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A REMARK ON THE RADIAL MINIMIZER OF THE
GINZBURG-LANDAU FUNCTIONAL

BARBARA BRANDOLINI, FRANCESCO CHIACCHIO

ABSTRACT. Let Q C R2 be a bounded domain with the same area as the unit
disk B1 and let

1 1
Ee(u,Q) = 3 /Q |Vul? de + =] /Q(|u|2 —1)2dx

be the Ginzburg-Landau functional. Denote by u. the radial solution to the

Euler equation associated to the problem min{FE. (u, B1) : u|aB1 =z} and by

K:{v:(vl,vg)eHl(Q;RQ):/vld:v:/'ugdx:(),
Q Q

/|v|2dax2/ |115|2da:}.
Q B

In this note we prove that

11)12% EE(U, Q) < Es(ﬁ& Bl)-

1. INTRODUCTION

The Ginzburg-Landau energy has as order parameter a vectorial field
u € HY(Q;R?) and it is defined as

/ |Vu|? do —I— — [ (Ju)* - 1)2 dz,
Q

where Q2 C R? is a bounded domain and ¢ > 0. This kind of functionals has
been originally introduced as a phenomenological phase-field type free-energy of
a superconductor, near the superconducting transition, in absence of an external
magnetic field. Moreover these functionals have been used in superfluids such as
Helium II. In this context u represents the wave function of the superflluid part
of liquid and the parameter ¢, which has the dimension of a length, depends on
the material and its temperature (see [10,[9] [7]). The Ginzburg-Landau functionals
have deserved a great attention by the mathematical community too. Starting
from the classical monograph [5] (see also [4]) by Bethuel, Brezis and Hélein, many
mathematicians have been interested in studying minimization problems for the
Ginzburg-Landau energy with several constraints, also because, besides the physical

2000 Mathematics Subject Classification. 35Q56, 35J15.

Key words and phrases. Ginzburg-Landau functional, Szegé-Weinberger inequality.
(©2014 Texas State University - San Marcos.

Submitted September 15, 2014. Published October 21, 2014.

1



2 B. BRANDOLINI, F. CHIACCHIO EJDE-2014/224

motivation, these problems appear as the simplest nontrivial examples of vector field
minimization problems.

In [5] the authors consider Dirichlet boundary conditions g € C1(99Q;S!) (with
Q) smooth) and study the asymptotic behavior, as ¢ — 0, of minimizers w., which
satisfy the problem

1
—Au, = ;us(l — |ue|?) inQ (11)

ue =g on ON.

It turns out that the value d = deg(g,99) (i.e., the Brouwer degree or winding
number of g considered as a map from 9 into S!) plays a crucial role in the
asymptotic analysis of u,.

In the case = B (the unit ball in R? centered at the origin), g(z) = z, it is
natural to look for radial solutions to . Indeed, in [12} [5 [T5] the authors prove,
among other things, that has a unique radial solution, that is a solution of

the form
T

e (w) = folo)) (1.2)

|]

with fs > 0. Moreover f; > 0; thus, summarizing, fs satisfies

ry f! ~e 1z r3 .
- !_% %:?fs(l_faz) mn [0’1]

f(0)=0, f()=1, f >0, f >0

It is conjectured that the radial solution is the unique minimizer of £, on Bj.
In [I7] (see also [I6]) the author gives a partial answer to such a conjecture, proving
that . is stable, in the sense that the quadratic form associated to E.(u., Bi) is
positive definite.

Other types of boundary conditions, for instance prescribed degree boundary
conditions, have been considered in [3] [§].

In this article we let 2 vary among domains with fixed area and prove that the
map Ue in provides an upper bound for the energy E. on the class I we are
going to introduce.

(1.3)

Theorem 1.1. Let e > 0 and Q C R? be a bounded domain such that || = |By].
Denoted by

K:{v:(vl,vg)eHl(Q;RQ): vide = [ vodzr =0,
Q Q
/|v|2dx2/ a2 do },
Q B4

mi’rClEe(v,Q) < E.(t., By). (1.4)
ve

it holds

2. PROOF OF THEOREM [ ]
Define the following continuous extension of f.,

{0 s



EJDE-2014/224 MINIMIZER OF THE GINZBURG-LANDAU FUNCTIONAL 3

and the correspondent vector field extending @, to the whole R?
¢e($) = (¢e,1($)7¢a,2(x)) fa(|x|)| |

It is possible (see [19], see also [I]) to choose the origin in such a way that

/qﬁsldx—/QSEgdx—O (2.1)

Note that ¢. € K. Indeed, besides , it holds

/|¢5|2dx:/ |as|2dx+|Q\Bl|z/ fie|? de,
Q QﬂBl B;

since || <1 in B;. A direct computation yields

Eon®) = 5 [ (£ + HIE Y aor 5 [ (il - 1o
— [ Bllel)ds
Q
fe(r)?

1 1 2
B(r) = (#1007 + 55 ) + 5 (£ = 1),
Using (1.3)) it is straightforward to verify that

where

1 7)\2
BUr) =~ S 120 (1= 267) — ()~ D) o< <,
while, when r > 17 it holds B.(r) = 5i». Thus B.(r) is a decreasing function in

(0, +00). By Hardy-Littlewood inequality (see for instance [I3]) we finally obtain
B0 = [ Bulledo < [ Bu(laldo = Eufac, B)
Q B1

and hence (1.4).

Remark 2.1. The appearance of the function %, (i.e., the candidate to be the
unique minimizer of E. in B; under the Dirichlet boundary condition g(z) = z) in
(1.4) as an upper bound of the energy in the class K is somehow unexpected. On
the other hand such a phenomenon becomes more transparent if one realizes the
analogy between the problem under consideration and the maximization problem
of the first nontrivial eigenvalue 11 (€2) of the Neumann Laplacian among sets with
prescribed area. As well-known, if Q is a smooth, bounded domain of R?, 1 (£2)
can be variationally characterized as

() = {/ |Vz|?: 2 € HY(O;R), / |2 dx = 1, / zdz = 0}.
Q Q Q
If || = |By| the celebrated Szegd-Weinberger inequality in the plane (see [19], see
also [I8| 2] 1], 14} 1T}, 6]) states
p1(2) < p (Br). (2:2)
Moreover, p1(B1) is achieved by the functions Ji (jy 1 |2]) 2 iror i (J1.117)) i, Where

Jq is the Bessel function of the first kind and jj ; is the first zero of its derivative.
The role played by J; in (2.2) is now played by the function f-.
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