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MULTIPLE SOLUTIONS TO ASYMMETRIC SEMILINEAR
ELLIPTIC PROBLEMS VIA MORSE THEORY

LEANDRO RECOVA, ADOLFO RUMBOS

Abstract. In this article we study the existence of solutions to the problem

−∆u = g(x, u) in Ω;

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN (N ≥ 2) and g : Ω × R → R
is a differentiable function with g(x, 0) = 0 for all x ∈ Ω. By using minimax

methods and Morse theory, we prove the existence of at least three nontrivial

solutions for the case in which an asymmetric condition on the nonlinearity
g is assumed. The first two nontrivial solutions are obtained by employing a

cutoff technique used by Chang et al in [9]. For the existence of the third non-

trivial solution, first we compute the critical group at infinity of the associated
functional by using a technique used by Liu and Shaoping in [19]. The final

result is obtained by using a standard argument involving the Morse relation.

1. Introduction

The goal of this article is to study the existence and multiplicity of solutions of
the boundary-value problem

−∆u = g(x, u) in Ω;
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ Rn is an open bounded set with smooth boundary, ∂Ω, and g is a
differentiable function. By a solution of (1.1) we mean a weak solution, i.e., a
function u ∈ H1

0 (Ω) satisfying∫
Ω

∇u · ∇vdx =
∫

Ω

g(x, u)vdx, (1.2)

for any v ∈ H1
0 (Ω), where H1

0 (Ω) is the Sobolev space obtained through completion
of C∞0 (Ω) with respect to the metric induced by the norm

‖u‖ =
(∫

Ω

|∇u|2dx
)1/2

, for all u ∈ H1
0 (Ω).
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We will denote by 0 < λ1 < λ2 < λ3 < . . . the distinct eigenvalues of the linear
problem

−∆u = λu in Ω;
u = 0 on ∂Ω.

The following conditions on g, and its primitive, G(x, s) =
∫ s

0
g(x, ξ)dξ, for all

x ∈ Ω and s ∈ R, will be assumed throughout this article:
(G1) g : Ω× R→ R is differentiable, g(x, 0) = 0, and g′(x, 0) = λm with m > 1.
(G2) There is λ > 0 with λ 6= λ1, and 0 ≤ α < 1 such that

lim
s→−∞

g(x, s)− λs
|s|α

= 0.

(G3) There are θ and s0 with 0 < θ < 1/2 and s0 > 0 such that

0 < G(x, s) ≤ θsg(x, s), for s > s0 and all x ∈ Ω.

(G4) lims→∞ g(x, s)/sσ = 0, where 1
θ − 1 < σ ≤ N+2

N−2 , if N ≥ 3, or 1 < σ <∞ if
N = 2.

(G5) σθ < min
{

1
1+α ,

N+2
2N

}
.

(G6) There exists s− < 0 such that

2G(x, s)− g(x, s)s ≤ 0, for all s < s−.

The main result of this article is the following.

Theorem 1.1. Assume g satisfies (G1)–(G6) and there exists t0 > 0 such that
g(x, t0) = 0. Then problem (1.1) has at least three nontrivial solutions.

The work in this article was motivated by that of De Figueiredo’s in [11]. In
that paper, the author was interested in studying the solvability of the problem

−∆u = λu+ f(x, u) + tϕ+ h in Ω;
u = 0 on ∂Ω,

(1.3)

where ϕ is a positive eigenfunction associated with the the first eigenvalue λ1 of
(−∆, H1

0 (Ω)), t ∈ R and h ∈ Cν(Ω), 0 < ν ≤ 1,
∫

Ω
hϕdx = 0. In [11], the author

assumed the following conditions on the nonlinearity f and its primitive F :
(F1) f : Ω× R→ R is a C1 function.
(F2) There exists 0 < α < 1 such that lims→−∞ f(x, s)|s|−α = 0.
(F3) lims→−∞ f ′s(x, s) = 0.
(F4) There are θ and s0 with 0 < θ < 1/2 and s0 > 0 such that 0 < F (x, s) ≤

θsf(x, s), for s > s0 and all x ∈ Ω.
(F5) lims→+∞ f(x, s)s−σ = 0, where σ ≤ (N+2)/(N−2) if N ≥ 3 or 1 < σ <∞

if N = 2.
(F6) f ′s(x, s) ≥ −µ where µ < λ− λk.
(F7) σθ < min

{
1

1+α ,
N+2
N−2

}
.

De Figueiredo proved that under the assumptions (F1)–(F7), there exists t̂ > 0 such
that, for all t ≥ t̂, problem (1.3) has at least two solutions. De Figueiredo used
a generalized version of the mountain pass theorem (see [22, Theorem 5.3]) which
required the Palais-Smale (PS) condition to be verified. In [11], the author proved
the (PS) condition for a general class of superlinear elliptic problems of the type
(1.1) under the conditions (G1)–(G5), without the assumption that g′(x, 0) = λm,
with m 6= 1. In this articld, we will study the solvability of problem (1.1) under
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the conditions (G1)–(G6) and for the case in which 0 is a degenerate critical point
of the associated functional of (1.1).

Many authors have studied problem (1.1) under different assumptions on g (See
[4, 6, 8, 11, 19, 21, 22, 25]). Rabinowitz considered a similar problem in [22] where
condition (G3) was valid for all |s| > s0 and g(x, s) = o(|s|) for small values of s.
First, he proved the existence of a nontrivial solution by using the mountain pass
theorem. Next, by assuming that g is Lipschitz continuous, Rabinowitz proved the
existence of two nontrivial solutions u−, u+ such that u− < 0 < u+. Wang [25]
also assumed condition (G3) for |s| > s0, in addition to g(0) = 0 and g′(0) = 0. He
proved the existence of three nontrivial solutions by using a Morse theory approach.
In [21], Perera approached this problem by assuming that condition (G3) is valid
for all |s| > s0, and the existence of a constant a > 0 such that g(0) = g(a) = 0,
and g′(0) = λ. Perera proved the existence of four nontrivial solutions for the cases
where λ ∈ (λj , λj+1), λ = λj < λj+1, and λj < λ = λj+1, and j ≥ 3. In this
article, we are only assuming condition (G3) for large positive values of s. For large
negative values of s we are assuming conditions (G2) and (G6). In this sense, g
is said to be an asymmetric nonlinearity. We will show that problem (1.1) has at
least three nontrivial solutions by using variational methods and Morse Theory.

Another work on asymmetric nonlinearities related to the work in this article is
that of Liu and Shaoping [19]. In [19], the authors considered the model problem

−∆u = λu+ (u+)p in Ω;
u = 0 on ∂Ω,

(1.4)

where u+ = max{0, u}, 1 < p < (N + 2)/(N − 2), and λ 6= λ1. Liu and Shaoping
proved that (1.4) has at least one nontrivial solution. They used Morse theory
and computed the critical groups at infinity for the corresponding functional. The
computation of the critical groups at infinity in [19] applies to the problem of this
article because of conditions (G3) and (G6). We will use some of the techniques
presented on [19] to obtain the existence of multiple solutions for our problem.

This article is organized as follows: Section 2 has some results in Morse Theory
that will be used throughout the paper. In Section 3, we present some estimates for
g(x, s) and its primitive G(x, s). In Section 4, we prove the Palais-Smale condition
for the associated functional of problem (1.1). A local linking at the origin is
proved in Section 5. In Section 6 we show the existence of two nontrivial solutions
by employing the cutoff-technique used by Chang et al. in [9]. Finally, in Section
7, we prove the existence of at least three nontrivial solutions for problem (1.1) as
stated in Theorem 1.1.

2. Preliminaries

We will denote by H the Sobolev space H1
0 (Ω) obtained by completion of C∞0 (Ω)

with respect to the metric induced by the norm

‖u‖ =
(∫

Ω

|∇u|2dx
)1/2

, for all u ∈ H.

Let J : H → R denote the functional associated with problem (1.1) given by

J(u) =
1
2

∫
Ω

|∇u|2dx−
∫

Ω

G(x, u)dx, (2.1)
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for u ∈ H. It is known that, by virtue of growth conditions on g imposed by the
assumptions (G2) and (G4), J ∈ C2(H,R) with Fréchet derivatives given by

〈J ′(u), ϕ〉 =
∫

Ω

∇u · ∇ϕdx−
∫

Ω

g(x, u)ϕdx, for ϕ ∈ H, (2.2)

and

〈J ′′(u)v, ϕ〉 =
∫

Ω

∇v · ∇ϕdx−
∫

Ω

g′(x, u)vϕdx, for u, v, ϕ ∈ H.

In view of (2.2) and (1.2), we see that critical points of J correspond to the weak
solutions of problem (1.1).

Let 0 < λ1 < λ2 < λ3 < . . . denote the distinct eigenvalues of the linear problem

−∆u = λu in Ω;
u = 0 on ∂Ω.

It is well–known that H can be decomposed as H = H− ⊕H+, where

H− = ⊕mj=1 ker(−∆− λjI), H+ = (H−)⊥.

