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SEMILINEAR ELLIPTIC EQUATIONS INVOLVING A
GRADIENT TERM IN UNBOUNDED DOMAINS

V. RAGHAVENDRA, RASMITA KAR

Abstract. In this article, we study the existence of a classical solution of

semilinear elliptic BVP involving gradient term of the type

−∆u = g(u) + ψ(∇u) + f in Ω,

u = 0 on ∂Ω,

where Ω is a (not necessarily bounded) domain in Rn, n ≥ 2 with smooth

boundary ∂Ω. f ∈ C0,α
loc (Ω), 0 < α < 1, ψ ∈ C1(Rn,R) and g satisfies certain

conditions (well known in the literature as “jumping nonlinearity”).

1. Introduction

Throughout this article, let Ω ⊂ Rn, n ≥ 2, be a (not necessarily bounded)
domain with smooth boundary ∂Ω. Let Ω = ∪∞i=1Ωi, Ωi ⊆ Ωi+1 ⊂ Ω, each Ωi ⊂ Rn
is a bounded domain with smooth boundary and for every x ∈ Ω there exists a
bounded domain M with smooth boundary such that x ∈ M ⊂ Ω. Suppose that
ψ ∈ C1(Rn,R), f ∈ C0,α

loc (Ω,R), 0 < α < 1, and g ∈ C1(R,R) satisfies certain
conditions usually known in the literature as jumping nonlinearity. We make a
modest attempt to study the existence of solutions for a class of semilinear elliptic
BVP involving gradient term of the form

−∆u = g(u) + ψ(∇u) + f in Ω,
u = 0 on ∂Ω .

(1.1)

When ψ ≡ 0 and Ω is a bounded domain, problem (1.1) reduces to

−∆u = g(u) + f in Ω,
u = 0 on ∂Ω.

(1.2)

Boundary-value problems of the type (1.2) has been studied by many authors as-
suming the hypothesis

lim sup
s→−∞

g(s)
s

< λ1 < lim inf
s→∞

g(s)
s
, (1.3)
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where λ1 is the first eigenvalue of

−∆u = λu in Ω,
u = 0 on ∂Ω .

(1.4)

The study of existence and non-existence for BVP (1.2) with hypotheses (1.3) is
a well known problem, known as Ambrosetti-Prodi type problem. BVP (1.2) with
many variants and formulations has been extensively studied in bounded domains
by several authors starting with a pioneering work by Ambrosetti and Prodi [5] in
1973. For a good historical background till 1980, we refer to a lecture notes by De
Figueriedo [15]. The existence of solutions for the case of semilinear equations in
bounded domains is well documented in [15]. De Figueriedo [16] has studied an
Ambrosetti-Prodi problem for the scalar case by using the method of monotone
iteration and variational techniques. For more details on Ambrosetti-Prodi type
problems, we refer to [1, 2, 3, 6, 7, 8, 9, 10, 11, 14]. The problem of the type (1.1)
both for bounded and unbounded domains has not been well studied and hence it
needs attention. A few references for quasilinear case with jumping nonlinearities
are found in [12, 13, 24]. The problem (1.1) considered in the present study is not
a subclass of the problem studied in [12, 13, 24]. For a bounded domain Ω ⊂ Rn,
we study the existence of solutions for the elliptic BVP (1.1). The idea inspired
from the Ambrosetti - Prodi problem given in the lecture note due to De Figueriedo
[15] with suitable modifications. Elliptic boundary value problems in unbounded
domains present specific difficulties, primarily due to the lack of Rellich-Kondrachov
compact embedding. In fact the embedding

i : H1
0 (Ω) ↪→ Lp(Ω), p ∈

[
2,

2n
n− 2

)
(which is compact when Ω is bounded) is not compact when Ω is a general un-
bounded domain. Due to this lack of compactness the standard variational methods
fails. The term ψ(∇u) containing the gradient makes the problem slightly harder
in addition to the absence of usual compact embedding. Due to the presence of
the gradient term the problem is not variational and for instance the critical point
theory can not be applied directly. Since the term ∇u is not monotone in u, the
standard monotone methods for semilinear elliptic equations may not be applied
directly. The idea inspired by papers due to Aman, Crandall[4], De Figueiredo,
Girardi, Matzeu[18] used in this paper is associating with problem (1.1) a family of
semilinear elliptic problems which has a nontrivial solution via monotone method
with no dependence on the gradient of the solution in addition to Leray-Schauder
fixed point technique. The main result is stated in terms of the eigenvalues of

