Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 226, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

NONUNIQUENESS AND FRACTIONAL INDEX CONVOLUTION COMPLEMENTARITY PROBLEMS

DAVID E. STEWART

Abstract

Uniqueness of solutions of fractional index convolution complementarity problems (CCPs) has been shown for index $1+\alpha$ with $-1<\alpha \leq 0$ under mild assumptions, but not for $0<\alpha<1$. Here a family of counterexamples is given showing that uniqueness generally fails for $0<\alpha<1$. These results show that uniqueness is expected to fail for convolution complementarity problems of the type that arise in connection with solutions of impact problems for Kelvin-Voigt viscoelastic rods.

1. Convolution complementarity problems

A convolution complementarity problem (CCP) is the task, given functions m : $[0, \infty) \rightarrow \mathbb{R}^{n \times n}$ and $q:[0, \infty) \rightarrow \mathbb{R}^{n}$, of finding a function $z:[0, \infty) \rightarrow \mathbb{R}^{n}$ where

$$
\begin{equation*}
K \ni z(t) \perp \int_{0}^{t} m(t-\tau) z(\tau) d \tau+q(t) \in K^{*} \quad \text { for almost all } t \geq 0 \tag{1.1}
\end{equation*}
$$

where K is a closed and convex cone $(x \in K$ and $\alpha \geq 0$ implies $\alpha x \in K)$ and K^{*} is its dual cone:

$$
\begin{equation*}
K^{*}=\left\{y \in \mathbb{R}^{n} \mid x^{T} y \geq 0 \text { for all } x \in K\right\} \tag{1.2}
\end{equation*}
$$

Most commonly $K=\mathbb{R}_{+}^{n}$, for which $K^{*}=\mathbb{R}_{+}^{n}=K$. Also note that " $a \perp b$ " means that a and b are orthogonal: $a^{T} b=0$. Convolution complementarity problems were introduced by this name in [5], although this concept was used by Petrov and Schatzman [4].

One reason for studying CCPs is their use in studying mechanical impact problems. In particular, Petrov and Schatzman [4] studied the problem of a visco-elastic rod impacting a rigid obstacle:

$$
\begin{gather*}
\rho u_{t t}=E u_{x x}+\beta u_{t x x}+f(t, x), \quad x \in(0, L), \tag{1.3}\\
N(t)=-\left[E u_{x}(t, 0)+\beta u_{t x}(t, 0)\right] \tag{1.4}\\
0=-\left[E u_{x}(t, L)+\beta u_{t x}(t, L)\right] \tag{1.5}\\
0 \leq N(t) \perp u(t, 0) \geq 0 . \tag{1.6}
\end{gather*}
$$

[^0]Here $u(t, x)$ is the displacement at time t and position $x \in(0, L) ; 1.3)$ is the equation for one-dimensional Kelvin-Voigt visco-elasticity; (1.4) is the boundary condition for a contact force $N(t)$ applied at $x=0 ; 1.5$ is the boundary condition for a free end at $x=L$; and finally, 1.6 is the Signorini-type contact condition at $x=0$, indicating that separation $(u(t, 0)>0)$ implies no contact force $(N(t)=0)$ while a positive contact force $(N(t)>0)$ implies contact $(u(t, 0)=0)$. Because the system is time-invariant, $u(t, 0)$ can be represented as $\widehat{u}(t, 0)+\int_{0}^{t} m(t-\tau) N(\tau) d \tau$ where $\widehat{u}(t, x)$ is the solution of the linear system with $N(t) \equiv 0$ and no contact conditions, and the kernel function $m(t) \sim m_{0} t^{1 / 2}$ as $t \downarrow 0$ with $m_{0}>0$. While existence of solutions has been demonstrated for these problems [4, 6, uniqueness has not. This paper shows why.

The index of a CCP is the number β where $(d / d t)^{\beta} m(t)=m_{0} \delta(t)+m_{1}(t)$ with δ the Dirac- δ function, and $\int_{[0, \epsilon)}\left\|(d / d t)^{\beta} m_{1}(t)\right\| d t \rightarrow 0$ as $\epsilon \downarrow 0$, and m_{0} is an invertible matrix. If we allow fractional derivatives in the sense of 2, then β need not be an integer. Typically, for index β we have $m(t) \sim m_{0} t^{\beta-1}$ as $t \downarrow 0$. Basic results for fractional index CCPs with index $0<\beta<1$ were published in [9]. In particular, combining the results of [5], 9], and [6] we can say that under fairly mild regularity and positivity conditions (related to the index), solutions exist for $0 \leq \beta<2$ and are unique for $0 \leq \beta \leq 1$. These results can be extended to prove existence of solutions for index $\beta=2$. However, it is known that solutions are not unique in general for $\beta=2$. Neither existence nor uniqueness hold in general for $\beta>2$ (see [8, §3.2.5]). For clarity as to what exactly has been proven for $1<\beta<2$, we quote the main results of [6, §8]:
Theorem 1.1. If $m(t)=m_{0} t^{\beta-1}+m_{1}(t)$ for $t \geq 0$ with $m_{0}>0, m_{1}$ Lipschitz, $1<\beta<2, \alpha=\beta-1, q^{\prime} \in H^{\alpha / 2}\left(0, T^{*}\right)$ with $T^{*}>0$, and $q(0) \geq 0$, then there is a solution $z(\cdot) \in H^{-\alpha / 2}\left(0, T^{*}\right)$ of

