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FRICTIONAL CONTACT PROBLEMS FOR
ELECTRO-VISCOELASTIC MATERIALS WITH LONG-TERM

MEMORY, DAMAGE, AND ADHESION

TEDJANI HADJ AMMAR, BENYATTOU BENABDERRAHMANE, SALAH DRABLA

Abstract. We consider a quasistatic contact problem between two electro-

viscoelastic bodies with long-term memory and damage. The contact is fric-

tional and is modelled with a version of normal compliance condition and the
associated Coulomb’s law of friction in which the adhesion of contact surfaces

is taken into account. We derive a variational formulation for the model and

prove an existence and uniqueness result of the weak solution. The proof is
based on arguments of evolutionary variational inequalities, a classical exis-

tence and uniqueness result on parabolic inequalities, and Banach fixed point
theorem.

1. Introduction

The aim of this article is to study a quasistatic frictional contact problem with
adhesion between two electro-viscoelastic bodies. We use the electro-viscoelastic
constitutive law with long-term memory and damage given by

σ` = A`ε(u̇`) + G`ε(u`) + (E`)∗∇ϕ` +
∫ t

0

F`
(
t− s, ε(u`(s)), ζ`(s)

)
ds, (1.1)

where u` the displacement field, σ` and ε(u`) represent the stress and the lin-
earized strain tensor, respectively. Here A` is a given nonlinear operator, F` is
the relaxation operator, and G` represents the elasticity operator.E(ϕ`) = −∇ϕ`
is the electric field, E` represents the third order piezoelectric tensor, (E`)∗ is
its transposition. In (1.1) and everywhere in this paper the dot above a vari-
able represents derivative with respect to the time variable t. It follows from
(1.1) that at each time moment, the stress tensor σ`(t) is split into three parts:
σ`(t) = σ`V (t) + σ`E(t) + σ`R(t), where σ`V (t) = A`ε(u̇`(t)) represents the purely
viscous part of the stress, σ`E(t) = (E`)∗∇ϕ`(t) represents the electric part of the
stress and σ`R(t) satisfies the rate-type elastic relation

σ`R(t) = G`ε(u`(t)) +
∫ t

0

F`
(
t− s, ε(u`(s)), ζ`(s)

)
ds. (1.2)
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Various results, example and mechanical interpretations in the study of elastic
materials of the form (1.2) can be found in [2, 24] and references therein. Note
also that when F` = 0 the constitutive law (1.1) becomes the Kelvin-Voigt electro-
viscoelastic constitutive relation

σ`(t) = A`ε(u̇`(t)) + G`ε(u`(t)) + (E`)∗∇ϕ`(t). (1.3)

Quasistatic contact problems with Kelvin-Voigt materials of the form (1.3) can be
found in [19, 20, 25]. The normal compliance contact condition was first consid-
ered in [14] in the study of dynamic problems with linearly elastic and viscoelastic
materials and then it was used in various references, see e.g. [11, 19]. This condi-
tion allows the interpenetration of the body’s surface into the obstacle and it was
justified by considering the interpenetration and deformation of surface asperities.

Processes of adhesion are important in many industrial settings where parts,
usually nonmetallic, are glued together. For this reason, adhesive contact between
deformable bodies, when a glue is added to prevent relative motion of the surfaces,
has received recently increased attention in the mathematical literature. Analysis
of models for adhesive contact can be found in [4, 15, 16] and recently in the
monographs [17, 18]. The novelty in all these papers is the introduction of a surface
internal variable, the bonding field, denoted in this paper by β. It describes the
point wise fractional density of adhesion of active bonds on the contact surface, and
some times it is called the intensity of adhesion. Following [10], the bonding field
satisfies the restriction 0 ≤ β ≤ 1, when β = 1 at a point of the contact surface,
the adhesion is complete and all the bonds are active, when β = 0 all the bonds are
inactive, severed, and there is no adhesion, when 0 < β < 1 the adhesion is partial
and only a fraction β of the bonds is active. The damage is an extremely important
topic in engineering, since it affects directly the useful life of the designed structure
or component. There is a very large engineering literature on this topic. Models
taking into account the influence of internal damage of the material on the contact
process have been investigated mathematically. General models for damage were
derived in [5, 6] from the virtual power principle. Mathematical analysis of one-
dimensional problems can be found in [7]. The three-dimensional case has been
investigated in [12]. In all these papers the damage of the material is described
with a damage function ζ`, restricted to have values between zero and one. When
ζ` = 1, there is no damage in the material, when ζ` = 0, the material is completely
damaged, when 0 < ζ` < 1 there is partial damage and the system has a reduced
load carrying capacity. Contact problems with damage have been investigated in
[7, 20, 21, 23]. In this paper the inclusion used for the evolution of the damage field
is

ζ̇` − κ`∆ζ` + ∂ψK`(ζ`) 3 φ`
(
σ` −A`ε(u̇`), ε(u`), ζ`

)
, (1.4)

where K` denotes the set of admissible damage functions defined by

K` = {ξ ∈ H1(Ω`); 0 ≤ ξ ≤ 1, a.e. in Ω`}, (1.5)

κ` is a positive coefficient, ∂ψK` represents the subdifferential of the indicator
function of the set K` and φ` is a given constitutive function which describes the
sources of the damage in the system. In this article we consider a mathematical
frictional contact problem between two electro-viscoelastic bodies with constitutive
law with long-term memory and damage. The contact is modelled with normal
compliance where the adhesion of the contact surfaces is taken into account and
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is modelled with a surface variable, the bonding field. We derive a variational
formulation of the problem and prove the existence of a unique weak solution.

This article is organized as follows. In Section 2 we describe the mathematical
models for the frictional contact problem between two electro-viscoelastics bodies
with long-term memory and damage. The contact is modelled with normal compli-
ance and adhesion. In Section 3 we introduce some notation, list the assumptions
on the problem’s data, and derive the variational formulation of the model. We
state our main result, the existence of a unique weak solution to the model in The-
orem 4.1. The proof of the theorem is provided in Section 4, where it is carried
out in several steps and is based on arguments of evolutionary variational inequali-
ties, a classical existence and uniqueness result on parabolic inequalities, differential
equations and the Banach fixed point theorem.

2. Problem Statement

Let us consider two electro-viscoelastic bodies with long-term memory occupying
two bounded domains Ω1, Ω2 of the space Rd(d = 2, 3). For each domain Ω`, the
boundary Γ` is assumed to be Lipschitz continuous, and is partitioned into three
disjoint measurable parts Γ`1, Γ`2 and Γ`3, on one hand, and on two measurable
parts Γ`a and Γ`b, on the other hand, such that meas Γ`1 > 0, meas Γ`a > 0. Let
T > 0 and let [0, T ] be the time interval of interest. The body Ω` is subjected to
f `0 forces and volume electric charges of density q`0. The bodies are assumed to be
clamped on Γ`1×(0, T ). The surface tractions f `2 act on Γ`2×(0, T ). We also assume
that the electrical potential vanishes on Γ`a × (0, T ) and a surface electric charge
of density q`2 is prescribed on Γ`b × (0, T ). The two bodies can enter in contact
along the common part Γ1

3 = Γ2
3 = Γ3. The bodies are in adhesive contact with

an obstacle, over the contact surface Γ3. With the assumption above, the classical
formulation of the friction contact problem with adhesion and damage between two
electro-viscoelastics bodies with long-term memory is following.