−∆u = λu in Ωi, u = 0 on ∂Ωi. (1.5)

Our main purpose is to prove “similar” results in case Ω ⊂ Rn is a (not necessarily
bounded) domain. In the present case we have the usual techniques to handle the
nonlinearity on one hand and an additional extraction of a solution due to the
absence of compactness of Ω. In a way, the problem in the unbounded domain is
linked with the existence in its bounded subdomains. The paper is organized as
follows. In Section 2, we introduce the necessary notations, hypotheses and known
results which are subsequently used. In Section 3, we study BVP (1.1) for the case
for a bounded domain Ω. Section 4 deals with (1.1) in the unbounded domain
Ω. Essentially the proof consists of finding bounds for the sequence of solutions



EJDE-2014/219 ELLIPTIC BVPS IN UNBOUNDED DOMAINS 3

{ui, i ≥ 1} of (1.1) defined on Ωi and finally, extraction of a solution of (1.1) in Ω.
The proof of the latter part is on the lines of proof given by Swanson and Noussair
[25] or [26]. Standard theory of Lp estimates and Schauder estimates for elliptic
BVPs, have been used.

2. Preliminaries

For i ≥ 1, let λi be the first eigenvalue with corresponding eigenfunction φi of
the Dirichlet BVP

−∆u = λu in Ωi, u = 0 on ∂Ωi. (2.1)

Let Ni denote the span of φi in L2(Ωi),
∫

Ωi
φ2
i = 1, and let fi = f |Ωi be the

restriction of f on Ωi, i ≥ 1, fi = tiφi+hi, where hi ∈ N⊥i , for i ≥ 1. At each step,
a generic constant is denoted by c or k0 to avoid too many suffixes. For convenience,
we list the following hypotheses:

(H1) Let g ∈ C1(R,R) satisfy

lim sup
s→−∞

g(s)
s

< 0 < λ1 < lim inf
s→∞

g(s)
s
, (2.2)

(−∞ and ∞ are also allowed in the above limits).
(H2) Let ψ ∈ C1(Rn,R) with ψ(0) = 0, be a bounded and Lipschitz continuous

function with Lipschitz constant η, i.e.,

|ψ(p)− ψ(q)| ≤ η|p− q|, for all p, q ∈ Rn.

Remark: (i) The least eigenvalue of the Laplacian (with Dirichlet boundary con-
ditions) when Ω is unbounded could be zero and hence the hypotheseis (H1) is
natural for unbounded domain.
(ii) We have Ωi ⊆ Ωi+1 which implies that λ1 ≥ λ2 ≥ λ3, · · · ≥ λi ≥ λi+1, . . . .
Then, from (H1), it follows

lim sup
s→−∞

g(s)
s

< 0 < · · · ≤ λj · · · ≤ λ3 ≤ λ2 ≤ λ1 < lim inf
s→∞

g(s)
s
. (2.3)

We refer to [21, 22] for properties of λi and the corresponding eigenfunctions φi.

Definition 2.1. A function u : Ω→ R is called a solution of (1.1) if
(i) u ∈ C2,α(M) for every bound subdomain M ⊂ Ω,
(ii) u satisfies (1.1) identically.

3. Bounded domains

Let G ⊂ Rn be a bounded domain with smooth boundary ∂G. Let f ∈ C0,α(G)
and ψ satisfies the hypothesis (H2). Let g ∈ C1(R,R) satisfies the hypothesis

(H1’)

lim sup
s→−∞

g(s)
s

< 0 < λ̂1 < lim inf
s→∞

g(s)
s
, (3.1)

(−∞ and ∞ are also allowed in the above limits) where, λ̂1 is the first eigenvalue
with corresponding eigenfunction φ of

−∆u = λu in G, u = 0 on ∂G. (3.2)
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In this section, we establish the existence of solutions for the BVP

−∆u = g(u) + ψ(∇u) + f in G,

u = 0 on ∂G.
(3.3)

Let N denote the span of φ in L2(G),
∫
G
φ2 = 1, and f = tφ + h, where h ∈ N⊥.

