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STABILITY OF TRAVELING-WAVE SOLUTIONS FOR A
SCHRÖDINGER SYSTEM WITH POWER-TYPE

NONLINEARITIES

NGHIEM V. NGUYEN, RUSHUN TIAN, ZHI-QIANG WANG

Abstract. In this article, we consider the Schrödinger system with power-
type nonlinearities,

i
∂

∂t
uj + ∆uj + a|uj |2p−2uj +

mX
k=1,k 6=j

b|uk|p|uj |p−2uj = 0; x ∈ RN ,

where j = 1, . . . , m, uj are complex-valued functions of (x, t) ∈ RN+1, a, b

are real numbers. It is shown that when b > 0, and a + (m − 1)b > 0, for
a certain range of p, traveling-wave solutions of this system exist, and are

orbitally stable.

1. Introduction

It is well-understood that the nonlinear Schrödinger (NLS) equation

iut + ∆u± |u|2u = 0 (1.1)

where u is a complex-valued function of (x, t) ∈ RN+1, arises in a generic situation.
The equation describes evolution of small amplitude, slowly varying wave packets in
a nonlinear media [4]. Indeed, it has been derived in such diverse fields as deep water
waves [34], plasma physics [35], nonlinear optical fibers [11, 12], magneto-static spin
waves [36], to name a few. The m-coupled nonlinear Schrödinger (CNLS) system

i
∂

∂t
uj + ∆uj + aj |uj |2p−2uj +

m∑
k=1,k 6=j

bkj |uk|p|uj |p−2uj = 0; x ∈ RN , (1.2)

for j = 1, . . . ,m, where uj are complex-valued functions of (x, t) ∈ RN+1, aj and
bjk = bkj are real numbers, arise physically under conditions similar to those de-
scribed by (1.1). The CNLS system also models physical systems in which the field
has more than one components; for example, in optical fibers and waveguides, the
propagating electric field has two components that are transverse to the direction
of propagation. When m = 2, the CNLS system also arises in the Hartree-Fock
theory for a double condensate; i.e., a binary mixture of Bose-Einstein condensates
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in two different hyperfine states. Readers are referred to the works [4, 11, 12, 34, 35]
for the derivation as well as applications of this system.

The system admits the conserved quantities

E(u1, u2, . . . , um)

=
∫

RN

[ m∑
j=1

(
|∇uj(x)|2 − aj

p
|uj(x)|2p

)
−

m∑
j,k=1;j 6=k

bjk
p
|uk(x)|p|uj(x)|p

]
dx,

Q(uj) =
∫

RN
|uj(x, t)|2dx,

for j = 1, 2, . . . ,m.
We are interested in traveling-wave solutions for (1.2) of the form u(x, t) =

(u1, u2, . . . , um), where for j = 1, 2, . . . ,m,

uj(x, t) = ei[(ωj−
1
4 |θ|

2)t+ 1
2 θx+mj ]ϕj,ωj (x− θt) (1.3)

for mj , ωj real constants, θ ∈ RN with ωj − 1
4 |θ|

2 > 0 and ϕj,ωj : RN → R are
functions of one variable whose values are small when |ξ| = |x − θt| is large. An
important special case arises when mj = 0, θ = ~0 and ωj = Ωj > 0. These special
solutions (where, to emphasize the dependence on the parameters, we write ϕj,ωj
as φj,Ωj )

uj(x, t) = eiΩjtφj,Ωj (x) (1.4)

are often referred to as standing waves. It is easy to see that, for example, standing
waves are solutions of (1.2) if and only if (u1, u2, . . . , um) is a critical point for the
functional E(u1, u2, . . . , um), when the functions uj(x) are varied subject to the m
constraints that Q(uj) be held constant. If (u1, u2, . . . , um) is not only a critical
point but in fact a global minimizer then the standing wave is called a ground-state
solution. In some cases, namely when p = 2, N = 1 and certain conditions on aj , bjk
(see, for example, [24, 25, 21]), it is possible to show further that the ground-state
solutions are solitary waves with the usual sech-profile.

One question unique to such type of nonlinear systems as (1.2) is to study the
existence and stability of nontrivial solutions (u1, . . . , um); that is, all components
of the solutions are non-zero, and they may be refereed to as co-existing solutions
or vector solutions. For the system (1.2), there are many semi-trivial solutions (or
collapsing solutions) which are solutions with at least one component being zero.
In those cases, the system collapses into system of lower orders. For example, our
result in [24] shows that for the 2-coupled system, (that is, when m = p = 2 and
N = 1) there are obstructions to the existence and stability of nontrivial solutions
with all components being positive. Roughly speaking, our result says that in order
to have positive non-trivial solutions, the nonlinear couplings have to be either small
or large. Thus this is a situation where multiple solutions exist and classifying and
distinguishing the solutions becomes an important and difficult issue. Intensive
work has been done in the last few years, see [1, 2, 3, 9, 14, 15, 18, 19, 27, 29, 31, 32].
All these works have been mainly on 2-systems or with small couplings. Despite
the partial progress made so far, many difficult questions remain open and little is
known for m−systems for m ≥ 3.
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2. Statement of results

In this work, we concentrate on the case when aj = a and bkj = bjk = b.
However, we also discuss how the method can be extended to include the general
case. In particular, we will employ the techniques used in [24, 25, 26] to show the
existence and stability of ground state solutions to the system

i
∂

∂t
uj + ∆uj + a|uj |2p−2uj +

m∑
k=1,k 6=j

b|uk|p|uj |p−2uj = 0; x ∈ RN ,

(
u1(·, 0), . . . , um(·, 0)

