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EXISTENCE AND EXPONENTIAL DECAY OF SOLUTIONS FOR
TRANSMISSION PROBLEMS WITH DELAY

AISSA BENSEGHIR

Abstract. In this article we consider a transmission problem in a bounded

domain with a delay term in the first equation. Under suitable assumptions on
the weight of the damping and the weight of the delay, we prove the existence

and the uniqueness of the solution using the semigroup theory. Also we show

the exponential stability of the solution by introducing a suitable Lyaponov
functional.

1. Introduction

In this article, we consider the transmission problem with a delay term,

utt(x, t)− auxx(x, t) + µ1ut(x, t) + µ2ut(x, t− τ) = 0, (x, t) ∈ Ω× (0,+∞),

vtt(x, t)− bvxx(x, t) = 0, (x, t) ∈ (L1, L2)× (0,+∞),
(1.1)

where 0 < L1 < L2 < L3, Ω =]0, L1[∪]L2, L3[, a, b, µ1, µ2 are positive constants,
and τ > 0 is the delay.

System (1.1) is subjected to the following boundary and transmission conditions:

u(0, t) = u(L3, t) = 0,

u(Li, t) = v(Li, t), i = 1, 2

aux(Li, t) = bvx(Li, t), i = 1, 2
(1.2)

and the initial conditions:

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t− τ) = f0(x, t− τ), x ∈ Ω, t ∈ [0, τ ],

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈]L1, L2[.
(1.3)

For µ2 = 0, system (1.1)-(1.3) has been investigated in [3]; for Ω = [0, L1], the
authors showed the well-posedness and exponential stability of the total energy.
Muñoz Rivera and Oquendo [11] studied the wave propagations over materials
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consisting of elastic and viscoelastic components; that is,
ρ1utt − α1uxx = 0, x ∈]0, L0[, t > 0,

ρ2vtt − α2vxx +
∫ t

0

g(t− s)vxx(s)ds = 0, x ∈]L0, L[, t > 0,
(1.4)

with the boundary and initial conditions:
u(0, t) = v(L, t), u(L0, t) = v(L0, t), t > 0,

α1ux(L0, t) = α2vx(L0, t)−
∫ t

0

g(t− s)vx(s)ds, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [0, L0],

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ [L0, L],

(1.5)

where ρ1 and ρ2 are densities of the materials and α1, α2 are elastic coefficients and
g is positive exponential decaying function. They showed that the dissipation pro-
duced by the viscoelastic part is strong enough to produce an exponential decay of
the solution, no matter how small is its size. Ma and Oquendo [6] considered trans-
mission problem involving two Euler-Bernoulli equations modeling the vibrations
of a composite beam. By using just one boundary damping term in the boundary,
they showed the global existence and decay property of the solution. Marzocchi et
al [7] investigated a 1-D semi-linear transmission problem in classical thermoelas-
ticity and showed that a combination of the first, second and third energies of the
solution decays exponentially to zero, no matter how small the damping subdomain
is. A similar result has sheen shown by Messaoudi and Said-Houari [9], where a
transmission problem in thermoelasticity of type III has been investigated. See
also Marzocchi et al [8] for a multidimensional linear thermoelastic transmission
problem.

For µ2 > 0, problem (1.1) has a delay term in the internal feedback. This delay
term may destabilize system (1.1)-(1.3) that is exponentially stable in the absence
of delays [3]. The effect of the delay in the stability of hyperbolic systems has been
investigated by many people. See for instance [4, 5].

