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A REMARK ON THE RADIAL MINIMIZER OF THE
GINZBURG-LANDAU FUNCTIONAL

BARBARA BRANDOLINI, FRANCESCO CHIACCHIO

Abstract. Let Ω ⊂ R2 be a bounded domain with the same area as the unit

disk B1 and let

Eε(u,Ω) =
1

2

Z
Ω
|∇u|2 dx+

1

4ε2

Z
Ω

(|u|2 − 1)2 dx

be the Ginzburg-Landau functional. Denote by ũε the radial solution to the
Euler equation associated to the problem min{Eε(u,B1) : u

˛̨
∂B1

= x} and by

K =
n
v = (v1, v2) ∈ H1(Ω; R2) :

Z
Ω
v1 dx =

Z
Ω
v2 dx = 0,Z

Ω
|v|2 dx ≥

Z
B1

|ũε|2 dx
o
.

In this note we prove that

min
v∈K

Eε(v,Ω) ≤ Eε(ũε, B1).

1. Introduction

The Ginzburg-Landau energy has as order parameter a vectorial field
u ∈ H1(Ω; R2) and it is defined as

Eε(u,Ω) =
1
2

∫
Ω

|∇u|2 dx+
1

4ε2

∫
Ω

(
|u|2 − 1

)2
dx,

where Ω ⊂ R2 is a bounded domain and ε > 0. This kind of functionals has
been originally introduced as a phenomenological phase-field type free-energy of
a superconductor, near the superconducting transition, in absence of an external
magnetic field. Moreover these functionals have been used in superfluids such as
Helium II. In this context u represents the wave function of the superflluid part
of liquid and the parameter ε, which has the dimension of a length, depends on
the material and its temperature (see [10, 9, 7]). The Ginzburg-Landau functionals
have deserved a great attention by the mathematical community too. Starting
from the classical monograph [5] (see also [4]) by Bethuel, Brezis and Hélein, many
mathematicians have been interested in studying minimization problems for the
Ginzburg-Landau energy with several constraints, also because, besides the physical
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motivation, these problems appear as the simplest nontrivial examples of vector field
minimization problems.

In [5] the authors consider Dirichlet boundary conditions g ∈ C1(∂Ω; S1) (with
Ω smooth) and study the asymptotic behavior, as ε → 0, of minimizers uε, which
satisfy the problem

−∆uε =
1
ε2
uε(1− |uε|2) in Ω

uε = g on ∂Ω.
(1.1)

It turns out that the value d = deg(g, ∂Ω) (i.e., the Brouwer degree or winding
number of g considered as a map from ∂Ω into S1) plays a crucial role in the
asymptotic analysis of uε.

In the case Ω = B1 (the unit ball in R2 centered at the origin), g(x) = x, it is
natural to look for radial solutions to (1.1). Indeed, in [12, 5, 15] the authors prove,
among other things, that (1.1) has a unique radial solution, that is a solution of
the form

ũε(x) = f̃ε(|x|) x
|x|

(1.2)

with f̃ε ≥ 0. Moreover f̃ ′ε > 0; thus, summarizing, f̃ε satisfies

−f̃ ′′ε −
f̃ ′ε
r

+
f̃ε

r2
=

1
ε2
f̃ε(1− f̃2

ε ) in [0, 1]

f̃ε(0) = 0, f̃ε(1) = 1, f̃ε ≥ 0, f̃ ′ε > 0.
(1.3)

It is conjectured that the radial solution (1.2) is the unique minimizer of Eε on B1.
In [17] (see also [16]) the author gives a partial answer to such a conjecture, proving
that ũε is stable, in the sense that the quadratic form associated to Eε(ũε, B1) is
positive definite.

Other types of boundary conditions, for instance prescribed degree boundary
conditions, have been considered in [3, 8].

In this article we let Ω vary among domains with fixed area and prove that the
map ũε in (1.2) provides an upper bound for the energy Eε on the class K we are
going to introduce.