)
= (u10, . . . , um0)

(2.1)

for j = 1, . . . ,m and for a certain range of p.
Logically, prior to a discussion of stability in terms of perturbations of the ini-

tial data should be a theory for the initial-valued problem itself. This issue has
been studied in a previous work of ours ([23]). In that work, the contraction map-
ping technique based on Strichartz estimates was used to first establish local well-
posedness in H1

C(RN )×· · ·×H1
C(RN ) :≡ X(m) for 2 ≤ p < N/(N−2). To show the

Lipschitz continuity for the nonlinear terms, the approach necessitates 2 ≤ p. This
condition puts a restriction on the applicable range of p for dimension 1 ≤ N ≤ 3
for the proof of local existence. It is worth pointing out that there are cases when
1 ≤ p is allowed. For example, if uj = Aju for some real constants Aj , then the sys-
tem (1.2) is uncoupled and the result follows directly from [7], provided the initial
data are related accordingly. One technical point deserves some comments here.
For the single NLS equation of the type (1.1), the nonlinear term g(u) = |u|αu with
α ≥ 0 satisfies the Lipschitz continuity for some exponents rj , ρj ∈ [2, 2N/(N−2)

)
,

(rj , ρj ∈ [2,∞] if N = 1)

‖g(u)− g(v)‖
L
ρ′
j
≤ C(M)‖u− v‖Lrj

where 1
ρ + 1

ρ′ = 1, for all u, v ∈ H1(RN ) such that ‖u‖H1 , ‖v‖H1 ≤ M . Using this
fact, it was shown (see for example, [7]) that the Cauchy problem for NLS equation
of the type (1.1) is well-posed. It was claimed by Fanelli and Montefusco [10] and
Song [30] that the local well-posedness result for (1.2) for m = 2 follows from the
contraction mapping argument for 1 ≤ p < N/(N−2) (the power has been re-scaled
here for comparison). The system in this case takes the form

iu1t + u1xx + (a|u1|2p−2 + b|u2|p|u1|p−2)u1 = 0,

iu2t + u2xx + (b|u1|p|u2|p−2 + c|u2|2p−2)u2 = 0.

While it is true that there are instances when 1 ≤ p is acceptable as mentioned
above, it appears the range for p cannot be extended to include p < 2 in general
without loss of Lipschitz continuity and thus the claim is doubtful. It may be
possible that other methods allow for the local well-posedness when 1 ≤ p < N/(N−
2) in which case the result for local existence holds for all dimensions N . To extend
the local existence result to a global one, all that is needed is p < 1 + 2/N . The
condition p < 1 + 2/N when coupled with 2 ≤ p < N/(N − 2) for local existence
implies that N = 1.

In light of the above mentioned well-posedness results, the assumption that 2 ≤
p < 3 is needed (which implies that N = 1). (See also Remark 1 below.) The
precise statements of our main results are as follows. Let φ(x) be the unique
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positive, spherically symmetric and decreasing solution in H1
C(RN ) of

−∆f + f = |f |2p−2f,

and for any Ω > 0, let

φΩ,a+(m−1)b(x) =
( Ω
a+ (m− 1)b

) 1
2(p−1)

φ(
√

Ωx).

In Section 3, we establish the stability result for ground-state solutions of (2.1).

Proposition 2.1. For 2 ≤ p < 3 and N = 1, let a,b ∈ R such that b > 0 and
a+ (m− 1)b > 0. Then for any Ω > 0, the ground-state solutions(

eiΩtφΩ,a+(m−1)b(x), . . . , eiΩtφΩ,a+(m−1)b(x)
)

of (2.1) are orbitally stable in the following sense: for any ε > 0, there exists δ > 0
such that if (u10, . . . , um0) ∈ X(m) with

inf
γi,y∈R

{ m∑
j=1

∥∥uj0 − eiγjφΩ,a+(m−1)b(·+ y)
∥∥
H1

}
< δ.

The solution
(
u1(x, t), . . . , um(x, t)

)
with

(
u1(·, 0), . . . , um(·, 0)

)
= (u10, . . . , um0)

satisfies

inf
θi,y∈R

{ m∑
j=1

∥∥uj − eiθjφΩ,a+(m−1)b(·+ y)
∥∥
H1

}
< ε

uniformly for all t ≥ 0.

Remark 2.2. (1) As mentioned above, when 1 < p < 1 + 2/N there still exist
solutions for the initial-valued problem, provided that

(
u1(x, 0), . . . , um(x, 0)

)
∈

X(m) and satisfies

uj =
( 1
a+ (m− 1)b

) 1
2(p−1)

u for j = 1, 2, . . . ,m (2.2)

for then the system reduces to one equation which is the nonlinear cubic Schrödinger
equation. As we must require that the initial data satisfy (2.2), the uniqueness for
the Cauchy problem is preserved only for the subspace

Y (m) :≡
{
u(x, t) ∈ X(m) : ‖uj(x, t)‖L2 =

( 1
a+ (m− 1)b

) 1
2(p−1) ‖u‖L2 , ∀t

}
⊂ X(m).