We will set dimH− = d.
To study the multiplicity of solutions of problem (1.1), it will be necessary to

compute the critical groups of isolated critical points of the functional J defined in
(2.1). Let X be a topological space. If Y ⊆ X is a subset of X, we will say that
(X,Y ) is a topological pair. Denote by Hq(X,Y ) the q–singular relative homology
group of the pair (X,Y ) with coefficients in Z. The critical groups basically describe
the local behavior of the functional J near its critical points. For an isolated critical
point u0 of J , set c = J(u0) and put Jc = {u ∈ H|J(u) ≤ c}. The q-critical group
of J at u0 with coefficients in Z is defined by

Cq(J, u0) = Hq(Jc ∩ Uu0 , J
c ∩ Uu0\{u0}),

for all q = 0, 1, 2, . . . (see Chang [6, Definition 4.1, page 32]), where Uu0 is an open
neighborhood of u0 such that u0 is the unique critical point of J in Uu0 . According
to the excision property in singular homology theory, the critical groups of isolated
critical points are well–defined and they do not depend on a special choice of the
neighborhood Uu0 . We will denote by H̃q(X,Y ) the q–singular reduced relative
homology group of the pair (X,Y ) with coefficients in Z (see Hatcher [13, page
110]).

Condition (G1) will allow us to compute the critical groups at the origin by using
the decomposition H = H− ⊕H+. This is related to the concept of local linking
at the origin introduced by Li and Liu [15], which we present next.

Definition 2.1. Let J be a C1 function defined on a Banach space H. We say
that J has a local linking near the origin if H has a direct sum decomposition
H = H− ⊕H+, with dimH− <∞, J(0) = 0, and, for some δ > 0,

J(u) ≤ 0, for u ∈ H−, ‖u‖ ≤ δ;
J(u) > 0, for u ∈ H+, 0 < ‖u‖ ≤ δ.

(2.3)

Assume u is a critical point of J such that J ′′(u) is a Fredholm operator. The
Morse index of u, denoted by µ0(u), is defined as the supremum of the dimensions
of the vector subspaces of H on which J ′′(u) is negative definite. The nullity of u,
denoted by ν0 = ν0(u), is defined as the dimension of the kernel of J ′′(u).
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We say that a functional J satisfies the Palais-Smale (PS) condition if any se-
quence (un) ⊂ H for which J(un) is bounded and J ′(un)→ 0 as n→∞ possesses
a convergent subsequence. We will say that (un) ⊂ H is a (PS) sequence for J if

|J(un)| ≤ C, for all n and some constant C,

and J ′(un)→ 0 as n→∞.
Based on the notion of local linking at the origin, and assuming that J satisfies

the (PS) condition, the critical groups Cq(J, 0) can be calculated based on a result
from Su [24].

Proposition 2.2 ([24, Proposition 2.3]). Assume J satisfies the (PS) condition
and that it has a local linking at 0 with respect to H = H− ⊕ H+, where 0 has a
Morse index µ0 and nullity ν0. Set d = dimH−. Then

Cq(J, 0) =

{
δq,µ0Z, if d = µ0;
δq,µ0+ν0Z, if d = µ0 + ν0.

Thus, to compute the critical groups of J at the origin, we will show that the
functional J satisfies the (PS) condition and that J satisfies a local linking condition
at the origin with respect to the decomposition H = H− ⊕ H+, where H− =
⊕mj=1 ker(−∆− λjI) and H+ = (H−)⊥. This will be the content of Section 4.

Let K = {u ∈ H : J ′(u) = 0} be the set of critical points of J and assume J
satisfies the (PS) condition; then, K is a finite set. Set a < inf J(K). The critical
groups of J at infinity are defined as in Bartsch and Li [4] by

Cq(J,∞) = Hq(H,Ja), q = 0, 1, 2, . . . . (2.4)

Finally, we will need the Morse relation. Let J : H → R be a functional that
satisfies the (PS) condition. If the functional J : H → R has a finite number of
critical points, we can define the Morse–type number of the pair (H,Ja) by

Mq := Mq(H,Ja) =
∑
u∈K

dimCq(J, u), q = 0, 1, 2, . . . . (2.5)

Applying the infinite dimensional Morse Theory developed in [6, 20], we can derive
the Morse relation

∞∑
q=0

Mqt
q =

∞∑
q=0

βqt
q + (1 + t)

∞∑
q=0

aqt
q, (2.6)

where βq = dimCq(J,∞), and aq are non-negative numbers. The numbers βq are
also called the Betti numbers of the pair (H,Ja). As a consequence of equation
(2.6), if βq 6= 0 for some q, then J must have a critical point, say w, with Cq(J,w) 6∼=
0. In fact, by expanding the equation (2.6), we have that

M0+M1t+· · ·+Mqt
q+· · · = (β0+a0)+(β1+a1+a0)t+· · ·+(βq+aq+aq−1)tq+. . .

Observe that the term βq +aq +aq−1 > 0 since βq 6= 0 and aq, aq−1 ≥ 0. Therefore,
Mq 6= 0. This implies that there is at least one critical point w ∈ K such that
Cq(J, u) 6∼= 0.
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3. Estimates on G(x, s) and g(x, s)

In this section we establish some estimates for g(x, s) and G(x, s) that will be
used throughout this work. First, from condition (G2), there exists t− < 0 such
that, for s < t−, it follows that

|g(x, s)− λs| < |s|α,
so that

λs− |s|α < g(x, s) < λs+ |s|α, for s < t−.

Then, there exists a constant C1 > 0 such that

− C1 + λs− |s|α ≤ g(x, s) ≤ C1 + λs+ |s|α, (3.1)

for all s ≤ 0 and x ∈ Ω. From (3.1), we have

|sg(x, s)− λs2| ≤ C1|s|+ |s|1+α, for s ≤ 0. (3.2)

Applying Young’s Inequality,

ab ≤ ap

p
+
bq

q
, for a, b ≥ 0, (3.3)

with a = |s|, b = 1, p = 1 + α, and q = (1 + α)/α, we can rewrite (3.2) as

|sg(x, s)− λs2| ≤ C1α

1 + α
+
(
1 +

C1

1 + α

)
|s|1+α. (3.4)

Setting C2 = max
(
1 + C1

1+α ,
C1α
1+α

)
in (3.4), we obtain

|g(x, s)s− λs2| ≤ C2 + C2|s|1+α, for s ≤ 0, and x ∈ Ω. (3.5)

By integrating the inequality in (3.1) and using the definition of G, we obtain

− C1|s|+
λ

2
s2 − 1

α+ 1
|s|α+1 ≤ G(x, s) ≤ C1|s|+

λ

2
s2 +

1
α+ 1

|s|α+1, (3.6)

for all s ≤ 0 and a.e x ∈ Ω, or,

|G(x, s)− λ

2
s2| ≤ C1|s|+

1
α+ 1

|s|α+1, (3.7)

for s ≤ 0 and x ∈ Ω.
Next, we show that

|g(x, s)s− 2G(x, s)| ≤ C4 + C4|s|1+α, (3.8)

for some constant C4 > 0, s ≤ 0 and x ∈ Ω. In fact, multiplying (3.1) by s ≤ 0, we
obtain

C1|s|+ λs2 + |s|1+α ≥ g(x, s)s ≥ −C1|s|+ λs2 − |s|1+α. (3.9)
Similarly, from (3.6), we have

2C1s− λs2 +
2

1 + α
|s|1+α ≥ −2G(x, s) ≥ −2C1|s| − λs2 − 2

1 + α
|s|1+α. (3.10)

Then, adding (3.9) and (3.10), we obtain

3C1|s|+
(
1 +

2
1 + α

)
|s|1+α ≥ g(x, s)s− 2G(x, s) ≥ −3C1|s| −

(
1 +

2
1 + α

)
|s|1+α,

so that

|g(x, s)s− 2G(x, s)| ≤ 3C1|s|+
(
1 +

2
1 + α

)
|s|1+α, for s ≤ 0.
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Applying Young’s Inequality (3.3) with a = |s|, b = 1, p = 1+α, and q = (1+α)/α,
we obtain

|g(x, s)s− 2G(x, s)| ≤ 3C1

1 + α
+
(2 + 3C1α

1 + α
+ 1
)
|s|1+α, (3.11)

for s ≤ 0. Therefore, defining C5 by

C5 = max
( 3C1

1 + α
,

2 + 3C1α

1 + α
+ 1
)
,

we obtain (3.8) from (3.11).
Combining (3.6) and condition (G4), we find a global estimate for G(x, s) given

by

G(x, s) ≤ C6|s|+
λ

2
s2 +

1
1 + α

|s|1+α +
1

σ + 1
|s|σ+1, (3.12)

for all s ∈ R and x ∈ Ω, and C6 = C1 + C2.
Finally, from condition (G3), we can find C7, C8 > 0 such that

G(x, s) ≥ C7|s|µ − C8, (3.13)

for all s ≥ 0, where µ = 1/θ > 2. In fact, from condition (G3) we have

0 ≤ ∂G

∂s
(x, s)− 1

sθ
G(x, s), (3.14)

for s > s0. Multiplying (3.14) by the integrating factor s−1/θ and integrating over
the interval [s0, s], we obtain

0 ≤ − 1

s
1/θ
0

G(x, s0) +
1
s1/θ

G(x, s), for all s > s0.

Then, setting C7 = 1

s
1/θ
0

G(x, s0), we can find a constant C8 > 0 such that

G(x, s) ≥ C7|s|µ − C8,

for all s > 0 and x ∈ Ω, which is (3.13).
The next lemma will be used in the proof of a local linking condition at the

origin.

