε) logq
1

1− s(r)
}, (3.8)

where s(r) = 1 − d(1 − r), d ∈ (0, 1). If λ[p,q](f) < σ[p,q](f) = σ, then for any
ε (0 < 3ε < σ −max{λ[p,q](f), ρ}) and all r → 1−, we have

T (r, f) ≤ n expp{(λ[p,q](f) + ε) logq
1

1− s(r)
}+ expp{(ρ+ 2ε) logq

1
1− s(r)

}
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≤ (n+ 1) expp{(σ − ε) logq
1

1− s(r)
},

which results in a contradiction that σ = σ[p,q](f) < σ − ε. Therefore, we have
λ[p,q](f) ≥ σ[p,q](f) = σ. Since λ[p,q](f) ≤ λ[p,q](f) ≤ σ[p,q](f), the result holds. �

Lemma 3.6. Let p, q be integers such that p ≥ q ≥ 1 and An−1(z), . . . , A1(z),
A0(z) ( 6≡ 0), F (z) ( 6≡ 0) be meromorphic functions in ∆. If f(z) is a meromorphic
solution of (1.2) satisfying

max{σ[p,q](F ), σ[p,q](Aj)|j = 0, . . . , n− 1} < µ[p,q](f) ≤ σ[p,q](f) <∞,

then we have λ[p,q](f) = λ[p,q](f) = µ[p,q](f).

Proof. Since max{σ[p,q](F ), σ[p,q](Aj)|j = 0, . . . , n − 1} < µ[p,q](f), we have that
for r → 1−,

T (r, F ) = o(T (r, f)), T (r,Aj) = o(T (r, f)), j = 0, . . . , n− 1. (3.9)

By (3.5) and (3.9), we have

(1− o(1))T (r, f) ≤ nN(r,
1
f

) +O
(

expp−1{(σ[p,q](f) + ε) logq
1

1− r
}
)
, (3.10)

for any ε > 0 and r → 1−, r 6∈ E2, where E2 ⊂ [0, 1) satisfies
∫
E2

dr
1−r <∞. Hence,

by Lemma 3.4 and (3.10), for all r → 1−, we have

(1− o(1))T (r, f) ≤ nN(s(r),
1
f

) +O
(

expp−1{(σ[p,q](f) + ε) logq
1

1− s(r)
}
)
,

where s(r) = 1 − d(1 − r), d ∈ (0, 1). Hence, we have λ[p,q](f) ≥ µ[p,q](f). Since
λ[p,q](f) ≤ λ[p,q](f) ≤ µ[p,q](f), the result holds. �

Lemma 3.7. Let p, q be integers such that p ≥ q ≥ 1 and f(z) be an analytic
function in ∆ with µ[p,q](f) = µ <∞. Then for any given ε > 0, there exists a set
E4 ⊂ [0, 1) with

∫
E4

dr
1−r =∞, such that

µ = µ[p,q](f) = lim
r→1−, r∈E4

log+
p T (r, f)

logq
1

1−r
,

and
T (r, f) < expp{(µ+ ε) logq

1
1− r

}, r ∈ E4, r → 1−.

Moreover, if p > q ≥ 1, then we also have

M(r, f) < expp+1{(µ+ ε) logq
1

1− r
}, r ∈ E4, r → 1−.

Proof. We use a similar proof as [17, Lemma 6]. By the definition of lower [p, q]-
order, there exists a sequence {rn}∞n=1 tending to 1− such that 1 − d(1 − rn) <
rn+1(0 < d < 1) (such a sequence {rn}∞n=1 is called an exponential sequence, see
[6]), and

lim
rn→1−

log+
p T (rn, f)

logq
1

1−rn

= µ[p,q](f).