In [10] the authors examined a system of wave equations with a linear boundary
damping term with a delay:

utt −∆u = 0, x ∈ Ω, t > 0

u(x, t) = 0, x ∈ Γ0, t > 0
∂u

∂ν
(x, t) = µ1ut(x, t) + µ2ut(x, t− τ) x ∈ Γ1, t > 0

u(x, 0) = u0(x), x ∈ Ω,

ut(x, 0) = u1(x) x ∈ Ω,

ut(x, t− τ) = g0(x, t− τ) x ∈ Ω, τ ∈ (0, 1)

(1.6)

and under the assumption
µ2 < µ1 (1.7)

they proved that the solution is exponentially stable. On the contrary, if (1.7)
does not hold, they found a sequence of delays for which the corresponding solution
of (1.6) will be unstable. We also recall the result by Xu et al [13], where the
authors proved the same result as in [10] for the one space dimension by adopting
the spectral analysis approach.
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The aim of this article is to study the well-posedness and asymptotic stability
of system (1.1)-(1.3) provided that (1.7) is satisfied. The paper is organized as
follows. The well-posedness of the problem is analyzed in Section 2 using the
semigroup theory. In Section 3, we prove the exponential decay of the energy when
time goes to infinity.

2. Well-posedness of the problem

In this section, we prove the existence and the uniqueness of a local solution of
system (1.1)-(1.3) by using the semi-group theory. So let us introduce the following
new variable [10]

y(x, ρ, t) = ut(x, t− τρ). (2.1)
Then, we obtain

τyt(x, ρ, t) + yρ(x, ρ, t) = 0, in Ω× (0, 1)× (0,+∞). (2.2)

Therefore, problem (1.1) is equivalent to

utt(x, t)− auxx(x, t) + µ1ut(x, t) + µ2y(x, 1, t) = 0, (x, t) ∈ Ω×]0,+∞[

vtt(x, t)− bvxx(x, t) = 0, (x, t) ∈]L1, L2[×]0,+∞[

τyt(x, ρ, t) + yρ(x, ρ, t) = 0, in Ω× (0, 1)× (0,+∞)
(2.3)

which together with (1.3) can be rewritten as

U ′ = A U,

U(0) = (u0, v0, u1, v1, f0(.,−.τ))T,
(2.4)

where the operator A is defined by

A


u
v
ϕ
ψ
y

 =


ϕ
ψ

auxx − µ1ϕ− µ2y(., 1)
bvxx
− 1
τ yρ

 (2.5)

with the domain

D(A ) =
{

(u, v, ϕ, ψ, y)T ∈H ; y(., 0) = ϕ on Ω
}
,

where

H =
{(
H2(Ω)×H2(L1, L2)

)
∩X∗

}
×H1(Ω)×H1(L1, L2)× L2(0, 1, H1(Ω)).

Here the space X∗ is defined by

X∗ =
{

(u, v) ∈ H1(Ω) ∩H1(L1, L2) : u(0, t) = u(L3, t) = 0,

u(Li, t) = v(Li, t), aux(Li, t) = bvx(Li, t), i = 1, 2
}
.

Now the energy space is defined by

K = X∗ × L2(Ω)× L2(L1, L2)× L2((Ω)× (0, 1)).

Let
U = (u, v, ϕ, ψ, y)T, Ū = (ū, v̄, ϕ̄, ψ̄, ȳ)T.

Then, for a positive constant ζ satisfying

τµ2 ≤ ζ ≤ τ(2µ1 − µ2), (2.6)
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we define the inner product in K as follows:

(U, Ū)K =
∫

Ω

{ϕϕ̄+auxūx} dx+
∫ L2

L1

{ψψ̄+bvxv̄x} dx+ζ
∫

Ω

∫ 1

0

y(x, ρ)ȳ(x, ρ) dρ dx .

The existence and uniqueness result is stated as follows.

Theorem 2.1. For any U0 ∈ K there exists a unique solution U ∈ C([0,+∞[,K )
of problem (2.4). Moreover, if U0 ∈ D(A ), then

U ∈ C([0,+∞[, D(A )) ∩ C1([0,+∞[,K ).