Theorem 1.1. Let ε > 0 and Ω ⊂ R2 be a bounded domain such that |Ω| = |B1|.
Denoted by

K =
{
v = (v1, v2) ∈ H1(Ω; R2) :

∫
Ω

v1 dx =
∫

Ω

v2 dx = 0,∫
Ω

|v|2 dx ≥
∫

B1

|ũε|2 dx
}
,

it holds
min
v∈K

Eε(v,Ω) ≤ Eε(ũε, B1). (1.4)

2. Proof of Theorem 1.1

Define the following continuous extension of f̃ε,

fε(r) =

{
f̃ε(r) if 0 ≤ r ≤ 1
1 if r > 1
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and the correspondent vector field extending ũε to the whole R2

φε(x) =
(
φε,1(x), φε,2(x)

)
= fε(|x|) x

|x|
.

It is possible (see [19], see also [1]) to choose the origin in such a way that∫
Ω

φε,1 dx =
∫

Ω

φε,2 dx = 0. (2.1)

Note that φε ∈ K. Indeed, besides (2.1), it holds∫
Ω

|φε|2 dx =
∫

Ω∩B1

|ũε|2 dx+ |Ω \B1| ≥
∫

B1

|ũε|2 dx,

since |ũε| ≤ 1 in B1. A direct computation yields

Eε(φε,Ω) =
1
2

∫
Ω

(
f ′ε(|x|)2 +

fε(|x|)2

|x|2
)
dx+

1
4ε2

∫
Ω

(
fε(|x|)2 − 1

)2
dx

=
∫

Ω

Bε(|x|) dx,

where

Bε(r) =
1
2

(
f ′ε(r)2 +

fε(r)2

r2

)
+

1
4ε2

(
fε(r)2 − 1

)2
.

Using (1.3) it is straightforward to verify that

B′ε(r) = − 2
ε2
fε(r)f ′ε(r)

(
1− fε(r)2

)
− 1
r

(
f ′ε(r)− fε(r)

r

)2
, 0 < r < 1,

while, when r > 1, it holds Bε(r) = 1
2r2 . Thus Bε(r) is a decreasing function in

(0,+∞). By Hardy-Littlewood inequality (see for instance [13]) we finally obtain

Eε(φε,Ω) =
∫

Ω

Bε(|x|) dx ≤
∫

B1

Bε(|x|) dx = Eε(ũε, B1)

and hence (1.4).

Remark 2.1. The appearance of the function ũε (i.e., the candidate to be the
unique minimizer of Eε in B1 under the Dirichlet boundary condition g(x) = x) in
(1.4) as an upper bound of the energy in the class K is somehow unexpected. On
the other hand such a phenomenon becomes more transparent if one realizes the
analogy between the problem under consideration and the maximization problem
of the first nontrivial eigenvalue µ1(Ω) of the Neumann Laplacian among sets with
prescribed area. As well-known, if Ω is a smooth, bounded domain of R2, µ1(Ω)
can be variationally characterized as

µ1(Ω) =
{∫

Ω

|∇z|2 : z ∈ H1(Ω; R),
∫

Ω

|z|2 dx = 1,
∫

Ω

z dx = 0
}
.

If |Ω| = |B1| the celebrated Szegö-Weinberger inequality in the plane (see [19], see
also [18, 2, 1, 14, 11, 6]) states

µ1(Ω) ≤ µ1(B1). (2.2)

Moreover, µ1(B1) is achieved by the functions J1(j′1,1|x|) x1
|x| or J1(j′1,1|x|) x2

|x| , where
J1 is the Bessel function of the first kind and j′1,1 is the first zero of its derivative.
The role played by J1 in (2.2) is now played by the function f̃ε.
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427–440.

[16] E. H. Lieb, M. Loss; Symmetry of the Ginzburg Landau minimizer in a disc, Math. Res.

Lett. 1 (1994), 701–715.
[17] P. Mironescu; On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct.

Anal. 130 (1995), 334–344.
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