Problem P. For ` = 1, 2, find a displacement field u` : Ω` × (0, T )→ Rd, a stress
field σ` : Ω` × (0, T ) → Sd, an electric potential ϕ` : Ω` × (0, T ) → R, a damage
ζ` : Ω` × (0, T ) → R, a bonding β : Γ3 × (0, T ) → R and an electric displacement
field D` : Ω` × (0, T )→ Rd such that

σ` = A`ε(u̇`) + G`ε(u`) + (E`)∗∇ϕ` +
∫ t

0

F`
(
t− s, ε(u`(s)), ζ`(s)

)
ds,

in Ω` × (0, T ),
(2.1)

D` = E`ε(u`)− B`∇ϕ` in Ω` × (0, T ), (2.2)

ζ̇` − κ`∆ζ` + ∂ψK`(ζ`) 3 φ`
(
σ` −A`ε(u̇`), ε(u`), ζ`

)
in Ω` × (0, T ), (2.3)

Divσ` + f `0 = 0 in Ω` × (0, T ), (2.4)

divD` − q`0 = 0 in Ω` × (0, T ), (2.5)

u` = 0 on Γ`1 × (0, T ), (2.6)

σ`ν` = f `2 on Γ`2 × (0, T ), (2.7)

σ1
ν = σ2

ν ≡ σν ,
σν = −pν([uν ]) + γνβ

2Rν([uν ])

}
on Γ3 × (0, T ), (2.8)



4 T. HADJ AMMAR, B. BENABDERRAHMANE, S. DRABLA EJDE-2014/222

σ1
τ = −σ2

τ ≡ στ ,
‖στ + γτβ

2Rτ ([uτ ])‖ ≤ µpν([uν ]),

‖στ + γτβ
2Rτ ([uτ ])‖ < µpν([uν ])⇒ [uτ ] = 0,

‖στ + γτβ
2Rτ ([uτ ])‖ = µpν([uν ])

⇒ ∃λ ≥ 0 such that στ + γτβ
2Rτ ([uτ ]) = −λ[uτ ]


on Γ3 × (0, T ), (2.9)

β̇ = −
(
β
(
γν(Rν([uν ]))2 + γτ |Rτ ([uτ ])|2

)
− εa

)
+

on Γ3 × (0, T ), (2.10)

ϕ` = 0 on Γ`a × (0, T ), (2.11)

D` · ν` = q`2 on Γ`b × (0, T ), (2.12)

∂ζ`

∂ν`
= 0 on Γ` × (0, T ), (2.13)

u`(0) = u`0, ζ`(0) = ζ`0 in Ω`, (2.14)

β(0) = β0 on Γ3. (2.15)

First, equations (2.1) and (2.2) represent the electro-viscoelastic constitutive law
with long term-memory and damage, the evolution of the damage is governed by
the inclusion of parabolic type given by the relation (2.3). Equations (2.4) and
(2.5) are the equilibrium equations for the stress and electric-displacement fields,
respectively, in which “Div” and “div” denote the divergence operator for tensor
and vector valued functions, respectively. Next, the equations (2.6) and (2.7) rep-
resent the displacement and traction boundary condition, respectively. Condition
(2.8) represents the normal compliance conditions with adhesion where γν is a given
adhesion coefficient, pν is a given positive function which will be described below
and [uν ] = u1

ν + u2
ν stands for the displacements in normal direction, in this condi-

tion the interpenetrability between two bodies, that is [uν ] can be positive on Γ3.
The contribution of the adhesive to the normal traction is represented by the term
γνβ

2Rν([uν ]), the adhesive traction is tensile and is proportional, with proportion-
ality coefficient γν , to the square of the intensity of adhesion and to the normal
displacement, but as long as it does not exceed the bond length L. The maximal
tensile traction is γνβ2L. Rν is the truncation operator defined by

Rν(s) =


L if s < −L,
−s if − L ≤ s ≤ 0,
0 if s > 0.

Here L > 0 is the characteristic length of the bond, beyond which it does not
offer any additional traction. The introduction of the operator Rν . together with
the operator Rτ defined below, is motivated by mathematical arguments but it
is not restrictive for physical point of view, since no restriction on the size of the
parameter L is made in what follows. Condition (2.9) are a non local Coulomb’s
friction law conditions coupled with adhesive, where [uτ ] = u1

τ − u2
τ stands for the

jump of the displacements in tangential direction. Rτ is the truncation operator
given by

Rτ (v) =

{
v if |v| ≤ L,
L v
|v| if |v| > L.
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This condition shows that the shear on the contact surface depends on the bonding
field and on the tangential displacement, but as long as it does not exceed the bond
length L.

Next, the equation (2.10) represents the ordinary differential equation which de-
scribes the evolution of the bonding field and it was already used in [3], see also
[22, 23] for more details. Here, besides γν , two new adhesion coefficients are in-
volved, γτ and εa. Notice that in this model once debonding occurs bonding cannot
be reestablished since, as it follows from (2.10), β̇ ≤ 0. (2.11) and (2.12) represent
the electric boundary conditions. The relation (2.13) represents a homogeneous
Neumann boundary condition where ∂ζ`

∂ν` is the normal derivative of ζ`. (2.14) rep-
resents the initial displacement field and the initial damage field. Finally, (2.15)
represents the initial condition in which β0 is the given initial bonding field.

3. Variational formulation and the main result

In this section, we list the assumptions on the data and derive a variational
formulation for the contact problem. To this end, we need to introduce some
notation and preliminary material. Here and below, Sd represent the space of
second-order symmetric tensors on Rd. We recall that the inner products and the
corresponding norms on Sd and Rd are given by

u`.v` = u`i .v
`
i , |v`| = (v`.v`)

1
2 , ∀u`,v` ∈ Rd,

σ`.τ ` = σ`ij .τ
`
ij , |τ `| = (τ ` · τ `) 1

2 , ∀σ`, τ ` ∈ Sd.

Here and below, the indices i and j run between 1 and d and the summation
convention over repeated indices is adopted. Now, to proceed with the variational
formulation, we need the following function spaces:

H` = {v` = (v`i ); v
`
i ∈ L2(Ω`)}, H`

1 = {v` = (v`i ); v
`
i ∈ H1(Ω`)},

H` = {τ ` = (τ `ij); τ
`
ij = τ `ji ∈ L2(Ω`)}, H`1 = {τ ` = (τ `ij) ∈ H`; div τ ` ∈ H`}.

The spaces H`, H`
1, H` and H`1 are real Hilbert spaces endowed with the canonical

inner products given by

(u`,v`)H` =
∫

Ω`

u`.v`dx, (u`,v`)H`
1

=
∫

Ω`

u`.v`dx+
∫

Ω`

∇u`.∇v`dx,

(σ`, τ `)H` =
∫

Ω`

σ`.τ `dx, (σ`, τ `)H`
1

=
∫

Ω`

σ`.τ `dx+
∫

Ω`

divσ`.Div τ `dx

and the associated norms ‖ · ‖H` , ‖ · ‖H`
1
, ‖ · ‖H` , and ‖ · ‖H`

1
respectively. Here and

below we use the notation

∇u` = (u`i,j), ε(u`) = (εij(u`)), εij(u`) =
1
2

(u`i,j + u`j,i), ∀u` ∈ H`
1,

Divσ` = (σ`ij,j), ∀σ` ∈ H`1.

For every element v` ∈ H`
1, we also use the notation v` for the trace of v` on Γ`

and we denote by v`ν and v`τ the normal and the tangential components of v` on
the boundary Γ` given by

v`ν = v`.ν`, v`τ = v` − v`νν`.
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Let H ′Γ` be the dual of HΓ` = H
1
2 (Γ`)d and let (·, ·)− 1

2 ,
1
2 ,Γ

` denote the duality
pairing between H ′Γ` and HΓ` . For every element σ` ∈ H`1 let σ`ν` be the element
of H ′Γ` given by

(σ`ν`,v`)− 1
2 ,

1
2 ,Γ

` = (σ`, ε(v`))H` + (Divσ`,v`)H` ∀v` ∈ H`
1.