Lemma 3.1. Assume that g satisfies condition (G1) and let ε > 0 be such that
λm + ε < λm+1. Then, there exists δ1 > 0 such that

|G(x, s)| ≤
(λm + ε

2
)
|s|2, (3.15)

for |s| < δ1 and x ∈ Ω, where m is as given in (G1).

Proof. Since g′s(x, 0) = λm for all x ∈ Ω, there exists δ1 > 0 such that, for |s| < δ1,

|g(x, s)− λms| ≤ ε|s|, for all x ∈ Ω;

then,
|g(x, s)| ≤ (λm + ε)|s|, for |s| < δ1, (3.16)

Therefore, we can show that

|G(x, s)| ≤
(λm + ε

2
)
|s|2, for |s| < δ1, and x ∈ Ω,

which is (3.15). �
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4. Palais-Smale condition

Assuming (G1)–(G5), we can show that the functional J : H → R defined in (2.1)
satisfies the Palais-Smale (PS) condition. The proof was done by De Figueiredo in
[11] assuming that λ 6= λj for all j ∈ N. It turns out the result is true if we assume
that λ 6= λ1. We present the proof here for the reader’s convenience.

Lemma 4.1 ([11, Lemma 1, page 291]). If g and G satisfy (G1)–(G5), then the
functional J : H → R defined by

J(u) =
1
2

∫
Ω

|∇u|2dx−
∫

Ω

G(x, s)dx, for u ∈ H,

satisfies the Palais-Smale condition.

Proof. In what follows, we use the same symbol C to denote all constants that
come up in the estimates. Let (un) be a (PS) sequence for J in H = H1

0 (Ω); that
is, (un) satisfies

|J(un)| =
∣∣1
2

∫
Ω

|∇un|2dx−
∫

Ω

G(x, un)dx
∣∣ ≤ C, for all n, (4.1)

and some constant C > 0, and

|〈J ′(un), v〉| =
∣∣ ∫

Ω

∇un · ∇vdx−
∫

Ω

g(x, un)vdx
∣∣ ≤ εn‖v‖, for all n, (4.2)

where εn → 0 as n→∞ and v ∈ H. By virtue of the subcritical growth condition
in (G4), it suffices to prove that (‖un‖) is bounded ([23, Proposition 2.2, p.73]).
First, notice that∫

Ω

[g(x, un)un − 2G(x, un)]dx

=
∫

Ω

[
g(x, un)un − |∇un|2 + |∇un|2 − 2G(x, un)

]
dx

≤
∣∣ ∫

Ω

[|∇un|2 − g(x, un)undx]|+ 2|J(un)|.

Thus, setting v = un in (4.2) and using (4.1) we obtain∫
Ω

[g(x, un)un − 2G(x, un)] dx ≤ εn‖un‖+ C, for all n. (4.3)

The integral on the left side of (4.3) can be split in three parts,∫
Ω

[g(x, un)un − 2G(x, un)]dx =
[ ∫

Ω−n

+
∫

Ω0
n

+
∫

Ω+
n

]
[g(x, un)un − 2G(x, un)]dx,

where Ω−n = {x ∈ Ω : un ≤ 0}, Ω0
n = {x ∈ Ω : 0 ≤ un ≤ s0}, and Ω+

n = {x ∈ Ω :
un > s0}. The first integral is estimated using (3.8) as follows,∫

Ω−n

[g(x, un)un − 2G(x, un)]dx ≤ C + C

∫
|u−n |1+αdx, for all n, (4.4)

where u− = max{0,−u}. The second integral taken over Ω0
n is bounded uniformly

with respect to n. The third integral can be estimated using (G3) as follows:∫
Ω+
n

[g(x, un)un − 2G(x, un)]dx ≥
(1
θ
− 2
) ∫

Ω+
n

G(x, un)dx, for all n. (4.5)
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Thus, combining (4.5) with (4.3) and (4.4), we obtain∫
Ω+
n

G(x, un)dx ≤ C + εn‖un‖+ C‖u−n ‖1+α
L1+α , for all n, (4.6)

and some constant C > 0. Set v = u−n in (4.2). Then, it follows that∣∣ ∫
Ω

|∇u−n |2dx−
∫
un<0

g(x, un)undx
∣∣ ≤ εn‖u−n ‖, for all n. (4.7)

Next, compute∣∣ ∫ |∇u−n |2dx− 2
∫
un<0

G(x, un)dx
∣∣

=
∣∣ ∫ |∇u−n |2dx− ∫

un<0

g(x, un)undx+
∫
un<0

[g(x, un)undx− 2G(x, un)]dx
∣∣,

and use (3.8) and (4.7) to obtain∣∣ ∫ |∇u−n |2dx− 2
∫
un<s0

G(x, un)dx
∣∣ ≤ C + εn‖u−n ‖+ C‖u−n ‖1+α

L1+α , (4.8)

for all n. Similarly, using (3.5), we obtain∣∣ ∫ |∇u−n |2dx− λ ∫ |u−n |2dx∣∣ ≤ C + εn‖u−n ‖+ C‖u−n ‖1+α
L1+α , for all n. (4.9)

There are two cases to consider: (i) (‖u−n ‖) is bounded, and (ii) ‖u−n ‖ → ∞, passing
to a subsequence, if necessary. If case (i) holds, then the estimate (4.8) implies that∫

un<0

G(x, un)dx ≤ C, for all n. (4.10)

Indeed, using (4.8) we obtain∣∣2∫
un<0

G(x, un)dx
∣∣ ≤ ∣∣2 ∫

un<0

G(x, un)dx−
∫

Ω

|∇u−n |2dx
∣∣+
∣∣ ∫

Ω

|∇u−n |2dx
∣∣

≤ C + εn‖u−n ‖+ C‖u−n ‖1+α
L1+α + ‖u−n ‖2.

Thus, by the Sobolev inequality,∣∣2 ∫
un<0

G(x, un)dx
∣∣ ≤ C + εn‖u−n ‖+ C‖u−n ‖1+α + ‖u−n ‖2.

Hence, since we are assuming (‖u−n ‖) is bounded, it follows that∣∣2 ∫
un<0

G(x, un)dx
∣∣ ≤ C, for all n,

which shows (4.10).
Next, notice that

1
2
‖u+

n ‖2 = J(un) +
∫

Ω

G(x, un)dx− 1
2
‖u−n ‖2

= J(un) +
∫
un≥0

G(x, un)dx+
∫
un<0

G(x, un)dx− 1
2
‖u−n ‖2.

Thus, using (4.1), (4.6) and (4.10), we have

‖u+
n ‖2 ≤ C + 2εn‖u+

n ‖, (4.11)
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since we are assuming that (‖u−n ‖) is bounded. It follows from (4.11) that ‖u+
n ‖ is

bounded, since εn → 0 as n→∞. It then follows that (‖un‖) is bounded.
Next, consider the case (ii) in which ‖u−n ‖ → ∞, and let us show that this cannot

hold, completing in this way the proof of the lemma.
Using the fact that u+

n = un + u−n , we obtain
1
2

∫
Ω

|∇u+
n |2dx =

1
2

∫
Ω

|∇un|2dx−
1
2

∫
Ω

|∇u−n |2dx

=
1
2
‖un‖2 −

1
2
‖u−n ‖2 +

∫
Ω

G(x, un)dx−
∫

Ω

G(x, un)dx,

which we can write as
1
2

∫
Ω

|∇u+
n |2dx = J(un) +

1
2

∫
Ω

[
2G(x, un)− |∇u−n |2

]
dx,

so that, by (4.1), (4.6) and (4.8),
1
2

∫
Ω

|∇u+
n |2dx ≤ C + εn‖u−n ‖+ C‖u−n ‖1+α

L1+α , for all n. (4.12)

Next, use the fact that u−n = u+
n − un to estimate∣∣ ∫ ∇u−n · ∇vdx− λ ∫ u−n v
∣∣ ≤ ∣∣ ∫ ∇un · ∇vdx− ∫ g(x, un)vdx

∣∣
+
∫
|∇u+

n · ∇v|dx+
∫
un>0

|g(x, un)v|dx

+
∫
un<0

|g(x, un)v − λu−n v|dx;

so that, by (4.2),∣∣ ∫ ∇u−n · ∇vdx− λ ∫ u−n v
∣∣ ≤ εn‖v‖+ I1 + I2 + I3, for all n, (4.13)

where

I1 =
∫
|∇u+

n · ∇v|dx, I2 =
∫
un≥0

|g(x, un)v|dx,

I3 =
∫
un<0

|g(x, un)v − λu−n v|dx.