Proof. To prove the result stated in Theorem 2.1, we use the semigroup theory,
that is, we show that the operator A generates a C0-semigroup in K . In this
step, we concern ourselves to prove that the operator A is dissipative. Indeed, for
U = (u, v, ϕ, ψ, y)T ∈ D(A ), where ϕ(L2) = ψ(L2) and ζ is a positive constant, we
have

(A U,U)K = a

∫
Ω

uxxϕdx+ b

∫ L2

L1

vxxψ dx− µ1

∫
Ω

ϕ2 dx

− µ2

∫
Ω

y(., 1)ϕdx− ζ

τ

∫
Ω

∫ 1

0

y(x, ρ)yρ(x, ρ) dρ dx

+ a

∫
Ω

uxϕx dx+ b

∫ L2

L1

vxψx dx .

(2.7)

Looking now at the last term of the right-hand side of (2.7), we have

ζ

∫
Ω

∫ 1

0

y(x, ρ)yρ(x, ρ) dρ dx = ζ

∫
Ω

1
2
∂

∂ρ
y2(x, ρ) dρ dx

=
ζ

2

∫
Ω

(y2(x, 1)− y2(x, 0)) dx.
(2.8)

Integrating by parts in (2.7), keeping in mind the fact that y(x, 0, t) = ϕ(x, t) and
using (2.8), we have from (2.7)

(A U,U)K = a[uxϕ]∂Ω + b[vxψ]L2
L1
−
(
µ1 −

ζ

2τ
) ∫

Ω

ϕ2 dx

− µ2

∫
Ω

y(., 1)ϕdx− ζ

2τ

∫
Ω

y2(x, 1) dx.
(2.9)

Using Young’s inequality, (1.2), and the equality ϕ(L2) = ψ(L2), from (2.9), we
obtain(

A U,U
)
K
≤ −

(
µ1 −

ζ

2τ
− µ2

2
) ∫

Ω

ϕ2 dx−
( ζ

2τ
− µ2

2
) ∫

Ω

y2(x, 1) dx. (2.10)

Consequently, using (2.6), we deduce that (A U,U)K ≤ 0. Thus, the operator A
is dissipative.

Now to show that the operator A is maximal monotone, it is sufficient to
show that the operator λI − A is surjective for a fixed λ > 0. Indeed, given
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(f1, g1, f2, g2, h)T ∈ K , we seek U = (u, v, ϕ, ψ, y)T ∈ D(A ) solution of
λu− ϕ
λv − ψ

λϕ− auxx + µ1y(., 0) + µ2y(., 1)
λψ − bvxx
λy + 1

τ yρ

 =


f1

g1

f2

g2

h

 (2.11)

suppose we have find (u, v) with the appropriate regularity, then

ϕ = λu− f1

ψ = λv − g1.
(2.12)

It is clear that ϕ ∈ H1(Ω) and ψ ∈ H1(L1, L2), furthermore, by (2.11), we can find
y as y(x, 0) = ϕ(x), x ∈ Ω, using the approach as in Nicaise and Pignotti [10], we
obtain, by using the equation in (2.11)

y(x, ρ) = ϕ(x)e−λρτ + τe−λρτ
∫ ρ

0

h(x, σ)eλστdσ .

From (2.12), we obtain

y(x, ρ) = λu(x)e−λρτ − f1(x)e−λρτ + τe−λρτ
∫ ρ

0

h(x, σ)eλστdσ .

By using (2.11) and (2.12), the functions u, v satisfy the following equations:

λ2u− auxx + µ1y(., 0) + µ2y(., 1) = f2 + λf1

λ2v − bvxx = g2 + λg1 .
(2.13)

Since

y(x, 1) = ϕ(x)e−λτ + τe−λτ
∫ 1

0

h(x, σ)eλτdσ

= λue−λτ + y0(x),

for x ∈ Ω, we have

y0(x) = −f1(x) + τe−λτ
∫ 1

0

h(x, σ)eλτdσ (2.14)

The problem (2.13) can be reformulated as∫
Ω

(λ2u− auxx + µ1λu+ +µ2λue
−λτ )ω1 dx

=
∫

Ω

(f2 + λf1 − µ2λy0(x))ω1 dx,∫ L2

L1

(λ2v − bvxx)ω2 dx =
∫ L2

L1

(g2 + λg1)ω2 dx,

(2.15)

for any (ω1, ω2) ∈ X∗.
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Integrating the first equation in (2.15) by parts, we obtain∫
Ω