Denote by σ`ν and σ`τ the normal and the tangential traces of σ` ∈ H`1, respec-
tively. If σ` is continuously differentiable on Ω` ∪ Γ`, then

σ`ν = (σ`ν`) · ν`, σ`τ = σ`ν` − σ`νν`,

(σ`ν`,v`)− 1
2 ,

1
2 ,Γ

` =
∫

Γ`

σ`ν` · v`da

fore all v` ∈ H`
1, where da is the surface measure element.

To obtain the variational formulation of the problem (2.1)–(2.15), we introduce
for the bonding field the set

Z =
{
θ ∈ L∞

(
0, T ;L2(Γ3)

)
; 0 ≤ θ(t) ≤ 1∀t ∈ [0, T ], a.e. on Γ3

}
,

and for the displacement field we need the closed subspace of H`
1 defined by

V ` =
{
v` ∈ H`

1; v` = 0 on Γ`1
}
.

Since meas Γ`1 > 0, the following Korn’s inequality holds:

‖ε(v`)‖H` ≥ cK‖v`‖H`
1
∀v` ∈ V `, (3.1)

where the constant cK denotes a positive constant which may depends only on Ω`,
Γ`1 (see [17]). Over the space V ` we consider the inner product given by

(u`,v`)V ` = (ε(u`), ε(v`))H` , ∀u`,v` ∈ V `, (3.2)

and let ‖ · ‖V ` be the associated norm. It follows from Korn’s inequality (3.1) that
the norms ‖·‖H`

1
and ‖·‖V ` are equivalent on V `. Then (V `, ‖·‖V `) is a real Hilbert

space. Moreover, by the Sobolev trace theorem and (3.2), there exists a constant
c0 > 0, depending only on Ω`, Γ`1 and Γ3 such that

‖v`‖L2(Γ3)d ≤ c0‖v`‖V ` ∀v` ∈ V `. (3.3)

We also introduce the spaces

E`0 = L2(Ω`), E`1 = H1(Ω`), W ` = {ψ` ∈ E`1;ψ` = 0 on Γ`a},

W` = {D` = (D`
i );D

`
i ∈ L2(Ω`),divD` ∈ L2(Ω`)}.

Since meas Γ`a > 0, the following Friedrichs-Poincaré inequality holds:

‖∇ψ`‖W ` ≥ cF ‖ψ`‖H1(Ω`) ∀ψ` ∈W `, (3.4)

where cF > 0 is a constant which depends only on Ω`, Γ`a. In the space W `, we
consider the inner product

(ϕ`, ψ`)W ` =
∫

Ω`

∇ϕ` · ∇ψ`dx (3.5)

and let ‖ · ‖W ` be the associated norm. It follows from (3.4) that ‖ · ‖H1(Ω`) and
‖·‖W ` are equivalent norms on W ` and therefore (W `, ‖·‖W `) is areal Hilbert space.
Moreover, by the Sobolev trace theorem, there exists a constant c0, depending only
on Ω`, Γ`a and Γ3, such that

‖ζ`‖L2(Γ3) ≤ c0‖ζ`‖W ` ∀ζ` ∈W `. (3.6)
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The space W` is real Hilbert space with the inner product

(D`,Φ`)W` =
∫

Ω`

D` ·Φ`dx+
∫

Ω`

divD` · div Φ`dx,

where divD` = (D`
i,i), and the associated norm ‖ · ‖W` .

To simplify notation, we define the product spaces

V = V 1 × V 2, H = H1 ×H2, H1 = H1
1 ×H2

1 ,

H = H1 ×H2, H1 = H1
1 ×H2

1, E0 = E1
0 × E2

0 ,

E1 = E1
1 × E2

1 , W = W 1 ×W 2, W =W1 ×W2.

The spaces V , E1, W and W are real Hilbert spaces endowed with the canonical
inner products denoted by (·, ·)V , (·, ·)E1 , (·, ·)W and (·, ·)W . The associate norms
will be denoted by ‖ · ‖V , ‖ · ‖E1 , ‖ · ‖W and ‖ · ‖W , respectively.

Finally, for any real Hilbert space X, we use the classical notation for the spaces
Lp(0, T ;X), W k,p(0, T ;X), where 1 ≤ p ≤ ∞, k ≥ 1. We denote by C(0, T ;X) and
C1(0, T ;X) the space of continuous and continuously differentiable functions from
[0, T ] to X, respectively, with the norms

‖f‖C(0,T ;X) = max
t∈[0,T ]

‖f(t)‖X ,

‖f‖C1(0,T ;X) = max
t∈[0,T ]

‖f(t)‖X + max
t∈[0,T ]

‖ḟ(t)‖X ,

respectively. Moreover, we use the dot above to indicate the derivative with respect
to the time variable and, for areal number r, we use r+ to represent its positive part,
that is r+ = max{0, r}. For the convenience of the reader, we recall the following
version of the classical theorem of Cauchy-Lipschitz (see, [23, p.48]).

Theorem 3.1. Assume that (X, ‖ · ‖X) is a real Banach space and T > 0. Let
F (t, ·) : X → X be an operator defined a.e. on (0, T ) satisfying the following
conditions:

(1) There exists a constant LF > 0 such that

‖F (t, x)− F (t, y)‖X ≤ LF ‖x− y‖X ∀x, y ∈ X, a.e. t ∈ (0, T ).

(2) There exists p ≥ 1 such that t 7→ F (t, x) ∈ Lp(0, T ;X) for all x ∈ X.
Then for any x0 ∈ X, there exists a unique function x ∈W 1,p(0, T ;X) such that

ẋ(t) = F (t, x(t)), a.e. t ∈ (0, T ),

x(0) = x0.

This theorem will be used in section4 to prove the unique solvability of the
intermediate problem involving the bonding field.

In the study of the Problem P, we consider the following assumptions:
The viscosity function A` : Ω` × Sd → Sd satisfies:

(a) There exists LA` > 0 such that |A`(x, ξ1) − A`(x, ξ2)| ≤
LA` |ξ1 − ξ2| for all ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω`.
(b) There exists mA` > 0 such that (A`(x, ξ1)−A`(x, ξ2)) · (ξ1−
ξ2) ≥ mA` |ξ1 − ξ2|2 for all ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω`.
(c) The mapping x 7→ A`(x, ξ) is Lebesgue measurable on Ω`,
for any ξ ∈ Sd.
(d) The mapping x 7→ A`(x,0) is continuous on Sd, a.e. x ∈ Ω`.

(3.7)
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The elasticity operator G` : Ω` × Sd → Sd satisfies:

(a) There exists LG` > 0 such that |G`(x, ξ1) − G`(x, ξ2)| ≤
LG` |ξ1 − ξ2| for all ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω`.
(b) The mapping x 7→ G`(x, ξ) is Lebesgue measurable on Ω`, for
any ξ ∈ Sd.
(c) The mapping x 7→ G`(x,0) belongs to H`.

(3.8)

The relaxation function F` : Ω` × (0, T )× Sd × R→ Sd satisfies:

(a) There exists LF` > 0 such that |F`(x, t, ξ1, d1) −
F`(x, t, ξ2, d2)| ≤ LF`

(
|ξ1 − ξ2| + |d1 − d2|

)
, for all t ∈ (0, T ),

ξ1, ξ2 ∈ Sd, d1, d2 ∈ R, a.e. x ∈ Ω`.
(b) The mapping x 7→ F`(x, t, ξ, d) is Lebesgue measurable in Ω`,
for any t ∈ (0, T ), ξ ∈ Sd, d ∈ R.
(c) The mapping t 7→ F`(x, t, ξ, d) is continuous in (0, T ), for any
ξ ∈ Sd, d ∈ R, a.e. x ∈ Ω`.
(d) The mapping x 7→ F`(x, t,0, 0) belongs to H`, for all t ∈
(0, T ).