Hence, instead of establishing the same stability theory as stated in Theorem 2.1,
using our methods we can still obtain stability for a much more restricted subspace
Y (m) in the case 1 < p < 1 + 2/N which is valid for any space dimension. We omit
details here.

(2) Item (1) sheds some lights on why Proposition 2.1 is to be expected for
2 ≤ p < 3 and N = 1. Because the solution to the Cauchy problem for (2.1) is
unique in this case (see [23]), it follows that {u ∈ Y (m), u solves (2.1)} = {u ∈
X(m), u solves (2.1)}.

Next, we show that instead of allowing the ground-state solutions to wander
around at random, one can pick unique trajectory and phase shifts that the ground-
state solutions must follow. Precisely, we have
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Theorem 2.3. For 2 ≤ p < 3 and N = 1, let a and b ∈ R such that b > 0 and
a+ (m− 1)b > 0. Then for any Ω > 0, the ground-state solutions(

eiΩtφΩ,a+(m−1)b(x), . . . , eiΩtφΩ,a+(m−1)b(x)
)

of (2.1) are orbitally stable in the sense that for any ε > 0, there exists δ > 0 such
that if (u10, . . . , um0) ∈ X(m) satisfies

inf
θj ,η∈R

{ m∑
j=1

‖uj0 − eiθjφΩ,a+(m−1)b(·+ η)‖H1 .
}
< δ (2.3)

There exist C1 mappings θj , η : R→ R for which the solution (u1(x, t), . . . , um(x, t))
with initial data (u1(·, 0), . . . , um(·, 0)) = (u10, . . . , um0) satisfies

m∑
j=1

‖uj(·, t)− eiθj(t)φΩ,a+(m−1)b(·+ η(t))‖H1 < ε (2.4)

for all t ≥ 0. Moreover,

η′(t) = O(ε), θ′j(t) = Ω +O(ε), (2.5)

for j = 1, . . . ,m as ε→ 0, uniformly in t.

This result is then extended in Section 4 to include traveling-wave solutions. For
θ ∈ R, define the operator Tθ : H1

C(R)→ H1
C(R) by

(Tθu)(x) = exp
( iθx

2

)
u(x).

For any pair (ω, θ) ∈ R × R such that Ω = ω − 1
4θ

2 > 0, let ϕω = TθφΩ. It
is straightforward to see that if (eiΩtφΩ, . . . , e

iΩtφΩ) is a ground-state solution of
(2.1), then (eiωtϕω, . . . , eiωtϕω) is a traveling-wave solution of (2.1).

Corollary 2.4. For 2 ≤ p < 3 and N = 1, let a and b ∈ R such that b > 0 and
a + (m − 1)b > 0. The traveling-wave solutions (eiωtϕω, . . . , eiωtϕω) are orbitally
stable in the sense that for any ε > 0 given, there exists δ = δ(ϕ) > 0 such that if

inf
~γ,y

{ m∑
j=1

‖u0j − eiγjφ(·+ y)‖H1

}
< δ

then there are C1 mappings pj , q : R → R for which the solution ~u = (u1, . . . , um)
with initial data ~u0 = (u01, . . . , u0m) satisfies, for all j = 1, 2, . . . ,m

m∑
j=1

‖uj(·, t)− eipj(t)ϕω(·+ q(t))‖H1 ≤ ε

for all t ≥ 0. Moreover, pj and q are close to ω and θ in the sense that

p′j(t) = ω +O(ε) q′(t) = θ +O(ε)

as ε→ 0, uniformly in t.

Remark 2.5. It follows immediately from Remark 1 that Theorem 2.3 and Corol-
lary 2.4 hold in Y (m) for the case 1 < p < 1 + 2/N .

This article concludes with some comments and a discussion about how the
method could be extended to include the system (1.2).
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3. Stability results for the ground-state solutions

3.1. Variational problem. Let u1, . . . , um ∈ H1
C(RN ) and consider the following

functional associated with conserved quantity of (2.1):

E(m)(u1, . . . , um)

=
∫

RN

[ m∑
i=1

(
|∇ui(x)|2 − a

p
|ui(x)|2p

)
−

m∑
i,j=1;i6=j

b

p
|ui(x)|p|uj(x)|p

]
dx.

(3.1)

In the remainder of this article, it is assumed that 2 ≤ p < 3 (which implies that
N = 1) and that b > 0 and a+ (m− 1)b > 0.

Remark 3.1. As mentioned previously, to establish stability results as well as
to extend the local existence to a global one, all that is needed is p < 1 + 2/N .
This condition when coupled with 2 ≤ p < N/(N − 2) for local existence implies
that N = 1. However, there are instances when p < 2 is permissible (see, for
example Remark 1). Thus, to allow for the adaptability of the proofs obtained
when 2 ≤ p < 3 to those instances, we refrain from taking N = 1 directly, with the
understanding that when 2 ≤ p < 3 then N = 1.

For u ∈ H1
C(RN ), define

E
(m)
1 (u) =

∫
RN

(
|∇u(x)|2 − a+ (m− 1)b

p
|u(x)|2p

)
dx. (3.2)

It is clear that for any Ω > 0,

φΩ,a+(m−1)b(x) =
( Ω
a+ (m− 1)b

) 1
2(p−1)

φ(
√

Ωx)

is the unique positive, spherically symmetric and decreasing solution in H1
C(RN ) of

−∆f + Ωf =
(
a+ (m− 1)b

)
|f |2p−2f,

and
‖φΩ,a+(m−1)b‖L2 =

(
a+ (m− 1)b

)− 1
2(p−1) Ω

1
2(p−1)−

N
4 ‖φ‖L2 .