(λ2u− auxx + µ1u+ µ2λue
−λτ )ω1 dx

=
∫

Ω

λ2uω1 dx− a
∫

Ω

uxxω1 dx+ µ1

∫
Ω

λu dx+ µ2

∫
Ω

λue−λτω1 dx

=
∫

Ω

λ2uω1 dx+ a

∫
Ω

ux(ω1)x dx− [auxω1]∂Ω

+ µ1

∫
Ω

λu dx+ µ2

∫
Ω

λue−λτω1 dx

=
∫

Ω

(λ2 + µ1λ+ µ2λe
−λτ )uω1 dx+ a

∫
Ω

ux(ω1)x dx− [auxω1]∂Ω .

(2.16)

Integrating the second equation in (2.15) by parts, we obtain∫ L2

L1

(λ2v − bvxx)ω2 dx =
∫ L2

L1

λ2vω2 dx+ b

∫ L2

L1

vx(ω2)x dx− [bvxω2]L2
L1
. (2.17)

Using (2.16) and (2.17), the problem (2.15) is equivalent to the problem

Φ((u, v), (ω1, ω2)) = l(ω1, ω2) (2.18)

where the bilinear form Φ : (X∗ ×X∗) → R and the linear form l : X∗ → R are
defined by

Φ((u, v), (ω1, ω2)) =
∫

Ω

(λ2 + µ1λ+ µ2λe
−λτ )uω1 dx+ a

∫
Ω

ux(ω1)x dx− [auxω1]∂Ω

+
∫ L2

L1

λ2v ω2 dx+ b

∫ L2

L1

vx(ω2)x dx− [bvxω2]L2
L1

and

l(ω1, ω2) =
∫

Ω

(f2 + λf1 − µ2λy0(x))ω1 dx+
∫ L2

L1

(g2 + λg1)ω2 dx .

Using the properties of the space X∗, it is clear that Φ is continuous and coercive,
and l is continuous. So applying the Lax-Milgram theorem, we deduce that for
all (ω1, ω2) ∈ X∗, problem (2.18) admits a unique solution (u, v) ∈ X∗. It follows
from (2.16) and (2.17) that (u, v) ∈ {

(
H2(Ω)×H2(L1, L2)

)
∩X∗}. Therefore, the

operator λI − A is dissipative for any λ > 0. Then the result in Theorem 2.1
follows from the Hille-Yoshida theorem. �

3. Exponential decay of solutions

In this section we study the asymptotic behavior of the system (1.1)-(1.3). For
any regular solution of (1.1)-(1.3), we define the energy as

E1(t) =
1
2

∫
Ω

u2
t (x, t) dx+

a

2

∫
Ω

u2
x(x, t) dx, (3.1)

E2(t) =
1
2

∫ L2

L1

v2
t (x, t) dx+

b

2

∫ L2

L1

v2
x(x, t) dx . (3.2)

The total energy is defined as

E(t) = E1(t) + E2(t) +
ζ

2

∫
Ω

∫ 1

0

y2(x, ρ, t) dρ dx (3.3)
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where ζ is the positive constant defined by (2.6). Our decay result reads as follows.

Theorem 3.1. Let (u, v) be the solution of (1.1)-(1.3). Assume that µ2 > µ1 and
a

b
<
L3 + L1 − L2

2(L2 − L1)
. (3.4)

Then there exist two positive constants C and d, such that

E(t) ≤ Ce−dt, ∀t ≥ 0. (3.5)

Remark 3.2. Assumption (3.4) gives the relationship between the boundary re-
gions and the transmission permitted. It can be also seen as a restriction on the
wave speeds of the two equations and the damped part of the domain. It is known
that for Timoshenko systems [12] and Bresse systems [1] that the wave speeds al-
ways control the decay rate of the solution. It is an interesting open question to
show the behavior of the solution if (3.4) is not satisfied.