We will estimate I1, I2, and I3 separately. To estimate I1, use Hölder’s inequality
to get

I1 =
∫
|∇u+

n · ∇v|dx ≤ ‖u+
n ‖‖v‖. (4.14)

To estimate I2, apply Hölder’s inequality with

p =
2N
N + 2

(4.15)

and q = 2N/(N − 2) for N ≥ 3. If N = 2, take 1 ≤ p ≤ 1/(σθ) which can be done
since (G5) implies σθ < 1. Then,

I2 =
∫
un>0

|g(x, un)v|dx ≤
(∫
|g(x, un)|p

)1/p(∫
|v|q
)1/q

≤
(∫
|C + C|u+

n |σ|p
)1/p

‖v‖Lq ,
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so that,
I2 ≤

(
C + C‖u+

n ‖σLpσ
)
‖v‖Lq . (4.16)

Finally, use (3.1) to obtain the following estimate for I3:

I3 =
∫
un<0

|g(x, un)v − λu−n vdx|dx ≤ (C + C‖u−n ‖α)‖v‖. (4.17)

Combining (4.14), (4.16), and (4.17) into (4.13), we have the estimate∣∣ ∫ ∇u−n · ∇vdx− λ ∫ u−n v
∣∣ ≤ (C + ‖u+

n ‖+ C‖u+
n ‖σLpσ + C‖u−n ‖α)‖v‖, (4.18)

for all n. Set

Kn = C + ‖u+
n ‖+ C‖u+

n ‖σLpσ + C‖u−n ‖α, for all n; (4.19)

then (4.18) can be written as∣∣ ∫ ∇u−n · ∇vdx− λ ∫ u−n v
∣∣ ≤ Kn‖v‖, for all n. (4.20)

The goal next is to show that

Kn

‖u−n ‖
→ 0 as n→∞. (4.21)

where Kn is as given by (4.19). First, from (4.12), and the fact that α < 1, it
follows that

‖u+
n ‖

‖u−n ‖
→ 0, as n→∞. (4.22)

Secondly, we claim that

‖u+
n ‖σLpσ
‖u−n ‖

→ 0 as n→∞. (4.23)

In fact, using the estimates in (3.13) and (4.6), we obtain the estimate∫
(u+
n )1/θdx ≤ C + εn‖un‖+ C‖u−n ‖1+α

L1+α , for all n. (4.24)

Now, by the Sobolev inequality, we obtain from (4.24) that(∫
(u+
n )1/θdx

)θ
≤
(
C + εn‖un‖+ C‖u−n ‖1+α

)θ
≤ C + Cεn‖un‖θ + C‖u−n ‖θ(1+α).

(4.25)

Choose α′ ∈ (α, 1), and divide both sides of (4.25) by ‖u−n ‖θ(1+α′), to obtain

‖u+
n ‖L1/θ

‖u−n ‖θ(1+α′)
≤ C

‖u−n ‖θ(1+α′)
+ C

εn‖un|‖θ

‖u−n ‖θ(1+α′)
+

C

‖u−n ‖θ(α′−α)
, for all n,

so that, in view of (4.22),

‖u+
n ‖L1/θ

‖u−n ‖θ(1+α′)
→ 0, as n→∞. (4.26)

We claim that
u+
n

‖u−n ‖1/σ
→ 0 as n→∞ in the Lpσ norm; (4.27)
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this will establish (4.23). To show (4.27), set p1 = 1/(pσθ), where p is as given in
(4.15), and note that p1 > 1 by (G5). Next, use Hölder’s inequality to obtain∫

Ω

( |u+
n |

‖u−n ‖
1
σ

)pσ
dx ≤ C

(∫
Ω

|u+
n |1/θ

‖u−n ‖
1
σθ

dx
)pσθ

≤ C

‖u−n ‖p
(∫

Ω

|u+
n |1/θ

‖u−n ‖1+α′
‖u−n ‖1+α′dx

)pσθ
so that ∫

Ω

( |u+
n |

‖u−n ‖
1
σ

)pσ
dx ≤ C‖u−n ‖pσθ(1+α′)−p

(∫
Ω

|u+
n |1/θ

‖u−n ‖1+α′
dx
)pσθ

. (4.28)

By using (4.26), we see that the term in parenthesis in (4.28) approaches zero as
n→∞.

Next, notice that

‖u−n ‖pσθ(1+α′)−p → 0, as n→∞,

by condition (G5), since we are assuming ‖u−n ‖ → ∞ as n→∞. Hence,∫
Ω

( |u+
n |

‖u−n ‖
1
σ

)pσ
dx→ 0, as n→∞,

which is (4.27). We have therefore established (4.23).
Use (4.19) to obtain

Kn

‖u−n ‖
=

C

‖u−n ‖
+
‖u+

n ‖
‖u−n ‖

+ C
‖u+

n ‖σLpσ
‖u−n ‖

+ C
1

‖u−n ‖1−α
, (4.29)

where
‖u+

n ‖
‖u−n ‖

→ 0 as n→∞,

by (4.22), and
‖u+

n ‖σLpσ
‖u−n ‖

→ 0 as n→∞

by (4.23). Hence, since α < 1 and ‖u−n ‖ → ∞ as n → ∞, we obtain from (4.29)
that

Kn

‖u−n ‖
→ 0 as n→∞,

which is (4.21).
Next, combine (4.20) and (4.21) to obtain

lim
n→∞

(∫
Ω

∇u−n
‖u−n ‖

· ∇vdx− λ
∫

Ω

u−n
‖u−n ‖

v
)

= 0, for all v ∈ H. (4.30)

Set wn = u−n /‖u−n ‖ for all n. Since ‖wn‖ = 1, for all n, passing to a subsequence
if necessary, we may assume that there exists w0 ∈ H such that wn ⇀ w0 (weakly)
in H1

0 (Ω) and wn → w0 strongly in L2(Ω). We may also assume that wn(x)→ w(x)
for a.e x ∈ Ω. It follows from (4.30) with v = wn that∫

w2
0 = λ−1,
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since we are assuming that λ > 0. It then follows from (4.30) that∫
Ω

∇w0 · ∇vdx− λ
∫

Ω

w0vdx = 0, for all v ∈ H1
0 (Ω);

that is, w0 is a nontrivial weak solution of the problem
−∆w0 = λw0in Ω;
w0 = 0 on ∂Ω.

(4.31)

By the maximum principle, w0 < 0 in Ω. Thus, w0 is an eigenfunction of (4.31)
that does not change sign in Ω. Hence, λ = λ1, the first eigenvalue of (4.31), which
is the case we are excluding. Therefore, we obtain a contradiction. The proof of
Lemma 4.1 is now completed. �

5. Local linking at the origin

The notion of local linking at the origin was introduced by Li and Liu in [15]
and [16]. We present the definition given in Li and Willem [14].

Definition 5.1 ([14, Section 0]). Let J be a C1 function defined on a Banach
space H. We say that J has a local linking near the origin if H has a direct sum
decomposition H = H− ⊕H+ with dimH− <∞, J(0) = 0, and, for some δ > 0,

J(u) ≤ 0, for u ∈ H−, ‖u‖ ≤ δ;
J(u) > 0, for u ∈ H+, 0 < ‖u‖ ≤ δ.

(5.1)

Lemma 5.2. Assume (G1)–(G5) hold. Then, J has a local linking at 0 with respect
to the decomposition H = H− ⊕ H+, where H− = ⊕j≤m ker(−∆ − λjI), and
H+ = (H−)⊥.

Proof. The proof is based on arguments presented in papers by Li and Willem in
[14, Theorem 4], and by Li and Liu in [17, Theorem 3.1].

First, let us show that there exists δ > 0 such that J(u) ≤ 0 for u ∈ H− if
‖u‖ < δ. In fact, by the definition of H− = ⊕j≤m ker(−∆− λjI), we have∫

Ω

|∇u|2dx ≤ λm
∫

Ω

u2dx, for u ∈ H−. (5.2)

Since H− is finite–dimensional, there exists C > 0 such that

‖u‖∞ ≤ C‖u‖, for u ∈ H−, (5.3)

where ‖u‖∞ = sup{|u(x)| : x ∈ Ω}. Select u ∈ H− such that ‖u‖ ≤ δ1
C , so that

|u(x)| ≤ δ1, for a.e x ∈ Ω, where δ1 is given in Lemma 3.1. Then, from Lemma 3.1
it follows that

−
(λm + ε

2
)
|u(x)|2 ≤ G(x, u) ≤

(λm + ε

2
)
|u(x)|2, for |u(x)| < δ1. (5.4)

It follows from (5.2) that

J(u) ≤
∫

Ω

[
λm
2
u2 −G(x, u(x))]dx, for u ∈ H−, ‖u‖ ≤ δ1

C
. (5.5)

Hence, using the estimate in (5.4), we obtain from (5.5) that

J(u) ≤ −ε
2

∫
Ω

u2dx ≤ 0, for u ∈ H− and ‖u‖ ≤ δ1
C
. (5.6)
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Next, we need to show that J(u) > 0 for 0 < ‖u‖ < δ, for u ∈ H+, where δ will be
chosen shortly. Since we already have the estimate (3.16) in Lemma 3.1 for |s| ≤ δ1,
we need an estimate for |s| > δ1. In fact, using the estimate (3.12), for |s|δ1 > 1, and
the assumption that 0 ≤ α < 1 in (G1), we have that

G(x, s) ≤ C|s|+ λ

2
s2 +

1
1 + α

|s|1+α +
1

σ + 1
|s|σ+1,

= Cδ1
|s|
δ1

+
δ2
1λ

2
( s
δ1

)2 +
δ1+α
1

1 + α

( |s|
δ1

)1+α +
δσ+1
1

σ + 1
( |s|
δ1

)σ+1

≤ 1
δσ+1
1

(
Cδ1 +

δ2
1λ

2
+
δ1+α
1

1 + α
+
δσ+1
1

σ + 1

)
|s|σ+1,

so that
G(x, s) ≤ Cε|s|σ+1, for all |s| > δ1, (5.7)

where Cε is given by

Cε =
1

δσ+1
1

(
Cδ1 +

δ2
1λ

2
+
δ1+α
1

1 + α
+
δσ+1
1

σ + 1

)
.