The proof of the following result is on the same lines of [15, Lemma 1] and hence
omitted.

Lemma 3.1. Assume (H1’). Then, there are numbers ĉ > 0, µ̂ and µ̂ such that
µ̂ < 0 < λ̂1 < µ̂ and

g(s) ≥ µ̂s− ĉ, ∀s ∈ R,

g(s) ≥ µ̂s− ĉ, ∀s ∈ R.
(3.4)

We begin with the following existence result which is used later.

Lemma 3.2. Let G ⊂ Rn be a bounded domain and β be a positive real number.
Let f ∈ C0,α(G), α ∈ (0, 1) and ψ satisfies hypotheses (H2). Then, there exists a
solution u ∈ C2,α(G) of the BVP

−∆u+ βu = ψ(∇u) + f in G,

u = 0 on ∂G.
(3.5)

Proof. A part of the proof is similar to the method given in the books by Evans
[19, p.505] and Gilbarg and Trudinger [20, p.281]. It uses the Leray-Shauder’s
fixed point theorem [20, Theorem 11.3]. We divide the proof into three steps for
convenience.
Step-1: For a given u ∈ H1

0 (G), we define

h := ψ(∇u) + f.

Since ψ is bounded and f ∈ C0,α(G), we note that h ∈ L2(G). Let w ∈ H1
0 (G) be

the unique weak solution of the linear BVP

−∆w + βw = h in G,

w = 0 on ∂G.
(3.6)

By the regularity theory, we know that, w ∈ H2(G) with an estimate

‖w‖2,2,G ≤ c|h|2,G, (3.7)

for some (generic) constant c. Now, we define a operator T : H1
0 (G) → H1

0 (G) by
T u = w for a given u ∈ H1

0 (G). Also, by a similar argument found in Evans [19,
p.506], we note that T : H1

0 (G)→ H1
0 (G) is continuous and compact.

Step-2: The equation u = σT u, σ ∈ [0, 1] in H2(G) ∩ H1
0 (G) is equivalent to the

BVP
−∆u+ βu = σ{ψ(∇u) + f} in G,

u = 0 on ∂G.
(3.8)
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Now ψ satisfies hypothesis (H2). Consequently, we have |ψ(∇u)| ≤ η|∇u|. Since
σ ≤ 1, we have by Hölder’s inequality,∫

G

|∇u|2 + β

∫
G

|u|2 =
∫
G

ψ(∇u)u+
∫
G

fu ≤ η
∫
G

|∇u||u|+
∫
G

fu

≤ η

2

{∫
G

|∇u|2 +
∫
G

|u|2
}

+ |f |2,G|u|2,G

≤
(η

2
+ |f |2,G

)
‖u‖1,2,G

(3.9)

Case I: If β ≥ 1, from (3.9) we have∫
G

|∇u|2 +
∫
G

|u|2 ≤
∫
G

|∇u|2 + β

∫
G

|u|2 ≤
(η

2
+ |f |2,G

)
‖u‖1,2,G

or
‖u‖1,2,G ≤

η

2
+ |f |2,G (3.10)

Case II: If 0 < β < 1, from (3.9) we have

β

∫
G

|∇u|2 + β

∫
G

|u|2 ≤
∫
G

|∇u|2 + β

∫
G

|u|2 ≤
(η

2
+ |f |2,G

)
‖u‖1,2,G

or

‖u‖1,2,G ≤
1
β

(η
2

+ |f |2,G
)
. (3.11)

So for any β, from (3.10) and (3.11), we have

‖u‖1,2,G ≤
1
β

(η
2

+ |f |2,G
)

= c, (3.12)

where c is a (generic) constant independent of u and σ. By Leray-Schauder fixed
point theorem, T has a fixed point equivalently, there exists a solution u ∈ H2(G)∩
H1

0 (G) of the BVP (3.5).
Step-3: Now, since f ∈ C0,α(G), and ψ is bounded, we note f, ψ(∇u) ∈ Lp(G) for
any p. We choose p > n, so that by Lp regularity u ∈ W 2,p(G). Then, by Sobolev
embedding theorem for p > n, we have the solution u ∈ C1,α(G), α = 1 − n

p , and
consequently h ∈ C0,α(G). Then, by standard Schauder regularity u ∈ C2,α(G),
which completes the proof. �

We need the following results whose proofs are suitable modifications of corre-
sponding results of [15].