(3.9)

The damage source function φ` : Ω` × Sd × Sd × R→ R satisfies:

(a) There exists Lφ` > 0 such that |φ`(x,η1, ξ1, α1) −
φ`(x,η2, ξ2, α2)| ≤ Lφ`

(
|η1 − η2| + |ξ1 − ξ2| + |α1 − α2|

)
, for

all η1,η2, ξ1, ξ2 ∈ Sd and α1, α2 ∈ R a.e. x ∈ Ω`,
(b) The mapping x 7→ φ`(x,η, ξ, α) is Lebesgue measurable on
Ω`, for any η, ξ ∈ Sd and α ∈ R,
(c) The mapping x 7→ φ`(x,0,0, 0) belongs to L2(Ω`),
(d) φ`(x,η, ξ, α) is bounded for all η, ξ ∈ Sd, α ∈ R a.e. x ∈ Ω`.

(3.10)

The piezoelectric tensor E` : Ω` × Sd → Rd satisfies:

(a) E`(x, τ) = (e`ijk(x)τjk) for all τ = (τij) ∈ Sd a.e. x ∈ Ω`.
(b) e`ijk = e`ikj ∈ L∞(Ω`), 1 ≤ i, j, k ≤ d.

(3.11)

Recall also that the transposed operator (E`)∗ is given by (E`)∗ = (e`,∗ijk) where
e`,∗ijk = e`kij and the following equality hold

E`σ.v = σ · (E`)∗v ∀σ ∈ Sd, ∀v ∈ Rd.

The electric permittivity operator B` = (b`ij) : Ω` × Rd → Rd satisfies:

(a) B`(x,E) = (b`ij(x)Ej) for all E = (Ei) ∈ Rd, a.e. x ∈ Ω`.
(b) b`ij = b`ji, b

`
ij ∈ L∞(Ω`), 1 ≤ i, j ≤ d.

(c) There exists mB` > 0, such that B`E · E ≥ mB` |E|2 for all
E = (Ei) ∈ Rd, a.e. x ∈ Ω`.

(3.12)

The normal compliance function pν : Γ3 × R→ R+ satisfies:

(a) There exists Lν > 0 such that |pν(x, r1)−pν(x, r2)| ≤ Lν |r1−
r2| for all r1, r2 ∈ R, a.e. x ∈ Γ3.
(b) (pν(x, r1) − pν(x, r2))(r1 − r2) ≥ 0 for all r1, r2 ∈ R, a.e.
x ∈ Γ3.
(c) The mapping x 7→ pν(x, r) is measurable on Γ3 for all r ∈ R.
(d) pν(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

(3.13)
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The following regularity is assumed on the density of volume forces, traction, volume
electric charges and surface electric charges:

f `0 ∈ C(0, T ;L2(Ω`)d), f `2 ∈ C(0, T ;L2(Γ`2)d),

q`0 ∈ C(0, T ;L2(Ω`)), q`2 ∈ C(0, T ;L2(Γ`b)).
(3.14)

The adhesion coefficients γν , γτ and εa satisfy the conditions

γν , γτ ∈ L∞(Γ3), εa ∈ L2(Γ3), γν , γτ , εa ≥ 0, a.e. on Γ3. (3.15)

The microcrack diffusion coefficient satisfies

κ` > 0. (3.16)

Finally, the friction coefficient and the initial data satisfy

µ ∈ L∞(Γ3), µ(x) ≥ 0 a.e. on Γ3 (3.17)

u`0 ∈ V
`, ζ`0 ∈ K`, β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1, a.e. on Γ3. (3.18)

where K` is the set of admissible damage functions defined in (1.5).
Using the Riesz representation theorem, we define the linear mappings f =

(f1, f2) : [0, T ]→ V and q = (q1, q2) : [0, T ]→W as follows:

(f(t),v)V =
2∑
`=1

∫
Ω`

f `0(t) · v` dx+
2∑
`=1

∫
Γ`

2

f `2(t) · v` da ∀v ∈ V , (3.19)

(q(t), ζ)W =
2∑
`=1

∫
Ω`

q`0(t)ζ` dx−
2∑
`=1

∫
Γ`

b

q`2(t)ζ` da ∀ζ ∈W. (3.20)

Next, we define the mappings a : E1 × E1 → R, jad : L2(Γ3) × V × V → R,
jνc : V × V → R and jfr : V × V → R, respectively, by

a(ζ, ξ) =

2∑
`=1

κ`
∫

Ω`

∇ζ` · ∇ξ`dx, (3.21)

jad(β,u,v) =
∫

Γ3

(
− γνβ2Rν([uν ])[vν ] + γτβ

2Rτ ([uτ ]) · [vτ ]
)
da, (3.22)

jνc(u,v) =
∫

Γ3

pν([uν ])[vν ] da, (3.23)

jfr(u,v) =
∫

Γ3

µpν([uν ])
∥∥[vτ ]

∥∥ da (3.24)

for all u,v ∈ V and t ∈ [0, T ]. We note that conditions (3.14) imply

f ∈ C(0, T ;V ), q ∈ C(0, T ;W ). (3.25)

By a standard procedure based on Green’s formula, we derive the following varia-
tional formulation of the mechanical (2.1)–(2.15).

Problem PV. Find a displacement field u = (u1,u2) : [0, T ] → V , a stress field
σ = (σ1,σ2) : [0, T ] → H, an electric potential ϕ = (ϕ1, ϕ2) : [0, T ] → W , a
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damage ζ = (ζ1, ζ2) : [0, T ] → E1, a bonding β : [0, T ] → L∞(Γ3) and an electric
displacement field D = (D1,D2) : [0, T ]→W such that

σ` = A`ε(u̇`) + G`ε(u`) + (E`)∗∇ϕ` +
∫ t

0

F`
(
t− s, ε(u`(s)), ζ`(s)

)
ds,

in Ω` × (0, T ),
(3.26)

D` = E`ε(u`)− B`∇ϕ` in Ω` × (0, T ), (3.27)
2∑
`=1

(σ`, ε(v`)− ε(u̇`(t)))H` + jad(β(t),u(t),v − u̇(t))

+ jνc(u(t),v − u̇(t)) + jfr(u(t),v)− jfr(u(t), u̇(t))

≥ (f(t),v − u̇(t))V ∀v ∈ V , a.e. t ∈ (0, T ),

(3.28)

ζ(t) ∈ K,
2∑
`=1

(ζ̇(t), ξ − ζ(t))L2(Ω`) + a(ζ(t), ξ − ζ(t))

≥
2∑
`=1

(
φ`
(
σ`(t)−A`ε(u̇`(t)), ε(u`(t)), ζ`(t)

)
, ξ` − ζ`(t)

)
L2(Ω`)

,

∀ξ ∈ K, a.e. t ∈ (0, T ),

(3.29)

2∑
`=1

(B`∇ϕ`(t),∇φ`)H` −
2∑
`=1

(E`ε(u`(t)),∇φ`)H` = (q(t), φ)W ,

∀φ ∈W, a.e. t ∈ (0, T ),

(3.30)

β̇(t) = −
(
β(t)

(
γν(Rν([uν(t)]))2 + γτ |Rτ ([uτ (t)])|2

)
− εa

)
+

a.e. (0, T ), (3.31)

u(0) = u0, ζ(0) = ζ0, β(0) = β0. (3.32)

We notice that the variational Problem PV is formulated in terms of a displacement
field, a stress field, an electrical potential, a damage, a bonding and an electric
displacement field. The existence of the unique solution of Problem PV is stated
and proved in the next section.