Then for any r ∈ [1− 1−rn

d , rn], we have

log+
p T (r, f)

logq
1

1−r
≤

log+
p T (rn, f)

logq
1

1−rn

logq
1

1−rn

logq
1

1−r
.
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When q ≥ 1, we have
logq

1
1−rn

logq
1

1−r

→ 1, rn → 1−. Let E4 =
⋃∞
n=n1

[1− 1−rn

d , rn], where
n1 is some sufficiently large positive integer, then for any given ε > 0, we have

lim
r→1−, r∈E4

log+
p T (r, f)

logq
1

1−r
= lim
rn→1−

log+
p T (rn, f)

logq
1

1−rn

= µ[p,q](f),

T (r, f) < expp{(µ+ ε) logq
1

1− r
}, r ∈ E4, r → 1−,∫

E4

dr

1− r
=

∞∑
n=n1

∫ rn

1− 1−rn
d

dt

1− t
=

∞∑
n=n1

log
1
d

=∞.

If p > q ≥ 1, then by the standard inequality

T (r, f) ≤ log+M(r, f) ≤ 1 + 3r
1− r

T (
1 + r

2
, f),

(see e.g. [13, p. 26]), we have

lim
r→1−, r∈E4

log+
p T (r, f)

logq
1

1−r
= lim
r→1−, r∈E4

log+
p+1M(r, f)
logq

1
1−r

.

Therefore,

M(r, f) < expp+1{(µ+ ε) logq
1

1− r
}, r ∈ E4, r → 1−.

�

Lemma 3.8. Let p, q be integers such that p > q ≥ 1, and An−1(z), . . . , A1(z),
A0(z) ( 6≡ 0) be analytic functions in ∆ such that max{σ[p,q](Aj)|j 6= s} ≤ µ[p,q](As)
<∞. If f(z)(6≡ 0) is a solution of (1.1), then we have µ[p+1,q](f) ≤ µ[p,q](As).

Proof. If µ[p,q](f) <∞, then µ[p+1,q](f) = 0 ≤ µ[p,q](As). So, we assume µ[p,q](f) =
∞. By Lemma 3.1, we have

T (r, f) = m(r, f) ≤ C(
n−1∑
j=0

∫ 2π

0

∫ r

0

|Aj(seiθ)|
1

n−j dsdθ + 1)

≤ 2πC(
n−1∑
j=0

rM(r,Aj) + 1),

(3.11)

where C = C(n) > 0 is a constant depending on the initial values of f(z) at the
point zθ, where Aj(zθ) 6= 0 for some j = 0, . . . , n − 1. Set b = max{σ[p,q](Aj)|j 6=
s} = max{σM,[p,q](Aj)|j 6= s}, then we have

M(r,Aj) ≤ expp+1{(b+ ε) logq
1

1− r
}, j 6= s, (3.12)

for any ε > 0 and r → 1−. By Lemma 3.7, there exists a set E4 ⊂ [0, 1) with∫
E4

dr
1−r =∞ such that

M(r,As) ≤ expp+1{(µ[p,q](As) + ε) logq
1

1− r
}, r ∈ E4, r → 1−. (3.13)

By (3.11)-(3.13), for r ∈ E4, r → 1−, we have

T (r, f) ≤ O
(

expp+1{(µ[p,q](As) + 2ε) logq
1

1− r
}
)
. (3.14)
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By (3.14) and Proposition 1.6, we have µM,[p+1,q](f) = µ[p+1,q](f) ≤ µ[p,q](As) =
µM,[p,q](As). �

Lemma 3.9. Let p, q be integers such that p ≥ q ≥ 1, and An−1(z), . . . , A1(z),
A0(z) ( 6≡ 0) be analytic functions in ∆. Assume that max{σ[p,q](Aj)|j = 1, . . . , n−
1} ≤ µ[p,q](A0) = µ (0 < µ < ∞) and max{τ[p,q](Aj)| σ[p,q](Aj) = µ[p,q](A0), j 6=
0} < τ [p,q](A0) = τ (0 < τ <∞). If f(z)(6≡ 0) is a solution of (1.1), then we have
µ[p+1,q](f) ≥ µ[p,q](A0).