For the proof of Theorem 3.1 we use the following lemmas.

Lemma 3.3. Let (u, v, y) be the solution of (2.3), (1.3). Assume that µ1 ≥ µ2.
Then we have the inequality
dE(t)
dt

≤
(
− µ1 +

µ2

2
+

ζ

2τ
) ∫

Ω

y2(x, 0, t) dx+
(µ2

2
− ζ

2τ
) ∫

Ω

y2(x, 1, t) dx. (3.6)

Proof. From (3.3) we have
dE1(t)
dt

=
∫

Ω

utt(x, t)ut(x, t) dx+ a

∫
Ω

uxt(x, t)ux(x, t) dx . (3.7)

Using system (2.3), and integrating by parts, we obtain
dE1(t)
dt

= a[uxut]∂Ω − µ1

∫
Ω

u2
t (x, t)− µ2

∫
Ω

ut(x, t)y(x, 1, t)) dx . (3.8)

On the other hand,
dE2(t)
dt

= b[vxvt]L2
L1
. (3.9)

Using the fact that

d

dt

ζ

2

∫
Ω

∫ 1

0

y2(x, ρ, t) dρ dx = ζ

∫
Ω

∫ 1

0

y(x, ρ, t)yt(x, ρ, t) dρ dx

= − ζ
τ

∫
Ω

∫ 1

0

yρ(x, ρ, t)y(x, ρ, t)dρ dx

= − ζ

2τ

∫
Ω

∫ 1

0

d

dρ
y2(x, ρ, t) dρ dx

= − ζ

2τ

∫
Ω

(y2(x, 1, t)− y2(x, 0, t)) dx ,

(3.10)

collecting (3.8), (3.9), (3.10), using (1.2) and applying Young’s inequality, we show
that (3.6) holds. The proof is complete. �

Following [2], we define the functional

I(t) =
∫

Ω

∫ t

t−τ
es−tu2

t (x, s) ds dx ,

and state the following lemma.
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Lemma 3.4. Let (u, v) be the solution of (1.1)-(1.3). Then

dI(t)
dt
≤
∫

Ω

u2
t (x, t) dx− e−τ

∫
Ω

u2
t (x, t− τ) dx− e−τ

∫
Ω

∫ t

t−τ
u2
t (x, s) ds dx. (3.11)

The proof of the above Lemma is straightforward, so we omit it. Now, we define
the functional D(t) as follows

D(t) =
∫

Ω

uut dx+
µ1

2

∫
Ω

u2 dx+
∫ L2

L1

vvt dx. (3.12)

Then, we have the following estimate.

Lemma 3.5. The functional D(t) satisfies

d

dt
D(t) ≤ −(a− ε0c20)

∫
Ω

u2
x dx− b

∫ L2

L1

v2
x dx

+
∫

Ω

u2
t dx+

∫ L2

L1

v2
t dx+ C(ε0)

∫
Ω

y2(x, 1, t) dx

(3.13)

Proof. Taking the derivative of D(t) with respect to t and using (1.1), we find that

d

dt
D(t) =

∫
Ω

u2
t dx+

∫ L2

L1

v2
t dx− a

∫
Ω

u2
x dx− b

∫ L2

L1

v2
x dx

− µ2

∫
Ω

u(x, t)y(x, 1, t) dx+ [auxu]∂Ω + [bvxv]L2
L1
.