Remark 3.2. We note that, in Problem P and in Problem PV, we do not need
to impose explicitly the restriction 0 ≤ β ≤ 1. Indeed, equation (3.31) guarantees
that β(x, t) ≤ β0(x) and, therefore, assumption (3.18) shows that β(x, t) ≤ 1 for
t ≥ 0, a.e. x ∈ Γ3. On the other hand, if β(x, t0) = 0 at time t0, then it follows
from (3.31) that β̇(x, t) = 0 for all t ≥ t0 and therefore, β(x, t) = 0 for all t ≥ t0,
a.e. x ∈ Γ3. We conclude that 0 ≤ β(x, t) ≤ 1 for all t ∈ [0, T ], a.e. x ∈ Γ3.

Below in this section β, β1, β2 denote elements of L2(Γ3) such that 0 ≤ β, β1,
β2 ≤ 1 a.e. x ∈ Γ3, u1, u2 and v represent elements of V and C > 0 represents
generic constants which may depend on Ω`, Γ3, pν , γν , γτ and L. First, we note
that the functional jad and jνc are linear with respect to the last argument and,
therefore,

jad(β,u,−v) = −jad(β,u,v),

jνc(u,−v) = −jνc(u,v).
(3.33)
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Next, using (3.23) and (3.13)(b) implies

jνc(u1,v2)− jνc(u1,v1) + jνc(u2,v1)− jνc(u2,v2) ≤ 0, ∀u1,u2,v1,v2 ∈ V ,
(3.34)

and use (3.24), (3.13)(a), keeping in mind (3.3), we obtain

jfr(u1,v2)− jfr(u1,v1) + jfr(u2,v1)− jfr(u2,v2)

≤ c20Lν‖µ‖L∞(Γ3)‖u1 − u2‖V ‖v1 − v2‖V ∀u1,u2,v1,v2 ∈ V .
(3.35)

Inequalities (3.33)–(3.35) will be used in various places in the rest of this article.
Our main existence and uniqueness result that we state now and prove in the next
section is the following.

Theorem 3.3. Assume that (3.7)–(3.18) hold. Then there exists a unique solution
of Problem PV. Moreover, the solution satisfies

u ∈ C1(0, T ;V ), (3.36)

σ ∈ C(0, T ;H1), (3.37)

ϕ ∈ C(0, T ;W ), (3.38)

ζ ∈ H1(0, T ;E0) ∩ L2(0, T ;E1), (3.39)

β ∈W 1,∞(0, T ;L2(Γ3)) ∩ Z, (3.40)

D ∈ C(0, T ;W). (3.41)

The functions u, σ, ϕ, ζ, β and D which satisfy (3.26)-(3.32) are called a weak
solution of the contact Problem P. We conclude that, under the assumptions (3.7)–
(3.18), the mechanical problem (2.1)–(2.15) has a unique weak solution satisfying
(3.36)–(3.41).

4. Proof of Theorem 3.3

The proof of Theorem 3.3 is carried out in several steps and is based on the
following abstract result for evolutionary variational inequalities.

Let X be a real Hilbert space with the inner product (·, ·)X and the associated
norm ‖ · ‖X , and consider the problem of finding u : [0, T ]→ X such that

(Au̇(t),v − u̇(t))X + (Bu(t),v − u̇(t))X + j(u(t),v)− j(u(t), u̇(t))

≥ (f(t),v − u̇(t))X ∀v ∈ X, t ∈ [0, T ],

u(0) = u0.

(4.1)

To study problem (4.1) we need the following assumptions: The operator A : X →
X is Lipschitz continuous and strongly monotone, i.e.,

(a) There exists a positive constant LA such that

‖Au1 −Au2‖X ≤ LA‖u1 − u2‖X ∀u1,u2 ∈ X,
(b) There exists a positive constant mA such that

(Au1 −Au2, u1 − u2)X ≥ mA‖u1 − u2‖X ∀u1,u2 ∈ X.

(4.2)

The nonlinear operator B : X → X is Lipschitz continuous, i.e., there exists a
positive constant LB such that

‖Bu1 −Bu2‖X ≤ LB‖u1 − u2‖X ∀u1,u2 ∈ X. (4.3)
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The functional j : X ×X → R satisfies:

(a) j(u, ·) is convex and I.S.C. on X for all u ∈ X.
(b) There exists mj > 0 such that

j(u1,v2)− j(u1,v1) + j(u2,v1)− j(u2,v2)

≤ mj‖u1 − u2‖X‖v1 − v2‖X ∀u1,u2,v1,v2 ∈ X.

Finally, we assume that

f ∈ C(0, T ;X), (4.5)

u0 ∈ X. (4.6)

The following existence, uniqueness result and regularity was proved in [8] and may
be found in [9, p.230–234].

Theorem 4.1. Let (4.7)–(4.6) hold. Then:
(1) There exists a unique solution u ∈ C1(0, T ;X) of Problem (4.1).
(2) If, moreover, u1 and u2 are two solutions of (4.1) corresponding to the data

f1, f2 ∈ C(0, T ;X), then there exists c > 0 such that

‖u̇1(t)− u̇2(t)‖X ≤ c
(
‖f1(t)− f2(t)‖X + ‖u1(t)− u2(t)‖X

)
, (4.7)

for all t ∈ [0, T ].

We turn now to the proof of Theorem 3.3 which will be carried out in several
steps and is based on arguments of nonlinear equations with monotone operators,
a classical existence and uniqueness result on parabolic inequalities and fixed-point
arguments. To this end, we assume in what follows that (3.7)–(3.18) hold, and we
consider that C is a generic positive constant which depends on Ω`, Γ`1, Γ`1, Γ3,
pν , pτ , A`, B`, G`, F`, E`, γν , γτ , φ`, κ`, and T . but does not depend on t nor
of the rest of input data, and whose value may change from place to place. Let
a η = (η1, η2) ∈ C(0, T ;V ) be given. In the first step we consider the following
variational problem.

Problem PVu
η . Find a displacement field uη = (u1

η,u
2
η) : [0, T ]→ V such that

2∑
`=1

(A`ε(u̇`η), ε(v`)− ε(u̇`η(t)))H` +
2∑
`=1

(G`ε(u`η), ε(v`)− ε(u̇`η(t)))H`

+ jνc(uη(t),v − u̇η(t)) + jfr(uη(t),v)− jfr(uη(t), u̇η(t)) + (η(t),v − u̇η(t))V

≥ (f(t),v − u̇η(t))V ∀v ∈ V , t ∈ (0, T ),
(4.8)

uη(0) = u0. (4.9)

We have the following result for the problem PVu
η .

Lemma 4.2. (1) There exists a unique solution uη ∈ C1(0, T ;V ) to the prob-
lem (4.8) and (4.9).

(2) If u1 and u2 are two solutions of (4.8) and (4.9) corresponding to the data
η1, η2 ∈ C(0, T ;V ), then there exists c > 0 such that

‖u̇1(t)− u̇2(t)‖V ≤ c
(
‖η1(t)− η2(t)‖V + ‖u1(t)− u2(t)‖V

)
∀t ∈ [0, T ]. (4.10)
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Proof. We apply Theorem 4.1 where X = V , with the inner product (·, ·)V and
the associated norm ‖ · ‖V . We use the Riesz representation theorem to define the
operators A : V → V , and B : V → V by

(Au,v)V =
2∑
`=1

(A`ε(u`), ε(v`))H` , (4.11)

(Bu,v)V =
2∑
`=1

(G`ε(u`), ε(v`))H` , (4.12)

for all u,v ∈ V , and define the functions fη : [0, T ]→ V , j : V × V → R by

fη(t) = f(t)− η(t) ∀t ∈ [0, T ], (4.13)

j(u,v) = jνc(u,v) + jfr(u,v), ∀u,v ∈ V . (4.14)

Assumptions (3.7) and (3.8) imply that the operators A and B satisfy conditions
(4.2) and (4.3), respectively.