Fix an Ω > 0 and let

λ =
(
a+ (m− 1)b

)− 1
(p−1) Ω

1
(p−1)−

N
2 ‖φ‖2L2 . (3.3)

For fixed Ω > 0 (hence λ > 0 is also fixed) and any µ1, . . . , µm−1 > 0, define the
real numbers I(m), I

(m)
1 as follows:

I(m)(λ, µ1, . . . , µm−1)

= inf
{
E(m) : u1, . . . , um ∈ H1

C(RN ), ‖u1‖2L2 = λ, ‖uj‖2L2 = µj−1, j = 2, . . . ,m
}
,

and
I

(m)
1 (λ) = inf{E(m)

1 (u) : u ∈ H1
C(RN ), ‖u‖2L2 = λ}.

The sets of minimizers for I(m)(λ, µ1, . . . , µj−1) and I
(m)
1 (λ) for j = 2, . . . ,m are,

respectively,

G(m)(λ, µ1, . . . , µj−1)

=
{

(u1, . . . , um) ∈ X(m) : I(m)(λ, µ1, . . . , µj−1) = E(m)(u1, . . . , um),

‖u‖2L2 = λ, ‖uj‖2L2 = µj−1

}
,
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G
(m)
1 (λ) =

{
u ∈ H1

C(RN ) : I(m)
1 (λ) = E

(m)
1 (u), ‖u‖2L2 = λ

}
.

The following 2 Lemmas are clear. (For example, the proofs can be easily modified
from those presented in [24].)

Lemma 3.2. For all λ > 0, one has −∞ < I(m)(λ, . . . , λ) < 0.

Lemma 3.3. If {(u1n, . . . , umn)} is a minimizing sequence for I(m)(λ, . . . , λ), then
there exist constants B > 0 and δ > 0 such that

(i)
∑m
j=1 ‖ujn‖H1 ≤ B for all n, and

(ii)
∑m
j=1 ‖ujn‖

2p
L2p ≥ δ for all sufficiently large n.

Let {(u1n, . . . , umn)} ∈ X(m) be a minimizing sequence for E(m) and consider a
sequence of nondecreasing functions Mn : [0,∞)→ [0,mλ] as follows

Mn(s) = sup
y∈RN

∫
|x−y|<s

m∑
j=1

|ujn(x)|2dx.

As Mn(s) is a uniformly bounded sequence of nondecreasing functions in s, one can
show using, for example, Helly’s selection theorem (see [13]) that it has a subse-
quence, which is still denoted as Mn, that converges point-wisely to a nondecreasing
limit function M(s) : [0,∞)→ [0,mλ]. Let

ρ = lim
s→∞

M(s) :≡ lim
s→∞

lim
n→∞

Mn(s) = lim
s→∞

lim
n→∞

sup
y∈RN

∫
|x−y|<s

m∑
j=1

|ujn(x)|2dx.

Then 0 ≤ ρ ≤ mλ.
Lions’ Concentration Compactness Lemma [16, 17] shows that there are three

possibilities for the value of ρ:
Case 1: (Vanishing) ρ = 0. Since M(s) is non-negative and non-decreasing, this
is equivalent to saying

M(s) = lim
n→∞

Mn(s) = lim
n→∞

sup
y∈RN

∫
|x−y|<s

m∑
j=1

|ujn(x)|2dx = 0

for all s <∞, or
Case 2: (Dichotomy) ρ ∈ (0,mλ), or
Case 3: (Compactness) ρ = mλ, which implies that there exists {yn}n=1 ∈ RN
such that for any ε > 0, there exists s <∞ such that∫

|x−yn|<s

m∑
j=1

|ujn(x)|2dx ≥ mλ− ε.

The next Lemma will be useful in ruling out the vanishing of minimizing se-
quences.

Lemma 3.4. There exists a constant C such that for all uj ∈ H1
C(RN ), j =

1, . . . ,m∫
RN

m∑
j=1

|uj |
2N+4
N dx ≤ C

(
sup
y∈RN

∫
|x−y|<s

m∑
j=1

|uj |2dx
)2/N m∑

j=1

‖uj‖2H1 .
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Proof. Let (Qj)j≥0 be a sequence of open, unit cubes of RN such that Qj
⋂
Qk = ∅

if j 6= k and
⋃
j≥0Qj = RN . It is well-known (see, for example, [7, Lemma 1.7.7])

that there exists a constant K independent of j such that for all f ∈ H1
C(Qj)∫

Qj

|f(x)|
2N+4
N dx ≤ K

(∫
Qj

|f(x)|2dx
)2/N

‖f‖2H1(Qj)
.

Consequently, if u1, u2, . . . , um ∈ H1
C(Qj),∫

Qj

|uj(x)|
2N+4
N dx ≤ C

(∫
Qj

|uj(x)|2dx
)2/N

‖uj‖2H1(Qj)
.

The Lemma follows immediately from summing over j. �

The following identities are well-known. (See, for example, [7, Lemma 8.1.2].)

Lemma 3.5. Let a,Ω > 0. If −∆f + Ωf = a|f |2p−2f , then∫
RN

(|∇f |2 + Ω|f |2)dx = a

∫
RN
|f |2pdx,

(N − 2)
∫

RN
|∇f |2dx+NΩ

∫
RN
|f |2dx =

Na

p

∫
RN
|f |2pdx.