Combining (3.15) and (5.7), it follows that

G(x, s) ≤
(λm + ε

2
)
|s|2 + Cε|s|σ+1, (5.8)

for all s ∈ R and x ∈ Ω. Then, for u ∈ H+ and using (5.8), we have

J(u) =
1
2
‖u‖2 −

∫
Ω

G(x, u)dx

≥ 1
2
‖u‖2 −

(λm + ε

2
) ∫

Ω

u2dx− Cε
∫

Ω

|u|σ+1dx.

Thus, applying the Sobolev inequality, and the fact that ‖u‖2 ≥ λm+1‖u‖2L2 for
u ∈ H+, we obtain

J(u) ≥ 1
2
[
1−

(λm + ε

λm+1

)
− C̃ε‖u‖σ−1

]
‖u‖2 for u ∈ H+. (5.9)

Next, choose ρ > 0 such that

ρ <
[ 1

2C̃ε

(
1−

(λm + ε

λm+1

))] 1
σ−1

.

Then, for u ∈ H+ such that ‖u‖ < δ, where δ = min{ δ1C , ρ}, we obtain from (5.9)
that

J(u) > 0, for u ∈ H+, 0 < ‖u‖ < δ,

and the lemma is proved. �

By Lemma 5.2, J satisfies a local linking condition at the origin with respect to
the decomposition H = H− ⊕H+. In this case, 0 has Morse Index µ0 and nullity
ν0 given by

µ0 =
m−1∑
j=1

dim ker(−∆− λjI), (5.10)

ν0 = dim ker(−∆− λmI), (5.11)
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respectively, where we are assuming that m > 1 by (G1). Therefore, using Propo-
sition 2.2, (5.10), (5.11), and since dimH− = µ0 + ν0 = d, we obtain

Cq(J, 0) = δq,dZ. (5.12)

6. Existence of two nontrivial solutions

In this section we prove the existence of two nontrivial solutions of problem (1.1)
under the assumptions (G1)–(G5) and g(x, t0) = 0 for all x ∈ Ω and some t0 > 0.
We will employ the cutoff technique used by Chang, Li and Liu in [9, Theorem B].

Proposition 6.1. Assume g satisfies (G1)–(G5) and suppose there exists t0 > 0
such that g(x, t0) = 0 for all x ∈ Ω. Then, problem (1.1) has a nontrivial solution,
u0, such that

Cq(J, u0) = δq,0Z. (6.1)

Proof. Define g : Ω× R→ R by

g(x, s) =

{
g(x, s), if s ∈ [0, t0];
0, if s /∈ [0, t0].

Define the functional J : H → R by

J(u) =
1
2
‖u‖2 −

∫
Ω

G(x, u)dx, for u ∈ H, (6.2)

where G(x, s) =
∫ s

0
g(x, ξ)dξ, for x ∈ Ω, s ∈ R. In order to show the existence of a

nontrivial solution for problem (1.1), we will first show that J has a minimizer.
Let M = supx∈Ω,s∈[0,t0] |g(x, s)|; then, using Hölder and Poincaré’s inequalities

we have

J(u) ≥ 1
2
‖u‖2 −M

∫
Ω

|u|dx

≥ 1
2
‖u‖2 −M |Ω|1/2‖u‖L2(Ω)

≥ 1
2
‖u‖2 − c‖u‖, for all u ∈ H,

which shows that J is coercive and bounded below. Also, J is weakly lower semi-
continuous. Thus, there exists a global minimizer u0 of J such that

J(u0) = inf
u∈H

J(u).

(See Evans [10, Page 488]). The function g is locally Lipschitz continuous; thus, it
follows that u0 is a classical solution of the problem

−∆u = g(x, u) in Ω;
u = 0 on ∂Ω.

(6.3)

(See Agmon [1]). Let Ω− = {x ∈ Ω : u0(x) < 0}. Then, by the definition of g, u
solves the BVP,

−∆u = 0 in Ω−;
u = 0 on ∂Ω−,

(6.4)

which has only the trivial solution u ≡ 0. It then follows that Ω− = ∅. Similarly,
if we consider the set Ωt0 = {x ∈ Ω : u0(x) > t0}, it can be shown that Ωt0 = ∅.



16 L. RECOVA, A. RUMBOS EJDE-2014/207

Therefore, we have 0 ≤ u0 ≤ t0 in Ω. Using the strong maximum principle, we can
show that

0 < u0(x) < t0, for all x ∈ Ω, (6.5)
∂u0

∂ν
(x) < 0, on ∂Ω, (6.6)

where ν is the outward unit normal vector on ∂Ω.
We claim that u0 is also a local minimizer for J . It follows from (6.5) and (6.6)

that there exists δ > 0 such that u ∈ C1
0 (Ω) and ‖u − u0‖C1 < δ imply that

0 < u(x) < t0. Thus, there is a C1 neighborhood of u0 on which J(u) ≥ J(u0);
so that u0 is a C1 local minimizer of J . Then, using a result due to Brézis and
Nirenberg [5], we conclude that u0 is also a minimizer in the H1

0 topology.
Finally, using Chang [6, Example 1, page 33], we see that

Cq(J, u0) = δq,0Z. (6.7)

Notice that this implies that u0 6= 0 by comparison with (5.12), since d ≥ 1 by
virtue of (G1). �

Before we prove the next theorem, we will need the following variant of the
Mountain Pass Lemma in Chang [7].

Proposition 6.2 ([7, Corollary 1.2]). Suppose that J ∈ C2−0(H,R) satisfies the
(PS) condition, with u0 a local minimum. If there exists v0 ∈ H such that v0 6= u0

and J(v0) = J(u0), then J has at least a nontrivial critical point.

Next, we show that there is an additional critical point of J of mountain pass
type.

Theorem 6.3. Assume g satisfies the hypotheses of Proposition 6.1. Then, problem
(1.1) has two nontrivial solutions u0 and u1 such that 0 < u0 < u1, where u0 is
given by Proposition (6.1). Moreover, if the critical points at level c1 = J(u1) are
isolated, there exists a critical point ũ1 with

Cq(J, ũ1) = δq,1Z, for q = 1, 2, 3, . . . . (6.8)

Proof. Let u0 be the local minimizer of the functional J defined in (2.1) that is
given by Proposition 6.1. Assume that u0 is isolated. It follows from the result
of Proposition 6.1 that u0 is a C2 solution of the boundary-value problem in (1.1)
satisfying

0 < u0(x) < t0, for all x ∈ Ω. (6.9)

We will prove the existence of a mountain pass critical point, u1, of the functional
J with the property that

u0(x) < u1(x), for all x ∈ Ω. (6.10)

Consider the modified functional J̃ : H → R given by

J̃(v) =
1
2

∫
Ω

|∇v|2dx−
∫

Ω

[G(x, v + u0)−G(x, u0)− g(x, u0)v]dx, (6.11)

for all v ∈ H. This functional was obtained by setting

J̃(v) = J(u0 + v)− J(u0), for all v ∈ H, (6.12)
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and observing that the fact that u0 is a critical point of J implies that∫
Ω

∇u0 · ∇v =
∫

Ω

g(x, u0(x))v(x) dx, for all v ∈ H.

It follows from (6.12) and the assumption that J has an isolated local minimum at
u0 that the functional J̃ defined by (6.11) has an isolated local minimum at 0.

Put
g̃(x, s) = g(x, u0(x) + s)− g(x, u0(x), x ∈ Ω, s ∈ R, (6.13)

and set G̃(x, s) =
∫ s

0
g̃(x, ξ)dξ, so that

G̃(x, s) = G(x, s+ u0(x))−G(x, u0(x))− sg(x, u0(x)), x ∈ Ω, s ∈ R. (6.14)

In view of (6.11) and (6.14), we see that

J̃(v) =
1
2

∫
Ω

|∇v|2dx−
∫

Ω

G̃(x, v(x)) dx, for v ∈ H. (6.15)

Next, define the truncated versions of g̃ and G̃ in (6.13) and (6.14), respectively:

g̃+(x, s) =

{
g̃(x, s), x ∈ Ω, s ≥ 0;
0, x ∈ Ω, s < 0;

(6.16)

and

G̃+(x, s) =

{
G̃(x, s), x ∈ Ω, s ≥ 0;
0, x ∈ Ω, s < 0.

(6.17)

We can then define the truncated version of J̃ as follows

J̃+(v) =
1
2

∫
Ω

|∇v|2dx−
∫

Ω

G̃+(x, v(x)) dx, for v ∈ H. (6.18)

We note that the truncated functional in (6.18) can be written in terms of J̃ as
follows:

J̃+(v) = J̃(v+) +
1
2
‖v−‖2 for v ∈ H, (6.19)

where v+(x) = max{v(x), 0}, for x ∈ Ω, is the positive part of v in Ω, and v− =
(−v)+ the negative part.

It follows from (6.19) and the assumption that that J̃ has an isolated local
minimum at 0 that the functional J̃+ defined by (6.18) and (6.17) has an isolated
local minimum at 0. We will next show that J̃+ satisfies the (PS) condition and
the assumptions of Proposition 6.2 (which is [7, Corollary 1.2]).