It follows from (3.13), (3.17), (3.23) and (3.24) that the functional j, (4.14),
satisfies condition (4.4)(a). We use again (3.34), (3.35) and (4.14) to find

j(u1,v2)− j(u1,v1) + j(u2,v1)− j(u2,v2)

≤ c20Lν‖µ‖L∞(Γ3)‖u1 − u2‖V ‖v1 − v2‖V ∀u1,u2,v1,v2 ∈ V ,
(4.15)

which shows that the functional j satisfies condition (4.4)(b) on X = V . Moreover,
using (3.25) and, keeping in mind that η ∈ C(0, T ;V ), we deduce from (4.13) that
fη ∈ C(0, T ;V ), i.e., fη satisfies (4.5). Finally, we note that (3.18) shows that
condition (4.6) is satisfied. Using now (4.11)–(4.14) we find that Lemma 4.2 is a
direct consequence of Theorem 4.1. �

In the second step, we use the displacement field uη obtained in Lemma 4.2 and
we consider the following variational problem.

Problem PVϕ
η . Find the electric potential ϕη : [0, T ]→W such that

2∑
`=1

(B`∇ϕ`η(t),∇φ`)H` −
2∑
`=1

(E`ε(u`η(t)),∇φ`)H` = (q(t), φ)W (4.16)

for all φ ∈W , a.e. t ∈ (0, T ). We have the following result.

Lemma 4.3. Problem PVϕ
η has a unique solution ϕη which satisfies the regularity

(3.38).

Proof. We define a bilinear form: b(·, ·) : W ×W → R such that

b(ϕ, φ) =
2∑
`=1

(B`∇ϕ`,∇φ`)H` ∀ϕ, φ ∈W. (4.17)

We use (3.4), (3.5), (3.12) and (4.17) to show that the bilinear form b(·, ·) is con-
tinuous, symmetric and coercive on W , moreover using (3.20) and the Riesz repre-
sentation Theorem we may define an element qη : [0, T ]→W such that

(qη(t), φ)W = (q(t), φ)W +
2∑
`=1

(E`ε(u`η(t)),∇φ`)H` ∀φ ∈W, t ∈ (0, T ).
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We apply the Lax-Milgram Theorem to deduce that there exists a unique element
ϕη(t) ∈W such that

b(ϕη(t), φ) = (qη(t), φ)W ∀φ ∈W. (4.18)

We conclude that ϕη is a solution of Problem PVϕ
η . Let t1, t2 ∈ [0, T ], it follows

from (4.16) that

‖ϕη(t1)− ϕη(t2)‖W ≤ C
(
‖uη(t1)− uη(t2)‖V + ‖q(t1)− q(t2)‖W

)
. (4.19)

We also note that assumptions (3.25) and uη ∈ C1(0, T ;V ), inequality (4.19) im-
plies that ϕη ∈ C(0, T ;W ). �

In the third step, we use the displacement field uη obtained in Lemma4.2 and
we consider the following initial-value problem.

Problem PVβ
η . Find the adhesion βη : [0, T ]→ L2(Γ3) such that

β̇η(t) = −
(
βη(t)

(
γν(Rν([uην(t)]))2 + γτ |Rτ ([uητ (t)])|2

)
− εa

)
+
,

a.e. t ∈ (0, T ),
(4.20)

βη(0) = β0. (4.21)

We have the following result.

Lemma 4.4. There exists a unique solution βη ∈W 1,∞(0, T ;L2(Γ3))∩Z to Prob-
lem PVβ

η .

Proof. For simplicity we suppress the dependence of various functions on Γ3, and
note that the equalities and inequalities below are valid a.e. on Γ3. Consider the
mapping Fη : [0, T ]× L2(Γ3)→ L2(Γ3) defined by

Fη(t, β) = −
(
β
[
γν(Rν([uην(t)]))2 + γτ |Rτ ([uητ (t)])|2

]
− εa

)
+
,

for all t ∈ [0, T ] and β ∈ L2(Γ3). It follows from the properties of the truncation
operator Rν and Rτ that Fη is Lipschitz continuous with respect to the second
variable, uniformly in time. Moreover, for all β ∈ L2(Γ3), the mapping t→ Fη(t, β)
belongs to L∞(0, T ;L2(Γ3)). Thus using the Cauchy-Lipschitz theorem given in
Theorem 3.1 we deduce that there exists a unique function βη ∈W 1,∞(0, T ;L2(Γ3))
solution to Problem PVβ

η . Also, the arguments used in Remark 3.2 show that
0 ≤ βη(t) ≤ 1 for all t ∈ [0, T ], a.e. on Γ3. Therefore, from the definition of the set
Z, we find that βη ∈ Z, which concludes the proof of the lemma. �

In the forth step we let θ ∈ C(0, T ;E0) be given and consider the following
variational problem for the damage.

Problem PVζ
θ. Find a damage ζθ = (ζ1

θ , ζ
2
θ ) : [0, T ]→ E such that ζθ(t) ∈ K and

2∑
`=1

(ζ̇`θ(t), ξ
` − ζ`θ(t))L2(Ω`) + a(ζθ(t), ξ − ζθ(t))

≥
2∑
`=1

(
θ`(t), ξ` − ζ`θ(t)

)
L2(Ω`)

, ∀ξ ∈ K, a.e. t ∈ (0, T ),

(4.22)

where K = K1 × K2. The following abstract result for parabolic variational in-
equalities (see, e.g., [23, p.47]).
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Theorem 4.5. Let X ⊂ Y = Y ′ ⊂ X ′ be a Gelfand triple. Let F be a nonempty,
closed, and convex set of X. Assume that a(·, ·) : X ×X → R is a continuous and
symmetric bilinear form such that for some constants α > 0 and c0,

a(v, v) + c0‖v‖2Y ≥ α‖v‖2X ∀v ∈ X.

Then, for every u0 ∈ F and f ∈ L2(0, T ;Y ), there exists a unique function u ∈
H1(0, T ;Y ) ∩ L2(0, T ;X) such that u(0) = u0, u(t) ∈ F for all t ∈ [0, T ], and

(u̇(t), v − u(t))X′×X + a(u(t), v − u(t)) ≥ (f(t), v − u(t))Y ∀v ∈ F a.e. t ∈ (0, T ).

We prove next the unique solvability of Problem PVζ
θ.

Lemma 4.6. There exists a unique solution ζθ of Problem PVζ
θ and it satisfies

ζθ ∈ H1(0, T ;E0) ∩ L2(0, T ;E1).

Proof. The inclusion mapping of (E1, ‖ · ‖E1) into (E0, ‖ · ‖E0) is continuous and its
range is dense. We denote by E′1 the dual space of E1 and, identifying the dual of
E0 with itself, we can write the Gelfand triple

E1 ⊂ E0 = E′0 ⊂ E′1.