Using the above identities, the next Lemma can be derived easily.

Lemma 3.6. The following statements hold :

(1) for any λ, µj−1 ≥ 0 and j = 2, . . . ,m,

I(m)(λ, µ1, . . . , µm−1) ≥ I(m)
1 (λ) +

m∑
j=2

I
(m)
1 (µj−1);

(2)

I
(m)
1

(
λ
)

= E
(m)
1 (φΩ,a+(m−1)b) = − N + 2−Np

N + 2p−Np
λ
(λ(a+ (m− 1)b

) 1
p−1

‖φ‖2L2

) 2(p−1)
2−N(p−1)

;

(3) I(m)(λ, . . . , λ) = mI
(m)
1 (λ) for λ > 0, and (φΩ,a+(m−1)b, . . . , φΩ,a+(m−1)b) ∈

G(m)(λ, . . . , λ);
(4) I

(m−k)
1 (λ) > I

(m)
1 (λ), for all k ∈ (0,m) and λ > 0.

Corollary 3.7. For any Ω > 0 fixed,{(
eiα1φΩ,a+(m−1)b(·+ y), . . . , eiαmφΩ,a+(m−1)b(·+ y)

)}
⊂ G(m)

(
λ(Ω), . . . , λ(Ω)

)
where αj ∈ R, j = 1, 2, . . . ,m; y ∈ RN .

The following Lemma provides strict sub-additivity of the function I(m) needed
to rule out the dichotomy of minimizing sequences.

Lemma 3.8. For any βj ∈ [0, λ], j = 1, . . . ,m satisfying 0 <
∑m
j=1 βi < mλ, we

have

I(m)(λ, . . . , λ) < I(m)(β1, . . . , βm) + I(m)(λ− β1, λ− β2, . . . , λ− βm).
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Proof. We consider separately the following cases.
Case 1: βj ∈ (0, λ) for j = 1, . . . ,m. From (3) in Lemma 3.6, we have

I(m)(λ, . . . , λ) = mI
(m)
1 (λ);

and from [8, Theorem II.1] we have, for any βj ∈ (0, λ)

I
(m)
1 (λ) < I

(m)
1 (βj) + I

(m)
1 (λ− βj).

Consequently, we obtain

I(m)(λ, . . . , λ) = mI
(m)
1 (λ) <

m∑
j=1

I
(m)
1 (βj) +

m∑
j=1

I
(m)
1 (λ− βj)

≤ I(m)(β1, . . . , βm) + I(m)(λ− β1, . . . , λ− βm)

where item (1) in Lemma 3.6 has been used. Thus case 1 is proved.
Case 2: Exactly k of {β1, β2, . . . , βm} vanish, k = 2, . . . ,m− 1, and without loss

of generality, we may assume that

βm−k+1 = · · · = βm = 0; βj ∈ (0, λ], for j = 1, 2, . . . ,m− k.

The variational problem then becomes

inf
{∫

RN

[m−k∑
j=1

(
|∇uj |2 −

a

p
|uj |2p

)
−

m−k∑
i,j=1;i6=j

b

p
|ui|p|uj |p

]
dx : ‖uj‖2L2 = βj

}
= inf

{
E(m−k)(u1, . . . , um−k) : ‖uj‖2L2 = βj , j = 1, 2, . . . ,m− k

}
which is the (m− k)-case. Thus, item (1) in Lemma 3.6 implies that

I(m)(β1, . . . , βm−k, 0, . . . , 0) = I(m−k)(β1, . . . , βm−k) ≥
m−k∑
j=1

I
(m−k)
1 (βj). (3.4)

On the other hand, part (4) in Lemma 3.6 says that for all k ∈ (0,m)

I
(m−k)
1 (βj) > I

(m)
1 (βj),

we obtain that I(m)(β1, . . . , βm−k, 0, . . . , 0) >
∑m−k
j=1 I

(m)
1 (βj). Thus,

I(m)(λ, . . . , λ)

= mI
(m)
1 (λ) ≤ kI(m)

1 (λ) +
m−k∑
j=1

(
I

(m)
1 (βj) + I

(m)
1 (λ− βj)

)

≤ I(m)(λ− β1, . . . , λ− βm−k, λ, . . . , λ) +
m−k∑
j=1

I
(m)
1 (βj)

< I(m)(β1, . . . , βm−k, 0, . . . , 0) + I(m)(λ− β1, . . . , λ− βm−k, λ, . . . , λ)

proving case 2. Thus the Lemma is proved. �

With all the calculations in hand, one can proceed straightforwardly (see, for
example, [24]) to show that minimizing sequences are compact and that the set of
minimizers G(m)(λ, . . . , λ) is stable. Precisely, we have the following.
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Lemma 3.9. For every ε > 0 given, there exists δ > 0 such that if

inf
(Φ1,...,Φm)∈G(m)

‖(u10, . . . , um0)− (Φ1, . . . ,Φm)‖X(m) < δ,

then the solution
(
u1(x, t), . . . , um(x, t)

)
of (2.1) with

(
u1(x, 0), . . . , um(x, 0)

)
=

(u10, . . . , um0) satisfies

inf
(Φ1,...,Φm)∈G(m)

‖
(
u1(·, t), . . . , um(·, t)

)
− (Φ1, . . . ,Φm)‖X(m) < ε

for all t ∈ R.