Lemma 3.3 (Existence of a subsolution). Assume (H1’) and (H2) hold. For any
given f ∈ C0,α(G), there exists, w ∈ C2,α(G) a subsolution of (3.3) such that
w < u in G, where u is any super solution of (3.3).

Proof. By Lemma 3.2, let w be a (unique) solution of the BVP

−∆w = µ̂w − ĉ+ ψ(∇w) + f in G,

w = 0 on ∂G.

where µ̂ and ĉ are as in Lemma 3.1. We choose ĉ in such a way that (3.4) has strict
inequality. Notice

−∆u ≥ g(u) + ψ(∇u) + f in G, u = 0 on ∂G.



6 V. RAGHAVENDRA, R. KAR EJDE-2014/219

Subtracting and then applying the mean value theorem (along with (3.4))

−∆(u− w) ≥ g(u) + ψ(∇u)− µ̂w − ψ(∇w) + ĉ

> µ̂(u− w) +∇ψ(ξ(x))(∇u−∇w)

= µ̂(u− w) +
n∑
j=1

∂

∂xj
ψ(ξ(x))

∂

∂xj
(u− w) in G,

u− w = 0 on ∂G,

(3.13)

where ξ(x) lies between ∇u(x) and ∇w(x). By the maximum principle (refer [20,
p.33]) u− w > 0 in G and so u > w in G. We note that

−∆w = µ̂w − ĉ+ ψ(∇w) + f < g(w) + ψ(∇w) + f in G,

w = 0 on ∂G,
(3.14)

or that w is a sub solution of (3.3). �

Now, we concentrate on establishing a required supersolution.

Lemma 3.4 (Existence of super solutions). Let h ∈ N⊥. Then, there exists a
τ ∈ R such that

−∆u = g(u) + ψ(∇u) + tφ+ h(x) in G,

u = 0 on ∂G,
(3.15)

has a super solution v, if t ≤ τ .

Proof. For a suitable negative t, we prove that, problem (3.15) has a super solution.
Fix a positive integer K and let

m = max
{
g(s) + ψ(p) + h(x) : x ∈ G, 0 ≤ s ≤ K, 0 ≤ |p| ≤ K

}
. (3.16)

Choose sub domains D1, D2 such that D1 ⊆ D1 ⊆ D2 ⊆ D2 ⊆ G and vol(G\D1) ≤
δ, where δ > 0 will be chosen shortly. Let H ∈ C0,α(G) such that

H = m in G \D2, H = 0 in D1, 0 < H < m in D2,1(= D2 \D1). (3.17)

Let v be the solution of the BVP

−∆v = H in G, v = 0 on ∂G.

By maximum principle v > 0 in G, and by the a priori estimates for solutions of
elliptic equations in W 2,p(G) we obtain

‖v‖2,p,G ≤ c|H|p,G = c
{∫

G\D1

|H|p +
∫
D1

|H|p
}1/p

≤ cmδ1/p, (3.18)

where c is a generic constant. By the Sobolev imbedding theorem, there exists a
constant c′ such that

‖v‖C1,α(G) ≤ c
′‖v‖2,p,G, ∀v ∈W 2,p(G), p > n/2. (3.19)

From the inequalities (3.18) and (3.19), we obtain

‖v‖C1,α(G) ≤ cmδ
1/p, c a generic constant.

Now, we choose D1 in such a way that cmδ1/p ≤ K and under these circumstances
we claim that v is a supersolution of (3.15) for a large negative t. Let φ∗ =
min{φ(x) : x ∈ D2} > 0 and we denote τ = −m

φ∗ . We claim that

τφ+m ≤ H in G. (3.20)
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If x ∈ D2, since −mφφ∗ ≤ −m then,

τφ+m =
−mφ
φ∗

+m ≤ 0 ≤ H.