We use the notation (·, ·)E′1×E1 to represent the duality pairing between E′ and E1.
We have

(ζ, ξ)E′1×E1 = (ζ, ξ)E0 ∀ζ ∈ E0, ξ ∈ E1,

and we note that K is a closed convex set in E1. Then, using (3.16), (3.21) and the
fact that ζ0 ∈ K in (3.18), it is easy to see that Lemma 4.6 is a straight consequence
of Theorem 4.5. �

Finally as a consequence of these results and using the properties of the operator
E`, the operator F`, the functional jad and the functional φ`, for t ∈ [0, T ], we
consider the element

Λ(η, θ)(t) =
(
Λ1(η, θ)(t),Λ2(η, θ)(t)

)
∈ V × E0, (4.23)

defined by the equations

(Λ1(η, θ)(t),v)V

=
2∑
`=1

(∫ t

0

F`
(
t− s, ε(u`η(s)), ζ`θ(s)

)
ds, ε(v`)

)
H`

+
2∑
`=1

(
(E`)∗∇ϕ`η, ε(v`)

)
H` + jad(βη(t),uη(t),v), ∀v ∈ V ,

(4.24)

Λ2(η, θ)(t) =
(
φ1
(
σ1
ηθ(t), ε(u

1
η(t)), ζ1

θ (t)
)
, φ2

(
σ2
ηθ(t), ε(u

2
η(t)), ζ2

θ (t)
))
. (4.25)

Here, for every (η, θ) ∈ C(0, T ;V × E0), uη, ϕη, βη and ζθ represent the displace-
ment field, the potential electric field and bonding field obtained in Lemmas 4.2,
4.3, 4.4 and 4.6 respectively, and σ`ηθ denote by

σ`ηθ(t) = G`ε(u`η(t)) + (E`)∗∇ϕ`η +
∫ t

0

F`
(
t− s, ε(u`η(s)), ζ`θ(s)

)
ds, (4.26)

in Ω` × (0, T ). We have the following result.
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Lemma 4.7. There exists a unique (η∗, θ∗) ∈ C(0, T ;V ×E0) such that Λ(η∗, θ∗) =
(η∗, θ∗).

Proof. Let (η1, θ1), (η2, θ2) ∈ C(0, T ;V ×E0) and denote by ui, ϕi, βi, ζi and σi the
functions obtained in Lemmas 4.2, 4.3, 4.4, 4.6 and the relation (4.26) respectively,
for (η, θ) = (ηi, θi), i = 1, 2. Let t ∈ [0, T ]. We use (3.9), (3.10), (3.11), (3.22) and
the definition of Rν , Rτ , we have

‖Λ1(η1, θ1)(t)− Λ1(η2, θ1)(t)‖2V

≤
2∑
`=1

‖(E`)∗∇ϕ`1(t)− (E`)∗∇ϕ`2(t)‖2H`

+
2∑
`=1

∫ t

0

∥∥F`(t− s, ε(u`1(s)), ζ`1(s)
)
−F`

(
t− s, ε(u`2(s)), ζ`2(s)

)∥∥2

H` ds

+ C‖β2
1(t)Rν([u1ν(t)])− β2

2(t)Rν([u2ν(t)])‖2L2(Γ3)

+ C‖β2
1(t)Rτ ([u1τ (t)])− β2

2(t)Rτ ([u2τ (t)])‖2L2(Γ3).

Therefore,

‖Λ1(η1, θ1)(t)− Λ1(η2, θ1)(t)‖2V

≤ C
(∫ t

0

‖u1(s)− u2(s))‖2V ds+
∫ t

0

‖ζ1(s)− ζ2(s))‖2E0
ds

+ ‖ϕ1(t)− ϕ2(t)‖2W + ‖β1(t)− β2(t)‖2L2(Γ3)

)
.

(4.27)

Recall that u`ην and u`ητ denote the normal and the tangential component of the
function u`η respectively. By similar arguments, from (4.25), (4.26) and (3.10) it
follows that

‖Λ2(η1, θ1)(t)− Λ2(η2, θ1)(t)‖2E0

≤ C
(
‖u1(t)− u2(t)‖2V +

∫ t

0

‖u1(s)− u2(s))‖2V ds

+ ‖ζ1(t)− ζ2(t))‖2E0
+
∫ t

0

‖ζ1(s)− ζ2(s))‖2E0
ds+ ‖ϕ1(t)− ϕ2(t)‖2W

)
.

(4.28)

It follows now from (4.27) and (4.28) that

‖Λ(η1, θ1)(t)− Λ(η2, θ1)(t)‖2V ×E0

≤ C
(
‖u1(t)− u2(t)‖2V +

∫ t

0

‖u1(s)− u2(s))‖2V ds+ ‖ζ1(t)− ζ2(t))‖2E0

+
∫ t

0

‖ζ1(s)− ζ2(s))‖2E0
ds+ ‖ϕ1(t)− ϕ2(t)‖2W + ‖β1(t)− β2(t)‖2L2(Γ3)

)
.

(4.29)
Also, since

u`i(t) =
∫ t

0

u̇`i(s)ds+ u`0(t), t ∈ [0, T ], ` = 1, 2,

we have

‖u1(t)− u2(t)‖V ≤
∫ t

0

‖u̇1(s)− u̇2(s))‖V ds
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and using this inequality in (4.10) yields

‖u1(t)−u2(t)‖V ≤ C
(∫ t

0

‖η1(s)−η2(s))‖V ds+
∫ t

0

‖u1(s)−u2(s))‖V ds
)
. (4.30)

Next, we apply Gronwall’s inequality to deduce

‖u1(t)− u2(t))‖V ≤ C
∫ t

0

‖η1(s)− η2(s)‖V ds ∀t ∈ [0, T ]. (4.31)

On the other hand, from the Cauchy problem (4.20)–(4.21) we can write

βi(t) = β0 −
∫ t

0

(
βi(s)

(
γν(Rν([uiν(s)]))2 + γτ |Rτ ([uiτ (s)])|2

)
− εa

)
+
ds

and then∥∥β1(t)− β2(t)
∥∥
L2(Γ3)

≤ C
∫ t

0

∥∥β1(s)Rν([u1ν(s)])2 − β2(s)Rν([u2ν(s)])2
∥∥
L2(Γ3)

ds

+ C

∫ t

0

∥∥β1(s)|Rτ ([u1τ (s)])|2 − β2(s)|Rτ ([u2τ (s)])|2
∥∥
L2(Γ3)

ds.

Using the definition of Rν and Rτ and writing β1 = β1 − β2 + β2, we obtain∥∥β1(t)− β2(t)
∥∥
L2(Γ3)

≤ C
(∫ t

0

‖β1(s)− β2(s)‖L2(Γ3)ds+
∫ t

0

∥∥u1(s)− u2(s)
∥∥
L2(Γ3)dds

)
.

(4.32)

Next, we apply Gronwall’s inequality to deduce

‖β1(t)− β2(t)‖L2(Γ3) ≤ C
∫ t

0

‖u1(s)− u2(s)‖L2(Γ3)dds.

and from the relation (3.3) we obtain

‖β1(t)− β2(t)‖2L2(Γ3) ≤ C
∫ t

0

‖u1(s)− u2(s)‖2V ds. (4.33)

We use now (4.16), (3.4), (3.11) and (3.12) to find

‖ϕ1(t)− ϕ2(t)‖2W ≤ C‖u1(t)− u2(t)‖2V . (4.34)

From (4.22) we deduce that

(ζ̇1 − ζ̇2, ζ1 − ζ2)E0 + a(ζ1 − ζ2, ζ1 − ζ2) ≤
(
θ1 − θ2, ζ1 − ζ2

)
E0
, a.e. t ∈ (0, T ).

Integrating the previous inequality with respect to time, using the initial conditions
ζ1(0) = ζ2(0) = ζ0 and inequality a(ζ1 − ζ2, ζ1 − ζ2) ≥ 0, we find

1
2
‖ζ1(t)− ζ2(t)‖2E0

≤
∫ t

0

(
θ1(s)− θ2(s), ζ1(s)− ζ2(s)

)
E0
ds,

which implies that

‖ζ1(t)− ζ2(t)‖2E0
≤
∫ t

0

‖θ1(s)− θ2(s)‖2E0
ds+

∫ t

0

‖ζ1(s)− ζ2(s)‖2E0
ds.