3.2. Stability of ground-state solutions. In this subsection, we will show that
the set of minimizers G(m)(λ, . . . , λ) contains just a single m−tuple of functions
(modulo translations and phase shifts), and that this m−tuple of functions is indeed
a ground-state solution of (2.1) given by(

Φ1(x, t), . . . ,Φm(x, t)
)

=
(
eiΩtφΩ,a+(m−1)b(x), . . . , eiΩtφΩ,a+(m−1)b(x)

)
.

Proposition 2.1 then follows directly from this fact and Lemma 3.9.
We start first with the following Lemma that relates the functions Φ1, . . . ,Φm

whenever (Φ1, . . . ,Φm) ∈ G(m)(λ, . . . , λ).

Lemma 3.10. Let (Φ1, . . . ,Φm) ∈ G(m)(λ, . . . , λ). Then for any x ∈ RN ,

|Φ1(x)| = |Φ2(x)| = · · · = |Φm(x)|.

Proof. It follows from Lemma 3.6 that for any (Φ1, . . . ,Φm) ∈ G(m)(λ, . . . , λ)

I(m)(λ, . . . , λ) = E(m)(Φ1, . . . ,Φm) ≥
m∑
j=1

E
(m)
1 (Φj) ≥ mI(m)

1 (λ) = I(m)(λ, . . . , λ).

Thus,

a

p

m∑
j=1

‖Φj‖2pL2p +
b

p

∫
RN

m∑
i,j=1;i 6=j

|Φi|p|Φj |pdx =
a+ (m− 1)b

p

m∑
j=1

‖Φj‖2pL2p

which implies that∫
RN

m∑
i,j=1;i 6=j

|Φi|p|Φj |pdx = (m− 1)
m∑
j=1

‖Φj‖2pL2p . (3.5)

We can rewrite (3.5) as∫
RN

m∑
i,j=1;i 6=j

∣∣∣|Φi(x)|p − |Φj(x)|p
∣∣∣2dx = 0,

from which the statement of the Lemma immediately follows. �

Next, we show the following.

Lemma 3.11. For any Ω > 0 fixed,{(
eiα1φΩ,a+(m−1)b(·+ y), . . . , eiαmφΩ,a+(m−1)b(·+ y)

)}
= G(m)

(
λ(Ω), . . . , λ(Ω)

)
where αj ∈ R, j = 1, 2, . . . ,m; y ∈ RN .
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Proof. It has been established (Corollary 3.7) that for any Ω > 0 fixed and for
αj ∈ R, j = 1, 2, . . . ,m and y ∈ RN ,(

eiα1φΩ,a+(m−1)b(·+ y), . . . , eiαmφΩ,a+(m−1)b(·+ y)
)
∈ G(m)

(
λ(Ω), . . . , λ(Ω)

)
.

Hence, the Lemma is proved if we show that any minimizer in G(m)(λ(Ω), . . . , λ(Ω))
must be of the form given above. Now, since the constrained minimizer for the
variational problem exists, there are Lagrange multipliers Ω1, . . . ,Ωm ∈ R such
that for j = 1, 2, . . . ,m

−∆Φj + ΩjΦj = a|Φj |2p−2Φj + b

m∑
i=1;i6=j

|Φi|p|Φj |p−2Φj . (3.6)

Using Lemma 3.8, we can rewrite this system as m-uncoupled equations

−∆Φj + ΩjΦj =
(
a+ (m− 1)b

)
|Φj |2p−2Φj . (3.7)

A bootstrap argument shows that any m-tuple L2-distribution solution of (3.7)
must indeed be smooth and given by (see, for example, [7])

Φj(x) = eiαjφΩj ,a+(m−1)b(x+ yj),

where αj ∈ R, yj ∈ RN and Ωj > 0 for j = 1, 2, . . . ,m. Now recall that for any
x ∈ RN , we must have

|Φ1(x)| = |Φ2(x)| = · · · = |Φm(x)|,

and

‖Φ1‖2L2 = ‖Φ2‖2L2 = · · · = ‖Φm‖2L2 = λ =
(
a+ (m− 1)b

)− 1
(p−1) Ω

1
(p−1)−

N
2 ‖φ‖2L2 .

It is easy to see then that y1 = y2 = · · · = ym, and

Ω = Ω1 = Ω2 = · · · = Ωm > 0.

The Lemma is thus established. �

The above proposition follows from Lemmas 3.9 and 3.11.
Next, we will show that instead of allowing the ground-state solutions to wander

around at random, one can pick unique trajectory and phase shifts that the ground-
state solutions must follow. Denote ~θ = (θ1, . . . , θm). Following the idea used in
[6, 33], the functions θj (j = 1, 2, . . . ,m) and η are found through minimizing the
function R = R(~θ, η) : Rm+1 → R,

R(~θ, η) =
m∑
j=1

[
Ω‖uj(x)− eiθjφΩ,a+(m−1)b(x+ η)‖2L2

+ ‖u′j(x)− eiθjφ′Ω,a+(m−1)b(x+ η)‖2L2

]
.