(3.14)

Applying young’s inequality and using the boundary conditions (1.2), we have

[auxu]∂Ω + [bvxv]L2
L1

= aux(L1, t)u(L1, t)− aux(L2, t)u(L2, t)

+ bvx(L2, t)v(L2, t)− bvx(L1, t)v(L1, t) = 0.
(3.15)

On the other hand, we have by Poincaré’s inequality and Young’s inequality,

µ2

∫
Ω

u(x, t)y(x, 1, t) dx ≤ ε0c20
∫

Ω

u2
x dx+ C(ε0)

∫
Ω

y2(x, 1, t) dx (3.16)

where ε0 is a positive constants and c0 is the Poincaé’s constant. Consequently,
plugging the above estimates into (3.14), we find (3.13). �

Now, inspired by [7], we introduce the functional

q(x) =


x− L1

2 , x ∈ [0, L1],
x− L2+L3

2 , x ∈ [L2, L3],
L2−L3−L1
2(L2−L1) (x− L1) + L1

2 , x ∈ [L1, L2]
(3.17)

Next, we define the functionals

F1(t) = −
∫

Ω

q(x)uxut dx, F2(t) = −
∫ L2

L1

q(x)vxvt dx.

Then, we have the following estimates.

Lemma 3.6. For any ε2 > 0, we have the estimates:
d

dt
F1(t) ≤ C(ε2)

∫
Ω

u2
t dx+

(a
2

+ ε2
) ∫

Ω

u2
x dx+ C(ε2)

∫
Ω

y2(x, 1, t) dx

− a

4
[(L3 − L2)u2

x(L2, t) + L1u
2
x(L1, t)]

(3.18)
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and
d

dt
F2(t) ≤ L2 − L3 − L1

4(2−L1)
(
∫ L2

L1

v2
t dx+

∫ L2

L1

bv2
x dx)

+
b

4
(
(L3 − L2)v2

x(L2, t) + L1v
2
x(L1, t)

)
.

(3.19)

Proof. Taking the derivative of F1(t) with respect to t and using (1.1), we obtain

d

dt
F1(t)

= −
∫

Ω

q(x)utxut dx−
∫

Ω

q(x)uxutt dx

= −
∫

Ω

q(x)utxut dx−
∫

Ω

q(x)ux(auxx(x, t)− µ1ut(x, t)− µ2y(x, 1, t)) dx.

(3.20)

Integrating by parts,∫
Ω

q(x)utxut dx = −1
2

∫
Ω

q′(x)u2
t dx+

1
2

[q(x)u2
t ]∂Ω. (3.21)

On the other hand,∫
Ω

aq(x)uxxux dx = −1
2

∫
Ω

aq′(x)u2
x dx+

1
2

[aq(x)u2
x]∂Ω. (3.22)

Substituting (3.21) and (3.22) in (3.20), we find that

d

dt
F1(t) =

1
2

∫
Ω

q′(x)u2
t dx+

1
2

∫
Ω

aq′(x)u2
x dx−

1
2

[q(x)u2
t ]∂Ω

− 1
2

[aq(x)u2
x]∂Ω +

∫
Ω

q(x)ux
(
µ1ut(x, t) + µ2y(x, 1, t)

)
dx .

(3.23)

Using Young’s inequality and (3.17), equation (3.23) becomes

d

dt
F1(t) ≤ C(ε2)

∫
Ω

u2
t dx+

(a
2

+ ε2
) ∫

Ω

u2
x dx−

1
2

[q(x)u2
t ]∂Ω

− a

2
[q(x)u2

x]∂Ω + C(ε2)
∫

Ω

y2(x, 1, t) dx.
(3.24)

for any ε2 > 0. Since q(L1) > 0 and q(L2) < 0, by using the boundary conditions
(1.2), we have

1
2

[q(x)u2
t ]∂Ω ≥ 0. (3.25)

Also, we have

−a
2

[q(x)u2
x]∂Ω = −aL1

4
[u2
x(L1, t) + u2

x(0, t)]

− a(L3 − L2)
4

[u2
x(L3, t) + u2

x(L2, t)].
(3.26)

Taking into account (3.25) and (3.26), then (3.24) gives (3.18).
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By the same method, taking the derivative of F2(t) with respect to t, we obtain

d

dt
F2(t) = −

∫ L2

L1

q(x)vtxvt dx−
∫ L2

L1

q(x)vxvtt

=
1
2

∫ L2

L1

q′(x)v2
t dx−

1
2

[q(x)v2
t ]L2
L1

+
1
2

∫ L2

L1

bq′(x)v2
x dx−

b

2
[q(x)v2

x]L2
L1

≤ L2 − L3 − L1

4(L2 − L1)

(∫ L2

L1

v2
t dx+

∫ L2

L1

bv2
x dx

)
+
b

4
(
(L3 − L2)v2

x(L2, t) + L1v
2
x(L1, t)

)
.