Now, for x ∈ G\D2, from (3.17), we have τφ + m ≤ m = H and hence, we have
the desired claim. Consequently, from (3.16) and (3.20), we have

−∆v = H ≥ m+ τφ ≥ g(v) + τφ + ψ(∇v) + h in G.

Then, for t ≤ τ , we obtain

−∆v ≥ g(v) + τφ + ψ(∇v) + h ≥ g(v) + tφ+ ψ(∇v) + h in G,

which completes the proof of the lemma. �

Corollary 3.5. Assume (H1’) and (H2) hold. Suppose that for a given f ∈ C0,α(G)
problem (3.3) has a solution. Then, problem (3.3) has a minimal solution umin, i.e.,
given any other solution u of (3.3) one has umin ≤ u in G).

We have the following is a result for the existence of solution of (3.3). The proof
follows similar to the arguments of [15] with some difficulties due to the term ψ(∇u)
(Since ∇u is not monotone in u we can’t use exactly the same proof given in [15]
which can be overcame by the help of Lemma 3.2). For a similar technique, we
refer Amann and Crandall [4].

Proposition 3.6 (Monotone method). Let f ∈ C0,α(G). Suppose g and ψ satisfy
the hypotheses (H1’) and (H2), respectively. If there exist functions u, v ∈ C2,α(G)
such that u ≤ v in G satisfying

−∆u ≤ g(u) + ψ(∇u) + f(x) in G, u ≤ 0 on ∂G.

and
−∆v ≥ g(v) + ψ(∇v) + f(x) in G, v ≥ 0 on ∂G,

then, there exist solutions U, V ∈ C2,α(G) of the BVP (3.3) such that u(x) ≤
U(x) ≤ V (x) ≤ v(x). Moreover, any solution of (3.3) with u(x) ≤ u(x) ≤ v(x), is
such that U(x) ≤ u(x) ≤ V (x) (U equals to V is not ruled out).

The proof of the following results follows closely the arguments of [15] and hence
omitted.

Corollary 3.7. Let h ∈ N⊥ be given. Suppose that problem (3.15) has a solution
for a given τ ∈ R. Then, it has a solution for any t ≤ τ .

Lemma 3.8. Suppose that problem (3.15) has a solution for a given f ∈ C0,α(G).
Then the Dirichlet BVP

−∆u = g(u) + ψ(∇u) + ν(x) in G,

u = 0 on ∂G,

where ν is a given function in C0,α(G) with ν ≤ f has also a solution.

Concerning the non-existence of solution, we have the ensuing result.

Lemma 3.9 (Non-existence result). Assume (H1’) and (H2). Then, there exists a
number ζ ∈ R, independent of h ∈ N⊥, such that the BVP

−∆u = g(u) + ψ(∇u) + tφ+ h(x) in G,

u = 0 on ∂G,
(3.21)
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has no solution, for all t > ζ.

The proof follows closely the arguments of [15] with few modifications due to the
term ψ(∇u).

Now, we establish a main result with above preliminaries:

Theorem 3.10. Let f ∈ C0,α(G) and g, ψ satisfies the hypotheses (H1’) and (H2),
respectively. For any h ∈ N⊥, there exists a real number ρ = ρ(h) such that, the
BVP

−∆u = g(u) + ψ(∇u) + tφ+ h in G,

u = 0 on ∂G,
(3.22)

(i) has a classical solution u = U ∈ C2,α(G), if t ≤ ρ(h);
(ii) has no solution, if t > ρ(h).

Proof. For a given h ∈ N⊥, the Lemma 3.4 shows that there is a τ ∈ R such that
problem (3.22) has a supersolution u. By Lemma 3.3 we see that, for these given h
and τ , BVP (3.22) has a subsolution, u ≤ u. So by Proposition 3.6, BVP (3.22) has
a solution for the given h and τ determined by Lemma 3.4. Lemma 3.9 shows that
the set of t is such that (3.22) has a solution is bounded above and from Corollary
3.7 this set is a half-line. Hence, the proof of Theorem 3.10 is complete by letting
ρ(h) to be the supremum of the set of t’s for which (3.22) has a solution. �

4. Unbounded domains

Throughout this section, let f ∈ C0,α
loc (Ω) and g, ψ satisfies the hypotheses (H1)

and (H2), respectively. In this section, we establish the existence of solutions for a
class of quasilinear elliptic BVP (1.1). First, we prove a few results that are nec-
essary for establishing the main result of this section. We begin with an attempt
to establish the existence of solutions {uj , j ≥ 1} to (1.1) in each bounded subdo-
mains Ωj ⊂ Ω and find a few bounds for them under suitable hypotheses. Finally,
extraction of a solution to (1.1) from the sequence {uj} is shown.