(3.8)

From now on, denote φ(x) = φΩ,a+(m+1)b(x) for simplicity. Due to the symmetry,
we only need to consider one component

Rj(θj , η) = Ω‖uj(x)− eiθjφ(x+ η)‖2L2 + ‖u′j(x)− eiθjφ′(x+ η)‖2L2

=
∫

RN

(
Ω|uj(x)− eiθjφ(x+ η)|2 + |(uj)x − eiθjφ′(x+ η)|2

)
dx.

(3.9)



12 N. V. NGUYEN, R. TIAN, Z.-Q. WANG EJDE-2014/217

Then
∂Rj
∂η

=
∫

RN

[
− 2Ω Re(uj(x)e−iθj )φ′(x+ η)− 2 Re((uj)xe−θjφ′′(x+ η)

]
dx

= 2 Re
∫

RN
uj(x)e−iθj (φ′′(x+ η)− Ωφ(x+ η))′dx

= −2[a+ (m− 1)b] Re
∫

RN
uj(x)e−iθj (φ2p−1(x+ η))′dx

= −2(2p− 1)[a+ (m− 1)b]
∫

RN
Re
(
uj(x)e−iθj

)
φ2p−2(x+ η)φ′(x+ η)dx,

(3.10)
and

∂Rj
∂θj

= i[a+ (m− 1)b]
∫

RN
Im
(
uj(x)e−iθj

)
φ2p−1(x+ η)dx. (3.11)

Define vector-valued function Q : X × Rm+1 → Rm+1,

Q(~ψ, ~θ, η) = (F (~ψ, ~θ, η), ~G(~ψ, ~θ, η))

where

F (~ψ, ~θ, η) =
m∑
j=1

∫
RN

Re
(
ψje
−iθj

)
φ2p−2(x+ η)φ′(x+ η)dx;

Gj(~ψ, ~θ, η) =
∫

RN
Im
(
ψje
−iθj

)
φ2p−1(x+ η)dx.

(3.12)

Next, we verify the conditions needed for using the Implicit Function Theorem.

Lemma 3.12. Denote ~φ = (φ, . . . , φ). Then:

(i) Q(~φ,~0, 0) = (0,~0).
(ii) |∇Q| < 0.

Proof. Statement (i) follows from the facts that −∆φ+ Ωφ = (a+ (m− 1)b)φ2p−1

and

F (~φ,~0, 0) =
m∑
j=1

∫
RN

φ2p−2φ′dx = 0;

Gj(~φ,~0, 0) =
∫

RN
Im(φ · 1)φ2p−1dx = 0.

To prove (ii), notice that
∂F

∂θj

∣∣∣
(~φ,~0,0)

= Re
(
− i
∫

RN
Im
(
ψj(x)e−iθj

)
φ2p−2(x+ η)φ′(x+ η)dx

)∣∣∣
(~φ,~0,0)

= 0,

∂F

∂η

∣∣∣
(~φ,~0,0)

=
∂

∂η

[ m∑
j=1

∫
RN

Re
(
ψj(x)e−θj

)
φ2p−2(x+ η)φ′(x+ η)dx

]∣∣∣
(~φ,~0,0)

=
∂

∂η

[ m∑
j=1

∫
RN

Re
(
ψj(x− η)e−θj

)
φ2p−2(x)φ′(x)dx

]∣∣∣
(~φ,~0,0)

=
m∑
j=1

∫
RN
−φ′(x)φ2p−2(x)φ′(x)dx

= −m
∫

RN
φ2p−2(x)

[
φ′(x)

]2
dx,



EJDE-2014/217 STABILITY OF TRAVELING-WAVE SOLUTIONS 13

∂Gj
∂η

∣∣∣
(~φ,~0,0)

= (2p− 1)
∫

RN
Im
(
ψj(x)e−iθj

)
φ2p−2(x+ η)φ′(x+ η)dx

∣∣∣
(~φ,~0,0)

= 0,

∂Gj
∂θj

∣∣∣
(~φ,~0,0)

=
∫

RN
i
(
ψj(x)e−θj − ψj(x)eiθj

)
φ2p−1(x+ η)dx

∣∣∣
(~φ,~0,0)

=
∫

RN
φ2p(x)dx.

Thus,

det(∇G) = −m
(∫

RN
φ2p−2(x)

[
φ′(x)

]2
dx
)(∫

RN
φ2p(x)dx

)m−1

< 0.

�

Define an equivalent norm in X(m) by

‖~u‖2X(m) =
m∑
j=1

[
Ω‖uj(x)‖2L2 + ‖u′j(x)‖2L2

]
; ~u = (u1, . . . , um) ∈ X(m). (3.13)

Let the X(m)-neighborhood of the trajectory of (eiθ1φ, . . . , eiθmφ) be defined by

Uβ =
{
~φ ∈ X(m) : inf

~θ,η

{
‖~ψ(x)− ei~θjφ(x+ η)‖X(m) < β

}}
.

Lemma 3.13. There exist a β > 0 and C1 maps ~θ, η : Uβ → R such that

F (~ψ, ~θ(~ψ), η(~ψ)) ≡ 0, Gj(~ψ, ~θ(~ψ), η(~ψ)) ≡ 0,

for all ~ψ ∈ Uβ.

Proof. It is easy to see that the function Q is C1 on its’ domain. Lemma 3.12
verifies all the conditions needed to apply the Implicit Function Theorem. Thus
Lemma 3.13 follows provided β > 0 is small enough. �

Because of the stability result stated in Proposition 2.1, ~u(·, t) ∈ Uβ and hence
the corresponding functions ~θ and η are defined on ~u(·, t).One can therefore consider
the functions ~θ and η from R→ R as

η(t) = η
(
~u(·, t)

)
,

and for i = 1, 2, . . . ,m
θi(t) = θi

(
~u(·, t)

)
.