Proof. Suppose that f(z) is a nonzero solution of (1.1). By (1.1), we get

−A0(z) =
f (n)(z)
f(z)

+An−1(z)
f (n−1)(z)
f(z)

+ · · ·+A1(z)
f ′(z)
f(z)

. (3.15)

By (3.15), we have

T (r,A0) = m(r,A0) ≤
n−1∑
j=1

m(r,Aj) +
n∑
j=1

m(r,
f (j)

f
).

Hence, by Lemma 3.2, we have

T (r,A0) ≤
n−1∑
j=1

m(r,Aj) +O
(

log+ T (r, f) + log
1

1− r

)
, (3.16)

for r 6∈ E1, where E1 ⊂ [0, 1) satisfies
∫
E1

dt
1−t <∞. Set

b = max{σ[p,q](Aj)|σ[p,q](Aj) < µ[p,q](A0) = µ, j = 1, . . . , n− 1}.

If σ[p,q](Aj) < µ[p,q](A0) = µ, then for any ε(0 < 2ε < min{µ − b, τ − τ1}) and all
r → 1−, we have

m(r,Aj) = T (r,Aj) ≤ expp{(b+ ε) logq
1

1− r
} < expp{(µ− ε) logq

1
1− r

}. (3.17)

Set τ1 = max{τ[p,q](Aj)|σ[p,q](Aj) = µ[p,q](A0), j 6= 0}, then τ1 < τ . If σ[p,q](Aj) =
µ[p,q](A0) = µ, τ[p,q](Aj) ≤ τ1 < τ , then for r → 1− and the above ε, we have

m(r,Aj) = T (r,Aj) ≤ expp−1

{
(τ1 + ε)(logq−1

1
1− r

)µ
}
. (3.18)

By the definition of lower [p, q]-type, for r → 1−, we have

T (r,A0) > expp−1

{
(τ − ε)(logq−1

1
1− r

)µ
}
. (3.19)

By substituting (3.17)-(3.19) into (3.16), we have

expp−1

{
(τ − 2ε)(logq−1

1
1− r

)µ
}
≤ O(log+ T (r, f)), r 6∈ E1, r → 1−. (3.20)

Then, by Lemma 3.4 and (3.20), for all r → 1−, we have

expp−1

{
(τ − 2ε)(logq−1

1
1− r

)µ
}
≤ O(log+ T (s(r), f)),

where s(r) = 1− d(1− r), d ∈ (0, 1). Hence, we have µ[p+1,q](f) ≥ µ[p,q](A0). �
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Lemma 3.10. Let p, q be integers such that p ≥ q ≥ 2 and f(z) be an analytic
function in ∆ with 0 < σ[p,q](f) <∞. Then for any given ε > 0, there exists a set
E5 ⊂ [0, 1) with

∫
E5

dr
1−r =∞ such that

τ = τ[p,q](f) = lim
r→1−, r∈E5

log+
p−1 T (r, f)

(logq−1
1

1−r )σ[p,q](f)
.

Proof. By the definition of [p, q]-type, there exists a sequence {rn}∞n=1 tending to
1− satisfying 1− d(1− rn) < rn+1(0 < d < 1) such that

τ[p,q](f) = lim
rn→1−

log+
p−1 T (rn, f)

(logq−1
1

1−rn
)σ[p,q](f)

.

Then for any r ∈ [rn, 1− d(1− rn)], we have

log+
p−1 T (rn, f)

(logq−1
1

1−rn
)σ[p,q](f)

( logq−1
1

1−rn

logq−1
1

1−r

)σ[p,q](f)

≤
log+

p−1 T (r, f)

(logq−1
1

1−r )σ[p,q](f)
.

When q ≥ 2, we have

logq−1
1

1−rn

logq−1
1

1−r
→ 1, rn → 1−.