The following two results are about the existence of subsolutions and supersolu-
tions in Ωj , and they are generalization of Lemmas 3.3 and 3.4, respectively. The
proof is an application of these lemmas with G replaced by Ωj and f = fj , j ≥ 1
and hence omitted.

Lemma 4.1 (Existence of subsolutions). For any given fj ∈ C0,α(Ωj), j ≥ 1, there
exists, wj ∈ C2,α(Ωj) a subsolution of

−∆u = g(u) + ψ(∇u) + fj in Ωj ,
u = 0 on ∂Ωj .

(4.1)

such that wj < vj in Ωj, where vj is any super solution of (4.1).

Now we turn our attention towards establishing the required supersolution.

Lemma 4.2 (Existence of super solutions). Let hj ∈ N⊥j , j ≥ 1. Then, there
exists τj ∈ R such that

−∆u = g(u) + ψ(∇u) + tjφj + hj(x) in Ωj ,
u = 0 on ∂Ωj ,

(4.2)

has a super solution vj, if tj ≤ τj.
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Lemma 4.3. For any hj ∈ N⊥j , j ≥ 1, and for tj ≤ τj, the BVP (4.2) has a
solution u = Uj ∈ C2,α(Ωj), j ≥ 1.

The proof of the above lemma is an application of Theorem 3.10 with G replaced
by Ωj and hence omitted. A useful consequence is as follows.

Corollary 4.4. Let hj ∈ N⊥j be given. Suppose that problem (4.2) has a solution
for a given τj ∈ R. Then, it has a solution for any sj < τj.

To summarize, we have the following result.

Corollary 4.5. Let the hypotheses of Lemma 4.3 be satisfied. Then, for j ≥ 1,
and for tj ≤ τj, the sequence denoted as

uj(x) =

{
Uj(x) if x ∈ Ωj ,
0 if x ∈ Ω \ Ωj .

(4.3)

has the following properties:
(i) uj ∈ C2,α(Ωj);

(ii) uj = 0 on ∂Ωj;
(iii) −∆uj = g(uj) + ψ(∇uj) + fj in Ωj;
(iv) uj(x) ≤ uj(x) ≤ vj(x) for all x ∈ Ωj

The following is a vital result is about the boundedness of {uj} in C2,α
loc (Ω) given

that ‖uj‖∞,Ωj are uniformly bounded.

Lemma 4.6. Let {uj , j ≥ 1} be the sequence defined by (4.3) in Corollary 4.3.
Let M ⊂ Ω be an arbitrary bounded domain with smooth boundary and let i be a
positive integer such that M ⊆ Ωi. Suppose that ‖uj‖∞,Ωi ≤ c′, ∀ j ≥ i, where c′ is
a constant independent of j. Then, there exists a constant k > 0 (independent of
j) such that

‖uj‖C2,α(M) ≤ k, for all j ≥ i.

Proof. Let Q and R be bounded domains such that M ⊆ Q, Q ⊆ R, R ⊆ Ωi with
boundaries ∂Q and ∂R in C2,α. By the hypotheses, for j ≥ i, we have

−∆uj = g(uj) + ψ(∇uj) + fj in Ωj ,

(since Ωi ⊆ Ωj for j ≥ i). Let vj be the unique solution of the BVP

−∆v = g(uj) + ψ(∇uj) + fj in R,

v = 0 on ∂R.
(4.4)