First, notice that J̃+ ∈ C2−0(H,R). Next, we will see that J̃+ satisfies the (PS)
condition. Thus, let (vn) be a (PS) sequence for J̃+ in H. To show that (vn)
has a convergent subsequence in H, it is sufficient to show that (vn) is a bounded
sequence (see [23, Chapter 2, Proposition 2.2]). We have that

|J̃+(vn)| ≤ C, for all n, (6.20)

J̃ ′+(vn)→ 0, as n→∞. (6.21)

It follows from (6.21) that

|〈J̃ ′+(vn), v〉| =
∣∣ ∫

Ω

(∇vn · ∇v − g̃+(x, vn)v)dx
∣∣ ≤ εn‖v‖, for all n, (6.22)
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where εn → 0 as n → ∞. Let n1 ∈ N be such that εn ≤ 1 for all n ≥ n1. Set
v = vn in (6.22) to get

‖vn‖ ≥
∣∣ ∫

Ω

|∇vn|2dx−
∫

Ω

g̃+(x, vn)vndx
∣∣, for n ≥ n1. (6.23)

Therefore, using (6.20) and (6.23) we obtain, for n ≥ n1,

C + µ−1‖vn‖

≥ J̃+(vn)− µ−1〈J̃ ′+(vn), vn〉

≥ J̃+(vn)− µ−1
(∫

Ω

|∇vn|2dx−
∫

Ω

g̃+(x, vn)vndx
)
,

≥
∫

Ω

(1
2
|∇vn|2 − G̃+(x, vn)

)
dx− µ−1

(∫
Ω

[|∇vn|2 − g̃+(x, vn)vn]dx
)
,

≥
(1

2
− 1
µ

)
‖vn‖2 +

∫
Ω

Tndx.

where Tn = µ−1g̃+(x, vn)vn − G̃+(x, vn). Note that

sg̃+(x, s)− G̃+(x, s) = 0, for all s ≤ 0. (6.24)

Let Ω = Ω1,n ∪ Ω2,n, where

Ω1,n = {x ∈ Ω : vn(x) ≤ s0}, Ω2,n = {x ∈ Ω : vn(x) > s0},

for all n, where s0 is given by (G3). Then,

C + µ−1‖vn‖ ≥
(1

2
− 1
µ

)
‖vn‖2 +

∫
Ω1,n

Tndx+
∫

Ω2,n

Tn dx. (6.25)

Note that we have also used (6.24). By (G3), (2−1 − µ−1) > 0, and the second
integral in (6.25) is nonnegative. Define

K2 = max
x∈Ω,s≤s0

|µ−1g̃+(x, s)− G̃+(x, s)|.

Then, ∣∣ ∫
Ω1,n

Tndx
∣∣ ≤ K2|Ω| for all n.

Thus, (6.25) becomes

C +
1
µ
‖vn‖ ≥

(1
2
− 1
µ

)
‖vn‖2 −K2|Ω|, for n ≥ n1. (6.26)

Therefore, it follows from (6.26) that (vn) is bounded. Hence, J̃+ satisfies the (PS)
condition.

Before we proceed with the proof, we will derive an estimate for G̃(x, s) for
positive values of s.

Apply (3.13) to (6.14), using the estimate in (6.9), to get that

G̃(x, s) ≥ C5|s+ u0(x)|µ − C6 − |G(x, u0(x))| − |s||g(x, u0(x))|,

for s ≥ 0 and x ∈ Ω. Thus, there exists a constant C9 > 0 such that

G̃(x, s) ≥ C9|s|µ − C9|u0(x)|µ − C6 − C10 − C11|s|, (6.27)
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for s ≥ 0 and x ∈ Ω, where we have set

C10 = max
x∈Ω,0≤ξ≤to

|G(x, ξ)|, C11 = max
x∈Ω,0≤ξ≤to

|g(x, ξ)|.

Thus, setting
C12 = C9t

µ
o + C6 + C10

we obtain from (6.27) that

G̃(x, s) ≥ C9|s|µ − C11|s| − C12 (6.28)

Hence, using the assumption that µ > 2, we deduce from (6.28) the existence of
positive constants C13 and C14 such that

G̃(x, s) ≥ C13|s|µ − C14, for s ≥ 0 and x ∈ Ω. (6.29)

Next, we show that
lim
t→∞

J̃+(tϕ1) = −∞. (6.30)

In fact, use the estimate on (6.29) to obtain

J̃+(tϕ1) =
t2

2
‖ϕ1‖2 −

∫
Ω

G̃+(x, tϕ1)dx

≤ t2

2
‖ϕ1‖2 − C13

tµ

2

∫
Ω

|ϕ1|µdx+ C14|Ω|,

so that
lim
t→∞

J̃+(tϕ1) = −∞,

since µ > 2, which is (6.30).
We have already noted that, since we are assuming u0 is a strict local minimizer

of J , it follows that 0 is a strict local minimizer of J̃+. It then follows from (6.30)
and the intermediate value theorem that there exists v0 ∈ H such that v0 6= 0 and
J̃+(v0) = 0. Then, by the variant of the Mountain Pass Lemma in Chang [6] (See
Proposition 6.2), J̃+ has a nontrivial critical point v1 of mountain–pass type. We
note that v1 is a solution to the boundary-value problem

−∆v = g̃+(x, v(x)), for x ∈ Ω;
v = 0, on ∂Ω.

It then follows from the definition of g+ in (6.16), elliptic regularity theory, and
the maximum principle that v1(x) > 0 for all x ∈ Ω. Consequently, v1 solves the
boundary-value problem

−∆v = g̃(x, v(x)), for x ∈ Ω;
v = 0, on ∂Ω.

Hence, in view of the definition of g̃ in (6.13), the function u1 = u0 + v1 is the
critical point of J of mountain-pass type satisfying

u0(x) < u1(x), for all x ∈ Ω.

Moreover, if the critical points of the level set Kc1 , with c1 = J(u1), are isolated,
then, using [20, Corollary 8.5], there exists ũ1 ∈ Kc1 such that

Cq(J, ũ1) ∼= δq,1Z. (6.31)

�
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7. Critical groups Cq(J,∞)

In this section we compute the critical groups Cq(J,∞), for q = 1, 2, . . . , as
defined in (2.4). We will assume that conditions (G1)–(G6) are satisfied. We will
use the technique outlined by Liu and Shaoping in [19, Proposition 3.1].

Let a = inf J(K), where K = {u ∈ H : J ′(u) = 0} is the critical set of J .
First, we will show that any compact set A ⊂ J−M is contractible in J−M , for
some constant M > −a. This will imply that H̃q(J−M ) = 0 for all q ∈ Z. Then,
by using the exact homology sequence of the pair (H,J−M ), we will show that
H̃q(H,J−M ) = 0 for all q ∈ Z.

First, note that, by combining the conditions (G3) and (G6), we can find a
constant K1 > 0 such that

2G(x, s)− sg(x, s) ≤ K1, for all s ∈ R and x ∈ Ω. (7.1)

The following proposition is based on a result from Liu and Shaoping in [19, Propo-
sition 3.1].

Proposition 7.1. Under the conditions (G1)–(G6), any compact subset A of the
sublevel set J−M = {u ∈ H : J(u) ≤ −M} is contractible in J−M for

M ≥ max{K1|Ω|,−a},
where K1 is given in (7.1).

Proof. Step 1: Let A be a compact subset of J−M , where M > max{K1|Ω|,−a}.
First, we show how to deform A to a subset A1 ⊂ J−2M in J−M . Compute

J(tu) =
t2

2
‖u‖2 −

∫
Ω

G(x, tu)dx, for t ∈ R, (7.2)

and u ∈ A. Then, using (7.2), we can show that

d

dt
[J(tu)] =

1
t

[
2J(tu) +

∫
Ω

(
2G(x, tu)− g(x, tu)tu

)
dx
]
, (7.3)

for t > 0. Using (7.1) and (7.2) we obtain from (7.3) that

d

dt
[J(tu)]− 2

t
J(tu) ≤ K1|Ω|

t
(7.4)

for all t ≥ 1. Multiply (7.4) by the integrating factor 1/t2 and integrate from 1 to
t > 1 to obtain

J(tu) ≤ t2J(u) +
t2

2
K1|Ω| −

1
2
K1|Ω|, (7.5)

for all t ≥ 1. Define a map η1 on [0, 1]×A by

η1(t, u) = (1 + t)u, for u ∈ A. (7.6)

Then, η1 is continuous. Also, η1(t, u) ∈ J−M for all t ∈ [0, 1]. In fact, from (7.5),
we have

J(η1(t, u)) ≤ (1 + t)2J(u) +
K1|Ω|

2
[(1 + t)2 − 1]. (7.7)

Since K1|Ω| < −M , and J(u) ≤ −M , we obtain from (7.7) that

J(η1(t, u)) ≤ (1 + t)2J(u) +M(1 + t)2 −M ≤ −M
Thus,

J((1 + t)u) ≤ −M, for all 0 ≤ t ≤ 1.
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Therefore, η1 defines a continuous map from [0, 1]×A to J−M . Set A1 = η1(1, A).
Then, A1 is a compact set. We claim that A1 ⊂ J−2M . In fact, setting t = 1
in (7.5), and using the assumption that K1|Ω| ≤ M , we obtain J(2u) ≤ −2M .
Therefore, A1 ⊂ J−2M . Thus, η1 defines a deformation from A to A1 in J−M .