The next Lemma is clear. (See, for example, [22].)

Lemma 3.14. The function Q is continuously differentiable with respect to t.

We are now ready for the following proof.

Proof of Theorem 2.3. The first part of the Theorem is an immediate consequence
of Lemma 3.13 and Proposition 2.1. Indeed, for fixed ε > 0, one can first apply
Lemma 3.13 to find a proper β > 0 such that the continuous maps exist. Then, the
result of [23] implies the existence of some δ > 0 such that when the initial data
satisfies assumption (2.3), the resulting perturbations from η and θj ’s for all t ≥ 0
will remain in the ball Uβ . Thus the estimate (2.4) holds.

It is left to show (2.5). Define the m functions

hj(x, t) = e−iθj(t)u(x, t)− φ(x+ η(t)) = hj1 + ihj2
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for j = 1, . . . ,m. According to (2.4),
∑m
j=1 ‖hj1‖H1 +

∑m
j=1 ‖hj2‖H1 = O(ε) for all

t ≥ 0. Differentiating F with respect to t, we obtain

Ft =
m∑
j=1

∫
RN

Re
(

[(uj)t − (uj)xη′(t)]e−iθj(t) − iθ′juje−iθj(t)
)
φ2p−2φ′dx

= Re
m∑
j=1

∫
RN

[
(uj)te−iθj(t)φ2p−2φ′ − (uj)xη′(t)e−iθj(t)φ2p−2φ′

− iθ′j(t)uje−iθj(t)φ2p−2φ′
]
dx

=
m∑
j=1

(Ij1 − Ij2 − Ij3) = 0.

Notice that

Ij1 = Re
∫

RN
i
[
(uj)xx +

(
a|uj |p + b

∑
k 6=j

|uk|p
)
|uj |p−2uj

]
e−iθj(t)φ2p−2φ′dx

= −
∫

RN

[
(h2)xx +

(
a|uj |p + b

∑
k 6=j

|uk|p
)
|uj |p−2h2

]
φ2p−2φ′dx = O(ε),

Ij2 =
∫

RN

(
φ2p−2(φ′)2η′(t) + (h1)xη′(t)φ2p−2φ′

)
dx = cη′(t) +O(ε),

Ij3 =
∫

RN
θ′j(t)h2φ

2p−2φ′dx = O(ε)θ′j(t).

Thus we have

η′(t) = O(ε) +O(ε)
m∑
j=1

θ′j(t).

Similarly, the other m equations for ~θ give

θ′j(t) = Ω +O(ε) +O(ε)η′(t), j = 1, . . . ,m.

The statement (2.5) follows immediately. Thus, the Theorem is proved. �

4. Stability of traveling-wave solutions

The result obtained in Section 3 is now broadened to include traveling-wave
solutions and improved by providing a more detailed view of the connection between
the functions η and θi. For θ ∈ R, define the operator Tθ : H1

C(R)→ H1
C(R) by

(Tθu)(x) = exp
( iθx

2

)
u(x).

For any pair (ω, θ) ∈ R × R such that Ω = ω − 1
4θ

2 > 0, let ϕω = TθφΩ. The
following Lemma is straightforward.

Lemma 4.1. If (eiΩtφΩ, . . . , e
iΩtφΩ) is a ground-state solution of (2.1), then

(eiωtϕω, . . . , eiωtϕω) is a traveling-wave solution of (2.1).

Proof of Corollary 2.4. Similar arguments as used in [6, 21, 33] allow us to ex-
tend the stability result obtained above to include traveling-wave solutions as well.
Readers are referred to, for example, [21] for the proof of this. �
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5. Conclusion

The traveling-wave solutions of (2.1) have been shown to be orbitally stable
in X(m) when 2 ≤ p < 3 and N = 1 and orbitally stable in Y (m) when 1 <
p < 1 + 2/N . Notice that when N = 1 and p = 2, the system (2.1) reduces
to the 2-coupled system considered in [24] (when m = 2) and to the 3−coupled
system considered in [25] (when m = 3 and aj = a and bkj = bjk = b). Thus,
when aj = a and bkj = bjk = b, the results in this manuscript generalize the ones
obtained in [24, 25] to include the case of m−coupled nonlinear Schrödinger system.
The assumptions 2 ≤ p < 3 and N = 1 are necessary for the global existence to
hold. In particular, the concentration compactness used in establishing the stability
theory here only requires that 1 < p ≤ 1 + 2/N and nothing more. It may be
possible that other methods allow for the well-posedness of the Cauchy problem
when 1 ≤ p < N/(N − 2) in which case the stability results in this paper hold in
X(m) for 1 < p ≤ 1 + 2/N .

Another interesting question arises naturally. How about the existence and sta-
bility theories for the general case (1.2)? As explained earlier, the crucial idea
beside keeping the constraints on the L2-norms of components related and hav-
ing the coefficients give rise to positive numbers Am such that the Euler-Lagrange
equations can be rewritten as uncoupled equations, is that the strict sub-additivity
of the function I(m) must be established. This means that one needs to analyze
all the collapsing cases that may occur. A good starting point for this had been
suggested in the conclusion of our previous work [25].
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