By the hypotheses of Lemma 4.6 and (H2), the sequences {uj} and {ψ(∇uj)}
are uniformly bounded in L∞(R) for j ≥ i, respectively. As a consequence, the
function gj , defined by, gj(x) = g(uj) + ψ(∇uj) + fj is uniformly bounded on R
and so gj ∈ Lp(R) for any p ≥ 1 and

|gj |p,R ≤ c, for all j ≥ i.
where, c is (a generic constant) independent of j. By the Lp theory for elliptic
equations, we have ‖vj‖2,p,R ≤ c for all j ≥ i, where c is (a generic constant)
independent of j. Also, by Sobolev embedding theorem (with the choice p > n and
α = 1− n

p ), we have

‖vj‖C1,α(R) ≤ ‖vj‖2,p,R ≤ c, ∀j ≥ i, (4.5)
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where, c is a constant independent of j. For j ≥ i, let wj be the unique solution of
the BVP

−∆w = 0 in R, w = uj on ∂R. (4.6)

Since {uj} is uniformly bounded in L∞(R) for j ≥ i, by the maximum principle,
we have ‖wj‖C0(R) ≤ c, j ≥ i, where c is (a generic constant) independent of j.
Now the classical interior Schauder estimates yields

‖wj‖C2,α(Q) ≤ c ‖wj‖C0(R) ≤ c, ∀j ≥ i, (4.7)

where, c is a constant independent of j. Coupling the equations (4.4) and (4.6), we
note u = vj + wj satisfies

−∆u = g(uj) + ψ(∇uj) + fj in R,

u = uj on ∂R.
(4.8)

Since u = uj is also a solution of (4.8), consequently, by uniqueness for elliptic
BVP, we have uj = vj + wj and it follows from (4.5) and (4.7)

‖uj‖C1,α(Q) ≤ c, ∀j ≥ i. (4.9)

where, c is a constant independent of j. By interior Schauder estimate with aid of
the inequality (4.9) and regularity assumptions on g, ψ, we have

‖uj‖C2,α(M) ≤ c
[
‖uj‖C0(Q) + ‖fj‖C0,α(Q)

]
= k, ∀j ≥ i,

where k is a constant independent of j. This completes the proof. �

Now, we establish the main result in Theorem 4.8 of this section with above
preliminaries.

Remark 4.7. For any hj ∈ N⊥j , j ≥ 1 by Lemma 4.3 we know that there exists a
τj ∈ R such that, the BVP

−∆u = g(u) + ψ(∇u) + tjφj + hj in Ωj , u = 0 on ∂Ωj , (4.10)

has a solution Uj ∈ C2,α(Ωj) for tj ≤ τj . The condition τ = inf τj > −∞ in the
following theorem is a link between the solution in the subdomains Ωj , j ≥ 1 and a
solution in Ω.

Theorem 4.8. For tj ≤ τj , j ≥ 1, let u = Uj ∈ C2,α(Ωj) be the solution of (4.10).
We assume the condition

τ = inf τj > −∞. (4.11)

Then, under the hypotheses of Lemma 4.6, BVP (1.1) has a classical solution u ∈
C2,α

loc (Ω), if tj ≤ τ .

Proof. If tj ≤ τ , from condition (4.11) we have tj ≤ τj , for each j = 1, 2 . . . .
For each j ≥ 1, by Lemma 4.3, we get a sequence of solutions {Uj , j ≥ 1} to the
BVP (4.10), for tj ≤ τj . The idea of the proof is to extract a solution of (1.1) in
unbounded domain from a sequence of solutions {Uj , j ≥ 1} of (4.10) in bounded
subdomains. So, to get a sequence of solutions {Uj} of (4.10) for all j, we need
t = tj should be less than or equal to each τj for j ≥ 1. By Lemma 4.2, we know
each τj are negative numbers. So inf τj should not converges to −∞ and hence we
need the condition (4.11).
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Since we have a sequence of solutions {Uj , j ≥ 1} of (4.10), we define the sequence
{uj} by (4.3) in Corollary 4.5. For each integer i = 1, 2 . . . , by Lemma 4.6, there
exists a positive constant k, independent of j, such that

‖uj‖C2,α(Ωi)
≤ k, ∀ j ≥ i.