(3.27)
which is exactly (3.19). �

Proof of Theorem 3.1. We define the Lyapunov functional

L (t) = NE(t) + I(t) + γ2D(t) + γ3F1(t) + γ4F2(t), (3.28)

where N, γ2, γ3 and γ4 are positive constants that will be fixed later.
Now, it is clear from the boundary conditions (1.2), that

a2u2
x(Li, t) = b2v2

x(Li, t), i = 1, 2. (3.29)

Taking the derivative of (3.28) with respect to t and making use of (3.6), (3.11),
(3.13), (3.18), (3.18) and taking into account (3.29), we obtain

d

dt
L (t) ≤

{
N
(
− µ1 +

µ2

2
+

ζ

2τ
) + 1 + γ2 + γ3C(ε2)

}∫
Ω

u2
t dx

+
{
N
(µ2

2
− ζ

2τ
)− e−τ + γ2C(ε0) + C(ε2)γ3

}∫
Ω

y2(x, 1, t) dx

+
{
γ2(−a+ ε0c

2
0) + γ3ε2 +

γ3a

2
}∫

Ω

u2
x dx

+
{
b
L2 − L3 − L1

4(2−L1)
γ4 − γ2b

}∫ L2

L1

v2
x dx

+
{L2 − L3 − L1

4(L2 − L1)
γ4 + γ2

}∫ L2

L1

v2
t dx− e−τ

∫
Ω

∫ t

t−τ
u2
t (x, s) ds dx

− (γ3 −
a

b
γ4)

a(L3 − L2)
4

u2
x(L2, t)− (γ3 −

a

b
γ4)

aL1

4
u2
x(L1, t).

(3.30)
At this point, we choose our constants in (3.30), carefully, such that all the coeffi-
cients in (3.30) will be negative. Indeed, under the assumption (3.4), we can always
find γ2, γ3 and γ4 such that

L2 − L3 − L1

4(L2 − L1)
γ4 + γ2 < 0, γ3 >

a

b
γ4, γ2 >

γ3

2
. (3.31)

Once the above constants are fixed, we may choose ε2 and ε0 small enough such
that

ε0c
2
0 + γ3ε2 < a(γ2 − γ3/2).

Finally, keeping in mind (2.6) and choosing N large enough such that the first and
the second coefficients in (3.30) are negatives.
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Consequently, from the above, we deduce that there exist a positive constant η1,
such that (3.30) becomes

dL (t)
dt

≤ −η1

∫
Ω

(u2
t (x, t) + u2

x(x, t) + u2
t (x, t− τ)) dx

− η1

∫ L2

L1

(v2
t (x, t) + v2

x(x, t)) dx− η1

∫
Ω

∫ t

t−τ
u2
t (x, s) ds dx .

(3.32)

Consequently, recalling (3.3), we deduce that there exist also η2 > 0, such that
dL (t)
dt

≤ −η2E(t), ∀t ≥ 0. (3.33)

On the other hand, it is not hard to see that from (3.28) and for N large enough,
there exist two positive constants β1 and β2 such that

β1 E(t) ≤ L (t) ≤ β2E(t), ∀t ≥ 0. (3.34)

Combining (3.33) and (3.33), we deduce that there exists Λ > 0 for which the
estimate

dL (t)
dt

≤ −ΛL (t), ∀t ≥ 0, (3.35)

holds. Integrating (3.33) over (0, t) and using ((3.33) once again, then (3.5) holds.
Then, the proof is complete. �
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