Let E5 =
⋃∞
n=n1

[rn, 1 − d(1 − rn)], where n1 is some sufficiently large positive
integer, then we have

lim
r→1−, r∈E5

log+
p−1 T (r, f)

(logq−1
1

1−r )σ[p,q](f)
= lim
rn→1−

log+
p−1 T (rn, f)

(logq−1
1

1−rn
)σ[p,q](f)

= τ[p,q](f),

and ∫
E5

dr

1− r
=

∞∑
n=n1

∫ 1−d(1−rn)

rn

dt

1− t
=

∞∑
n=n1

log
1
d

=∞.

�

Lemma 3.11. Let p, q be integers such that p > q ≥ 1. If An−1(z), . . . , A1(z),
A0(z) ( 6≡ 0) are analytic functions of [p, q]-order in ∆, then every solution f(z)( 6≡ 0)
of (1.1) satisfies σ[p+1,q](f) ≤ max{σ[p,q](Aj)|j = 0, . . . , n− 1}.

Proof. Set b = max{σ[p,q](Aj)|j = 0, . . . , n− 1} = max{σM,[p,q](Aj)|j = 0, . . . , n−
1}. Then we have

M(r,Aj) ≤ expp+1{(b+ ε) logq
1

1− r
}, (3.21)

for any given ε > 0 and r → 1−. By (3.11) and (3.21), for the above ε > 0 and
r → 1−, we have

T (r, f) = m(r, f) ≤ O(expp+1{(b+ 2ε) logq
1

1− r
}). (3.22)

Therefore, σ[p+1,q](f) ≤ max{σ[p,q](Aj)|j = 0, . . . , n− 1}. �



10 H. HU, X.-M. ZHENG EJDE-2014/204

4. Proofs of main theorems

Proof of Theorem 2.1. By Lemma 3.11, we have σ[p+1,q](f) ≤ σ[p,q](A0). Set b =
max{σ[p,q](Aj)|σ[p,q](Aj) < σ[p,q](A0)}. If σ[p,q](Aj) < µ[p,q](A0) ≤ σ[p,q](A0) or
σ[p,q](Aj) ≤ µ[p,q](A0) < σ[p,q](A0), then for any given ε(0 < 2ε < σ[p,q](A0) − b)
and r → 1−, we have

m(r,Aj) = T (r,Aj) ≤ expp
{

(b+ ε) logq
1

1− r
}

< expp
{

(σ[p,q](A0)− ε) logq
1

1− r
}
.

(4.1)

Set τ1 = max{τ[p,q](Aj)| σ[p,q](Aj) = µ[p,q](A0), j 6= 0}. If σ[p,q](Aj) = µ[p,q](A0) =
σ[p,q](A0), then we have τ1 < τ ≤ τ[p,q](A0). Therefore,

m(r,Aj) = T (r,Aj) ≤ expp−1

{
(τ1 + ε)(logq−1

1
1− r

)σ[p,q](A0)
}

(4.2)

holds for r → 1− and any given ε (0 < 2ε < τ[p,q](A0) − τ1). By the definition
of [p, q]-type and Lemma 3.10, for all r → 1−, r ∈ E5, where E5 ⊂ [0, 1) satisfies∫
E5

dr
1−r =∞, we have

T (r,A0) > expp−1

{
(τ[p,q](A0)− ε)(logq−1

1
1− r

)σ[p,q](A0)
}
. (4.3)

Then by (3.16) and (4.1)-(4.3), for all r → 1−, r ∈ E5\E1 and the above ε, where
E1 ⊂ [0, 1) satisfies

∫
E1

dt
1−t <∞, we have

expp−1

{
(τ[p,q](A0)− 2ε)(logq−1

1
1− r

)σ[p,q](A0)
}
≤ O(log+ T (r, f)). (4.4)

By (4.4), σ[p+1,q](f) ≥ σ[p,q](A0). Thus, we have σ[p+1,q](f) = σ[p,q](A0).
By Lemmas 3.8 and 3.9, we know that every solution f(z) ( 6≡ 0) of (1.1) satisfies