In what follows, we will use the fact that, if u ∈ J−M , then

J(tu) ≤ −M, for t ≥ 1; (7.8)

this is a consequence of (7.5).
The remainder of the argument follows the same steps as in Liu and Shaoping

in [19, Proposition 2.1].
Step 2: In this step, we show how to deform the set A1 obtained in Step 1 to a
subset of smooth functions.

Since the functional J : H → R is continuous on H and A1 is compact, there
exists ε > 0 such that, for all u ∈ A1,

‖v − u‖ < ε⇒ |J(v)− J(u)| < M

2
. (7.9)

On the other hand, since the set C1
0 (Ω) is dense in H, for each u ∈ A1, there exists

uε ∈ C1
0 (Ω) such that

‖u− uε‖ < ε. (7.10)

Note that {Bε(uε)}u∈A1 is an open cover for A1. Thus, since A1 is compact, there
exist smooth functions uε1, u

ε
2, . . . , u

ε
n such that

A1 ⊂ ∪ni=1Bε(u
ε
i ).

Let {βi}ni=1 be a partition of unity subordinate to the cover {Bε(uεi )}ni=1, where the
functions {βi}ni=1 are Lipschitz continuous. Then, for any u ∈ A1,

‖
n∑
i=1

βi(u)uεi − u‖ = ‖
n∑
i=1

βi(u)uεi −
n∑
i=1

βi(u)u‖ ≤ ‖uεi − u‖, for some j.

Hence,

‖
n∑
i=1

βi(u)uεi − u‖ ≤ ε, (7.11)

where we used (7.10) and the fact
∑n
i=1 βi(u) = 1. Let u∗(u) =

∑
i βi(u)uεi , for all

u ∈ A1. Then, u∗ is continuous. Let η2 be a map defined on [0, 1]×A1 by

η2(t, u) = (1− t)u+ tu∗(u), for t ∈ [0, 1] and u ∈ A1. (7.12)

Note that η2 is continuous. Next, we show that η2(t, u) ∈ J− 3
2M for all t ∈ [0, 1]

and u ∈ A1. Indeed, setting v = (1− t)u+ tu∗(u) and using (7.11) and (7.12), we
obtain

‖v − u‖ = t‖u∗ − u‖ < ε. (7.13)

Then, using (7.9) we obtain

|J(v)− J(u)| < M

2
, (7.14)

in view of (7.13). Since J(u) ≤ −2M , we obtain from (7.14) that

J(v) < −3M
2
, for all t ∈ [0, 1], and u ∈ A1.
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Define A2 = η2(A1, 1). We have A2 ⊂ J−
3
2M ∩C1

0 (Ω). Therefore, we have deformed
the set A1 into a compact subset A2 of J−

3
2M ∩ C1

0 (Ω).
Note that there exists a constant M > 0 such that

|∇u(x)| ≤M, for all u ∈ A2. (7.15)

In fact,
M = max

1≤i≤n
max
x∈Ω
|∇uεi (x)|.

Step 3: In this step, we will deform the subset A2 from Step 2 to a subset of
functions with nonzero positive part. First, note that, since J : H → R is continuous
and A2 is compact, there exists ε1 > 0 such that, for all u ∈ A3,

‖v − u‖ < ε1 ⇒ |J(v)− J(u)| < M

2
. (7.16)

Let d(x) = dist(x, ∂Ω), for x ∈ Ω. By [12, Lemma 14.16], there exists ν > 0 such
that d is smooth in the set Γν = {x ∈ Ω : d(x) < ν}. Define ϕε : Ω→ R by

ϕε(x) =

{
2Md(x), if x ∈ Γε;
2Mε, if x ∈ Ω\Γε,

where ε > 0 is such that ε < ν and∫
Γε

|∇d|2dx < ε2
1

4M
2 . (7.17)

It follows from (7.17) that
‖ϕε‖ < ε1. (7.18)

Furthermore, for every u ∈ A2, we have

u(x) + ϕε(x) > 0, for x near ∂Ω. (7.19)

In fact, if u(x) > 0 for x near ∂Ω, the statement in (7.19) is true. If not, there
exists x0 ∈ ∂Ω such that u(x) < 0 for x ∈ Bδ0(x0) ∩Ω for some δ0 > 0. Let ~n be a
unit normal vector to ∂Ω that points towards Ω. Define f : R→ R by

f(t) = u(x0 + t~n), for all t ∈ R.

By the intermediate value theorem, there exists ξ ∈ (0, t) such that f(t) = f ′(ξ)t,
for t > 0 in some neighborhood of 0; then,

u(x0 + t~n) = (∇u(x0 + ξ~n) · ~n)t, for t > 0 small enough.

Since u(x0 + t~n) < 0, |u(x0 + t~n)| = −u(x0 + t~n), for t > 0 small enough. Then,
using (7.15), we obtain

− u(x0 + t~n) = |∇u(x0 + ξ~n)|t ≤Mt, for t > 0 small enough.

So that,
− u(x0 + t~n) < 2Mt, for t > 0 small enough. (7.20)

Observe that, for t > 0 small enough, d(x0 + t~n) = t. We can therefore rewrite
(7.20) as

−u(x0 + t~n) < 2Md(x0 + t~n), for t > 0 small enough;
so that

−u(x0 + t~n) < ϕε(x0 + t~n), for t > 0 small enough.
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Therefore, v(x0 + t~n) > 0 for t > 0 small enough. Thus, v = u+ ϕε has a positive
part, v+.

Define a map η3 on [0, 1]×A2 by

η3(t, u) = u+ tϕε, for all u ∈ A2, t ∈ [0, 1].

Then, η3 is continuous. We claim that η3(t, u) ∈ J−M , for u ∈ A2 and t ∈ [0, 1].
Indeed, for v = u+ tϕε, and 0 ≤ t ≤ 1, using (7.18), we obtain

‖v − u‖ = t‖ϕε‖ ≤ ‖ϕε‖ ≤ ε1.

Then, it follows from (7.16) that

|J(v)− J(u)| < M

2
.

Since J(u) ≤ − 3
2M , we obtain

J(v) <
M

2
+ J(u) <

M

2
− 3M

2
= −M.

Thus η3 : [0, 1]× A2 → J−M is a continuous map. Put A3 = η3(1, A2). Therefore,
A3 is a compact subset of the level set J−M whose elements have nonzero positive
part. This concludes the proof of Step 3.
Step 4: In this step, our goal is to deform the set A3 into a set of functions u, for
which J(u+) < 0. For each element u ∈ A3, we have

J(tu+) =
t2

2
‖u+‖2 −

∫
Ω

G(x, tu+)dx. (7.21)

Noting that A3 is compact, we set

M1 = max
ξ∈A3

‖ξ+‖2. (7.22)

Similarly,
∫

Ω
G(x, u+)dx attains a minimum m1 in A3 given by

m1 = inf
ξ+∈A3

∫
Ω

G(x, ξ+)dx. (7.23)

It follows from (7.22), (7.23) and (7.21) that

J(tu+) ≤ t2[
M1

2
− m1

t2
], for u ∈ A3, and t > 0. (7.24)

Next, choose T1 > 0 such that

β =
m1

T 2
1

− M1

2
> 0. (7.25)

Then, by virtue of (7.24) and (7.25),

J(tu+) ≤ −βt2, for u ∈ A3, and t ≥ T1.

Since we want J(tu+) ≤ −M , we can choose t such that

t ≥
(M
β

)1/2
.

Put
T4 = max

{
T1,
(M
β

)1/2}
. (7.26)

Now, define a map η4 on [0, 1]×A3 by

η4(t, u) = [(1− t) + tT4]u, for t ∈ [0, 1], and u ∈ A3.
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Then, η4 is continuous, and η4(t, u) ∈ J−M by (7.8). Thus, η4 defines a continuous
map from [0, 1] × A3 to J−M . Put A4 = η4(1, A3). Then, A4 is a compact set.
Also, A4 ⊂ J−M , and J(u+) ≤ −M , for all u ∈ A4. This concludes the proof of
Step 4.
Step 5: In this step, the goal is to deform the set A4 to a set of functions, u, in
J−M such that J(u+) is negatively large enough. First, notice that, for 0 ≤ s ≤ 1,

J(−su−) =
s2

2

∫
Ω

[|∇u−|2 −G(x,−su−)]dx

≤ 1
2

max
ξ∈A4,0≤s≤1

∣∣ ∫
Ω

[|∇ξ−|2 −G(x,−sξ−)]dx
∣∣.

Set

C11 =
1
2

max
ξ∈A4,0≤s≤1

∣∣ ∫
Ω

[|∇ξ−|2 −G(x,−sξ−)]dx
∣∣.

Then,
J(−su−) ≤ C11, for s ∈ [0, 1], and u ∈ A4. (7.27)

This estimate will also be used in Step 6.
Next, using the estimate (3.13), we obtain

J(tu+) ≤ t2

2
‖u+‖2 − C7t

µ

2
‖u+‖µLµ − C8|Ω|.

So that
J(tu+)→ −∞, as t→∞,

since µ > 2. Thus, we can choose T5 large enough such that

J(T5u
+) ≤ −M − C11, for all u ∈ A4.

Define a map η5 on [0, 1]×A4 by

η5(t, u) = [(1− t) + tT5]u+ − u−, for u ∈ A4, and t ∈ [0, 1].