This inequality combined with Gronwall’s inequality leads to

‖ζ1(t)− ζ2(t)‖2E0
≤ C

∫ t

0

‖θ1(s)− θ2(s)‖2E0
ds ∀t ∈ [0, T ]. (4.35)



18 T. HADJ AMMAR, B. BENABDERRAHMANE, S. DRABLA EJDE-2014/222

We substitute (4.31), (4.33), (4.34) and (4.35) in (4.29) to obtain

‖Λ(η1, θ1)(t)− Λ(η2, θ1)(t)‖2V ×E0
≤ C

∫ t

0

‖(η1, θ1)(s)− (η2, θ1)(s)‖2V ×E0
ds.

Reiterating this inequality m times we obtain

‖Λm(η1, θ1)− Λm(η2, θ1)‖2C(0,T ;V ×E0) ≤
CmTm

m!
‖(η1, θ1)− (η2, θ1)‖2C(0,T ;V ×E0).

Thus, for m sufficiently large, the operator Λm(·, ·) is a contraction on the Banach
space C(0, T ;V × E0), and so Λ(·, ·) has a unique fixed point. �

Now, we have all the ingredients to prove Theorem 3.3.

Proof of Existence. Let (η∗, θ∗) ∈ C(0, T ;V × E0) be the fixed point of Λ(·, ·) and
denote

u∗ = uη∗ , ϕ∗ = ϕη∗ , ζ∗ = ζθ∗ , β∗ = βη∗ , (4.36)

σ`∗ = A`ε(u̇`∗) + G`ε(u`∗) + (E`)∗∇ϕ`∗ +
∫ t

0

F`
(
t− s, ε(u`∗(s)), ζ`∗(s)

)
ds, (4.37)

D`
∗ = E`ε(u`∗)− B`∇ϕ`∗. (4.38)

We prove that the {u∗,σ∗, ϕ∗, ζ∗, β∗,D∗} satisfies (3.26)–(3.32) and the regularities
(3.36)–(3.41). Indeed, we write (4.8) for η = η∗ and use (4.36) to find

2∑
`=1

(A`ε(u̇`∗), ε(v`)− ε(u̇`∗(t)))H` +
2∑
`=1

(G`ε(u`∗), ε(v`)− ε(u̇`∗(t)))H`

+ jνc(u∗(t),v − u̇∗(t)) + jfr(u∗(t),v)− jfr(u∗(t), u̇∗(t)) + (η∗(t),v − u̇∗(t)))V

≥ (f(t),v − u̇∗(t))V ∀v ∈ V , a.e. t ∈ [0, T ].
(4.39)

We use equalities Λ1(η∗, θ∗) = η∗ and Λ2(η∗, θ∗) = θ∗ it follows from (4.24) and
(4.25) that

(η∗(t),v)V =
2∑
`=1

(
(E`)∗∇ϕ`∗(t), ε(v`)

)
H` + jad(β∗(t),u∗(t),v)

+
2∑
`=1

(∫ t

0

F`
(
t− s, ε(u`∗(s)), ζ`∗(s)

)
ds, ε(v`)

)
H`
,

∀v ∈ V , a.e. t ∈ (0, T ),

(4.40)

θ`∗(t) = φ`
(
σ`∗(t)−A`ε(u̇`∗(t)), ε(u`∗(t)), ζ`∗(t)

)
, a.e. t ∈ (0, T ), ` = 1, 2. (4.41)
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We now substitute (4.40) in (4.39) to obtain

2∑
`=1

(A`ε(u̇`∗)(t), ε(v`)− ε(u̇`∗(t)))H` +
2∑
`=1

(G`ε(u`∗)(t), ε(v`)− ε(u̇`∗(t)))H`

+
2∑
`=1

(∫ t

0

F`
(
t− s, ε(u`∗(s)), ζ`∗(s)

)
ds, ε(v`)− ε(u̇`∗(t))

)
H`

+ jad(β∗(t),u∗(t),v − u̇∗(t)) + jνc(u∗(t),v − u̇∗(t)) + jfr(u∗(t),v)

− jfr(u∗(t), u̇∗(t)) +
2∑
`=1

(
(E`)∗∇ϕ`∗(t), ε(v`)− ε(u̇`∗(t))

)
H`

≥ (f(t),v − u̇∗(t))V ∀v ∈ V a.e. t ∈ [0, T ],
(4.42)

and we substitute (4.41) in (4.22) to have ζ∗(t) ∈ K and

2∑
`=1

(ζ̇`∗(t), ξ
` − ζ`∗(t))L2(Ω`) + a(ζ∗(t), ξ − ζ∗(t))

≥
2∑
`=1

(
φ`
(
σ`∗(t)−A`ε(u̇`∗(t)), ε(u`∗(t)), ζ`∗(t)

)
, ξ` − ζ`∗(t)

)
L2(Ω`)

,

(4.43)

for all ξ ∈ K, a.e. t ∈ (0, T ). We write now (4.16) for η = η∗ and use (4.36) to see
that

2∑
`=1

(B`∇ϕ`∗(t),∇φ`)H` −
2∑
`=1

(E`ε(u`∗(t)),∇φ`)H` = (q(t), φ)W (4.44)

for all φ ∈W , t ∈ [0, T ]. Additionally, we use uη∗ in (4.20) and (4.36) to find

β̇∗(t) = −
(
β∗(t)

(
γν(Rν([u∗ν(t)]))2 + γτ |Rτ ([u∗τ (t)])|2

)
− εa

)
+
, (4.45)

a.e. t ∈ [0, T ]. Relations (4.36), (4.37), (4.38), (4.42), (4.43), (4.44) and (4.45)
allow us to conclude now that {u∗,σ∗, ϕ∗, ζ∗, β∗,D∗} satisfies (3.26)–(3.31). Next,
(3.32) and the regularity (3.36), (3.38)–(3.40) follow from Lemmas 4.2, 4.3, 4.4 and
4.6. Since u∗, ϕ∗ and ζ∗ satisfies (3.36), (3.38) and (3.39), respectively, it follows
from (4.37) that

σ∗ ∈ C(0, T ;H). (4.46)

For ` = 1, 2, we choose v = u̇ ± φ in (4.42), with φ = (φ1, φ2), φ` ∈ D(Ω`)d and
φ3−` = 0, to obtain

Divσ`∗(t) = −f `0(t) ∀t ∈ [0, T ], ` = 1, 2, (4.47)

where D(Ω`) is the space of infinitely differentiable real functions with a compact
support in Ω`. The regularity (3.37) follows from (3.14), (4.46) and (4.47). Let
now t1, t2 ∈ [0, T ], by (3.11), (3.12), (3.4) and (4.38), we deduce that

‖D∗(t1)−D∗(t2)‖H ≤ C (‖ϕ∗(t1)− ϕ∗(t2)‖W + ‖u∗(t1)− u∗(t2)‖V ) .

The regularity of u∗ and ϕ∗ given by (3.36) and (3.38) implies

D∗ ∈ C(0, T ;H). (4.48)
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For ` = 1, 2, we choose φ = (φ1, φ2) with φ` ∈ D(Ω`)d and φ3−` = 0 in (4.44) and
using (3.20) we find

divD`
∗(t) = q`0(t) ∀t ∈ [0, T ], ` = 1, 2. (4.49)

Property (3.41) follows from (3.14), (4.48) and (4.49). �

Finally we conclude that the weak solution {u∗,σ∗, ϕ∗, ζ∗, β∗,D∗} of the piezo-
electric contact Problem PV has the regularity (3.36)–(3.41), which concludes the
existence part of Theorem 3.3.

Proof of Uniqueness. The uniqueness of the solution is a consequence of the unique-
ness of the fixed point of the operator Λ(·, ·) defined by (4.24)-(4.25) and the unique
solvability of the Problems PVu

η , PVϕ
η , PVβ

η , and PVζ
η. �
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