µ[p+1,q](f) = µ[p,q](A0).
Now, we need to prove λ[p+1,q](f − ϕ) = µ[p+1,q](f) and λ[p+1,q](f − ϕ) =

σ[p+1,q](f). Setting g = f − ϕ, since σ[p+1,q](ϕ) < µ[p,q](A0), we have σ[p+1,q](g) =
σ[p+1,q](f) = σ[p,q](A0), µ[p+1,q](g) = µ[p+1,q](f) = µ[p,q](A0), λ[p+1,q](g) =
λ[p+1,q](f − ϕ) and λ[p+1,q](g) = λ[p+1,q](f − ϕ). By substituting f = g + ϕ, f ′ =
g′ + ϕ′, . . . , f (n) = g(n) + ϕ(n) in (1.1), we obtain

g(n)+An−1(z)g(n−1)+· · ·+A0(z)g = −[ϕ(n)+An−1(z)ϕ(n−1)+· · ·+A0(z)ϕ]. (4.5)

If F (z) = ϕ(n) + An−1(z)ϕ(n−1) + · · · + A0(z)ϕ ≡ 0, then by Lemma 3.9, we
have µ[p+1,q](ϕ) ≥ µ[p,q](A0), which is a contradiction. Thus, F (z) 6≡ 0. Since
σ[p+1,q](F ) ≤ σ[p+1,q](ϕ) < µ[p,q](A0) = µ[p+1,q](f) = µ[p+1,q](g) ≤ σ[p+1,q](g) =
σ[p+1,q](f), by Lemma 3.5 and (4.5), we have λ[p+1,q](g) = λ[p+1,q](g) = σ[p+1,q](g) =
σ[p,q](A0); i.e., λ[p+1,q](f − ϕ) = λ[p+1,q](f − ϕ) = σ[p+1,q](f) = σ[p,q](A0). By
Lemma 3.6 and (4.5), we have λ[p+1,q](g) = µ[p+1,q](g); i.e., λ[p+1,q](f − ϕ) =
µ[p+1,q](f) = µ[p,q](A0). Therefore, λ[p+1,q](f − ϕ) = µ[p+1,q](f) = µ[p,q](A0) ≤
σ[p,q](A0) = σ[p+1,q](f) = λ[p+1,q](f − ϕ) = λ[p+1,q](f − ϕ). The proof is com-
plete. �
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Proof of Theorem 2.2. By Lemma 3.11, we obtain σ[p+1,q](f) ≤ σ[p,q](A0). By

lim sup
r→1−

n−1∑
j=1

m(r,Aj)/m(r,A0) < 1, (4.6)

for r → 1−, we have
n−1∑
j=1

m(r,Aj) < δm(r,A0) = δT (r,A0), (4.7)

where δ ∈ (0, 1). By (3.16) and (4.7), for r → 1−, r 6∈ E1, where E1 ⊂ [0, 1) satisfies∫
E1

dt
1−t <∞, we have

T (r,A0) ≤ O(log+ T (r, f) + log
1

1− r
). (4.8)

By Lemma 3.4 and (4.8), we have σ[p+1,q](f) ≥ σ[p,q](A0). Thus, σ[p+1,q](f) =
σ[p,q](A0).

By Lemma 3.4 and (4.8), we have µ[p+1,q](f) ≥ µ[p,q](A0). By Lemma 3.8, we
have µ[p+1,q](f) ≤ µ[p,q](A0). Thus, µ[p+1,q](f) = µ[p,q](A0).

Using a proof similar to the one in Theorem 2.1, we obtain λ[p+1,q](f − ϕ) =
µ[p+1,q](f) = µ[p,q](A0) ≤ σ[p,q](A0) = σ[p+1,q](f) = λ[p+1,q](f − ϕ) = λ[p+1,q](f −
ϕ). The proof is complete. �
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