Then, η5 is continuous and η5(t, u) ∈ J−M for all t ∈ [0, 1] and u ∈ A4 by (7.8).
Thus, η5 defines a map from [0, 1]× A4 to J−M . Put A5 = η5(1, A4). Thus, A5 is
a compact set and

A5 ⊂ J−M ∩ {u ∈ A4|J(u+) ≤ −M − C11}, (7.28)

and η5 defines a deformation from A4 to A5. This concludes the proof of Step 5.
Step 6: In this step, we will deform the set A5 obtained in Step 5 to a subset of
nonnegative functions in J−M . For each element u ∈ A5, we have

J(u+ − su−) = J(u+) + J(−su−) for all u ∈ A5.

So that, using (7.27) and (7.28), we obtain

J(u+ − su−) ≤ −M, for all s ∈ [0, 1], and u ∈ A5. (7.29)

Define a map η6 on [0, 1]×A5 by

η6(t, u) = u+ − (1− t)u−.

Then η6 is continuous and η6(t, u) ∈ J−M for all t ∈ [0, 1] and u ∈ A5, by virtue of
(7.29). Thus, η6 defines a map from [0, 1]×A5 to J−M . Put A6 = η6(1, A5). Then,
A6 is a compact set and its elements are nonnegative functions. This concludes the
proof of Step 6.
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Step 7: Define B+
1 = {u ∈ H|‖u‖ = 1 and u ≥ 0}. We saw in Step 6 that A6 is

compact and
A6 ⊂ J−M ∩ {u ∈ H : u ≥ 0}.

We show that J−M ∩ {u ∈ H : u ≥ 0} and B+
1 are homotopic.

Observe that for every u ∈ H\{0} such that u ≥ 0 on Ω, there exists a unique
t∗(u) > 0 such that

J(t∗(u)u) = −M. (7.30)

Furthermore, the map u 7→ t∗(u) is continuous for u ∈ {u ∈ H : u ≥ 0}. In fact, it
follows from (3.13) that

J(tu) ≤ t2

2
‖u‖2 + C8|Ω| − C7t

µ

∫
Ω

|u|µdx.

So that, since µ > 2, we have that

lim
t→∞

J(tu) = −∞, for u ∈ H\{0}, u ≥ 0 in Ω. (7.31)

Also, J(0) = 0. It then follows by the intermediate value theorem and (7.31) that,
for each u ∈ H\{0} with u ≥ 0, there exists t∗ > 0 such that,

J(t∗u) = −M.

So that, using (7.4),
d

dt
J(tu)

∣∣
t=t∗
≤ − 1

t∗
M < 0.

Hence, by the implicit function theorem, t∗ is unique and is a continuous function
of u for u ∈ H\{0}, u ≥ 0 in Ω, which proves (7.30). Furthermore, J(tu) ≤ −M
for all t ≥ t∗(u).

Next, set
B = {tv : v ∈ B+

1 and t ≥ t∗(v)}. (7.32)

We show that
B = J−M ∩ {u ∈ H : u ≥ 0 in Ω}. (7.33)

To see why (7.33) is true, take u ∈ H with u ≥ 0 in Ω, and J(u) ≤ −M ; so that

u = ‖u‖u1, where u1 =
1
‖u‖

u ∈ B1,

and ‖u‖ ≥ t∗(u1), since J(‖u‖u1) ≤ −M . Hence,

J−M ∩ {u ∈ H : u ≥ 0 in Ω} ⊆ B. (7.34)

Next, let u ∈ B. Then, there exists v ∈ B+
1 and t ≥ t∗(v) such that u = tv, where

v ∈ B+
1 and t ≥ t∗(v). Then, by the definition of t∗(v) it follows that

J(tv) ≤ −M,

which shows that u ∈ J−M . Hence, u ∈ J−M ∩ {u ∈ H : u ≥ 0 in Ω}. Thus

B ⊆ J−M ∩ {u ∈ H : u ≥ 0, in Ω}. (7.35)

The inclusion (7.34) and (7.35) establish (7.33).
Next, we show that B and B+

1 are homotopic. This will imply that

J−M ∩ {u ∈ H : u ≥ 0 in Ω} ∼= B+
1 .
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Define f : B → B+
1 as follows: For each u ∈ B, u ∈ J−M and u ≥ 0 in Ω, so that

u 6= 0; thus, we can define

f(u) =
1
‖u‖

u, for all u ∈ B.

Define g : B+
1 → B by g(u) = t∗(u)u for all u ∈ B+

1 . Then,

f ◦ g(u) =
1

t∗(u)‖u‖
(t∗(u)u) = u,

for all u ∈ B+
1 . So, f ◦ g = idB+

1
. On the other hand, for u ∈ B,

g ◦ f(u) = t∗
( u

‖u‖
) u

‖u‖
. (7.36)

We claim that
t∗(u) =

1
‖u‖

t∗
( u

‖u‖
)
. (7.37)

By the definition of t∗, we have J(t∗(u)u) = −M . Similarly,

J
(
t∗
( u

‖u‖
) u

‖u‖

)
= −M.

Then, by the uniqueness of t∗ we obtain (7.37). Therefore, we can rewrite (7.36) as

g ◦ f(u) = t∗(u)u. (7.38)

Next, we build a homotopy from g to idB by H : [0, 1]×B → B given by

H(s, u) = [st∗(u) + (1− s)]u. (7.39)

Then, H(0, u) = u and H(1, u) = t∗(u)u = g ◦ f(u). Note that

t∗(u) ≤ st∗(u) + (1− s) ≤ 1, for all s ∈ [0, 1],

since t∗(u) ≤ 1 for u ∈ B, by virtue of (7.33) Hence, J(H(s, u)) ≤ −M for all
s ∈ [0, 1]. It follows that B and B+

1 are homotopic. Therefore, since

B = J−M ∩ {u ∈ H : u ≥ 0},
we obtain that J−M ∩ {u ∈ H : u ≥ 0} and B+

1 are homotopic.
Step 8: In this step, we show that B+

1 is contractible. Let u0 be any element in
B+

1 , so that ‖u0‖ = 1 and u0 ≥ 0. Define H : [0, 1]×B+
1 → B+

1 by

H(t, u) =
tu0 + (1− t)u
‖tu0 + (1− t)u‖

, t ∈ [0, 1], u ∈ B+
1 .

Note that, for any t ∈ [0, 1] and u ∈ B+
1 , tu0 + (1− t)u ≥ 0. Furthermore,

‖tu0 + (1− t)u‖ 6= 0, for all t ∈ [0, 1], and u ∈ B+
1 .

Otherwise there would exist t1 ∈ [0, 1] and u1 ∈ B+
1 such that

‖t1u0 + (1− t1)u1‖ = 0.

Then, t1u0 + (1− t1)u1 = 0. So that

t1u0 = −(1− t1)u1,

where t1u0 ≥ 0 and u1 ≥ 0, so that t1u0 ≤ 0. Thus, t1 = 0, so that u1 = 0, which
is impossible. Thus, H : [0, 1] × B+

1 → B+
1 defines a homotopy with H(0, u) = u,

that is, H(0, .) = idB+
1

, and H(1, u) = u0 for all u ∈ B+
1 .
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Step 9: By Step 6 we have that

A6 ⊂ J−M ∩ {u ∈ H|u ≥ 0}.

In Step 7, we showed that J−M ∩ {u ∈ H|u ≥ 0} is homotopic to B+
1 . In Step 8,

we showed that B+
1 is contractible in J−M . Therefore, A6 is contractible in J−M .

This concludes the proof of Proposition 7.1. �

The previous proposition implies that H̃q(J−M ) = 0, for all q ∈ Z. Then, it
follows from the exactness of the homology sequence of the pair (H,J−M ),

· · · i∗→ H̃q+1(H) ∼= {0} j∗→ Hq+1(H,J−M ) ∂∗→ H̃q(J−M )

∼= {0} i∗→ H̃q(H) ∼= {0} ∂∗→ . . . ,

that ∂∗ is an isomorphism. Therefore,

Cq(J,∞) = Hq(H,J−M ) = 0, (7.40)

for all q ∈ Z.
Now we present the proof of the main result.

Proof of Theorem 1.1. Let u0 be as given in Theorem 6.1 and u1 as given in Theo-
rem (6.3). Assume by way of contradiction that 0, u0, and u1 are the only critical
points of J . Then, K = {0, u0, u1}. Using the Morse relation (2.6) with t = −1, we
obtain

∞∑
q=0

Mq(−1)q =
∞∑
q=0

βq(−1)q, (7.41)

where Mq are the Morse type numbers defined in (2.5) and βq = dimCq(J,∞) are
the Betti numbers for q = 0, 1, 2, . . . . First, the left side of (7.41) is given by

∞∑
q=0

Mq(−1)q = M0 −M1 + (−1)dMd,

where
Md = dimCd(J, 0) = 1, M0 = dimC0(J, u0) = 1,

M1 = dimC1(J, u1) = 1,
(7.42)

where we have used (5.12), (6.7), and (6.1), respectively.
The Betti numbers are given by βq = dimCq(J,∞), where the critical groups at

infinity were computed in (7.40), so that

Cq(J,∞) = 0, for q = 0, 1, 2, . . . .

Then, βq = 0 for all q = 0, 1, 2, . . . . Hence, substituting (7.42) in (7.41), we obtain

(−1)d = 0,

which is a contradiction. Therefore, J must have at least four critical points; that
is, problem (1.1) must have at least three nontrivial weak solutions. �
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