The inclusion C2,α(Ω1) ↪→↪→ C2(Ω1) is compact (cf. [20, p.282]) and hence {uj , j ≥
i} has a convergent sequence {u1

j , j ≥ i} in C2(Ω1) and let {u1
j , j ≥ i} converges

uniformly to u1 in C2(Ω1). Now, inductively, let {uij} be a subsequence of {ui−1
j , j ≥

i, i ≥ 2} such that the {uij} converge uniformly to ui in C2(Ωi).
We define, u : Ω→ R by

u(x) = ui(x) if x ∈ Ωi, i = 1, 2 . . . .

We note that this definition is consistent since Ωi ⊆ Ωi+1 and ui+1 = ui on Ωi.
We note that the diagonal sequence {ujj(x)} converges to u(x) for all x ∈ Ω. Let
M ⊆ Ω be any bounded domain, then, M ⊆ Ωi for some i. Now we have {uij , j ≥ i}
converges uniformly in C2(M) norm to ui = u on M . Since {ujj , j ≥ i} be a
subsequence of {uij , j ≥ i} consequently, {ujj , j ≥ i} converges uniformly in C2(M)
norm to ui = u on M , which shows that ujj → u, and −∆ujj → −∆u in M . By
(iii) of Corollary 4.5, we know

−∆ujj(x) = g(ujj(x)) + ψ(∇ujj(x)) + fj(x), x ∈M

and letting j →∞ in the above, we have

−∆u(x) = g(u(x)) + ψ(∇u(x)) + f(x), x ∈M.

Since M is arbitrary, and by the standard regularity argument based on Schauder
estimates, u ∈ C2,α(M). We have for every x ∈ Ω there exists a bounded domain M
with smooth boundary such that x ∈M ⊂ Ω. Also {ujj , j ≥ i} converges uniformly
to u on M . It follows from (4.3) that ujj = 0 on ∂Ω for all j ≥ i and since ujj → u

on M , u = 0 on ∂Ω. Thus, u is indeed a solution of (1.1), if tj ≤ τ . �

Presently we do not have a clear idea regarding when the condition (4.11) nec-
essarily holds. But in the following example, we see that the condition (4.11) holds

and in fact τ = inf τj = −2
√
π

3
. Hence, the condition (4.11) in Theorem 4.8 at

least holds for some class of BVPs.

Example 4.9. Let Ω := {x = (x1, x2, x3) ∈ R3 : |x| > 1} and

Ωi := {x ∈ R3 : 1 < |x| < i+ 1}, i ≥ 1

Suppose that f(x) = −|x|−6, x ∈ Ω. Then, f ∈ C0,α
loc (Ω), 0 < α < 1. We consider

the quasilinear elliptic BVP

−∆u(x) = u2(x) + sin(|∇u(x)|2)− |x|−6 x ∈ Ω,

u(x) = 0 x ∈ ∂Ω.
(4.12)

The functions g(u) = u2 and ψ(∇u) = sin(|∇u|2) satisfy (H1) and (H2), respec-
tively. Let φi > 0 be such that φi ∈ H1

0 (Ωi) ∩ C∞(Ωi),

−∆φi = λiφi, and
∫

Ωi

φi
2 dx = 1.
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Now,

f |Ωi = fi = tφi + hi, or t =
∫

Ωi

fiφi dx,

where
∫

Ωi
hiφi dx = 0. So in Ω1,

−t =
∫

Ω1

|x|−6φ1 dx ≤
(∫

Ω1

|x|−12 dx
)1/2(∫

Ω1

φ2
1 dx

)1/2

=
(∫

Ω1

|x|−12 dx
)1/2

=
(∫ 2π

0

∫ π

0

∫ 2

1

r−12r2 sinφdrdθdφ
)1/2

, (where r = |x|)

=
[4π

9
(1− 1

29
)
]1/2

,

which implies

t ≥ −2
√
π

3
.

Similarly, in each Ωi, t ≥ −
2
√
π

3
. By Theorem 3.10, we know there exists a solution

of the BVP
−∆u(x) = u2(x) + sin(|∇u(x)|2)− |x|−6

= u2(x) + sin(|∇u(x)|2)− (tφi(x) + hi(x)), x ∈ Ωi,

u(x) = 0, x ∈ ∂Ωi,

(4.13)

for all t ≤ τi (say). Then, each τi ≥ −
2
√
π

3
and so inf τi > −∞.
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