$$
0 \leq z(t) \perp(m * z)(t)+q(t) \geq 0 \quad \text { for all } t \geq 0
$$

As yet, an open question has been whether uniqueness holds for $1<\beta<2$. This paper answers this question in the negative: there are functions $q(\cdot)$ for which there are at least two solutions for $z(\cdot)$ with $m(t)=t^{\alpha}$ for $0<\alpha<1$ where $\alpha=\beta-1$. The construction of a counter-example to uniqueness is somewhat involved. It proceeds in a similar manner to Mandelbaum's counter-example to uniqueness for certain differential complementarity problems [3]: we first prove equivalence of uniqueness of solutions for (1.1) for $n=1$ to non-existence of a non-zero function $\zeta:[0, \infty) \rightarrow \mathbb{R}$ satisfying

$$
\begin{equation*}
\zeta(t)(m * \zeta)(t) \leq 0 \quad \text { for all } t \geq 0 \tag{1.7}
\end{equation*}
$$

Given such a ζ we are able to construct both a function $q(\cdot)$ a pair of solutions $z_{1}(\cdot)$ and $z_{2}(\cdot)$ of 1.1 . The next task is then to construct a suitable $\zeta(\cdot) \not \equiv 0$ satisfying (1.7) for $m(t)=t^{\alpha}$.

We define the floor of a real number z to be $\lfloor z\rfloor=\max \{k \in \mathbb{Z} \mid k \leq z\}$, and the ceiling of z to be $\lceil z\rceil=\min \{k \in \mathbb{Z} \mid k \geq z\}$.

2. Mandelbaum's condition for CCPs

In [3], Mandebaum considered differential complementarity problems of the form

$$
\begin{equation*}
\frac{d w}{d t}(t)=M z(t)+q^{\prime}(t), \quad w(0)=q(0) \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
0 \leq w(t) \perp z(t) \geq 0 \tag{2.2}
\end{equation*}
$$

for all t. He was able to show that multiple solutions may exist even for $M=$ $\left[\begin{array}{cc}2 & -1 \\ 3 & 1\end{array}\right]$ which is positive definite, but not symmetric. The tool that Mandelbaum used was the following theorem.

Theorem 2.1. The system (2.1), 2.2 has a unique solution if and only if $(t) \circ$ $\zeta(t) \leq 0$ and $d \omega / d t(t)=M \zeta(t)$ for $t \geq 0$ and $\omega(0)=0$ implies that $\zeta(t)=0$ for all $t \geq 0$.

Note that " $a \circ b$ " is the Hadamard product given by $(a \circ b)_{i}=a_{i} b_{i}$ for all i. In the scalar case $(n=1)$, the Hadamard product reduces to the ordinary product of real numbers.

Theorem 2.2. The system (1.1) with $n=1$ has unique solutions for all $q(\cdot)$ if and only if $\zeta(t)(m * \zeta)(t) \leq 0$ for all $t \geq 0$ implies $\zeta(t)=0$ for all $t \geq 0$.

Proof. The proof is based on Mandelbaum's proof. The sufficiency of the condition for uniqueness can be shown via the contrapositive: if the system (1.1) has two distinct solutions $z_{1}(\cdot)$ and $z_{2}(\cdot)$ then we can set $\zeta(t)=z_{1}(t)-z_{2}(t)$ not identically zero where

$$
\begin{aligned}
\zeta(t)(m * \zeta)(t)= & \left(z_{1}(t)-z_{2}(t)\right)\left(m * z_{1}+q-m * z_{2}-q\right)(t) \\
= & z_{1}(t)\left(m * z_{1}+q\right)(t)-z_{1}(t)\left(m * z_{2}+q\right)(t) \\
& -z_{2}(t)\left(m * z_{1}+q\right)(t)+z_{2}(t)\left(m * z_{2}+q\right)(t) \\
= & -z_{1}(t)\left(m * z_{2}+q\right)(t)-z_{2}(t)\left(m * z_{1}+q\right)(t) \leq 0
\end{aligned}
$$

for all $t \geq 0$, since $z_{1}(t), z_{2}(t) \geq 0,\left(m * z_{1}+q\right)(t),\left(m * z_{2}+q\right)(t) \geq 0$ and $z_{1}(t)(m *$ $\left.z_{1}+q\right)(t)=z_{2}(t)\left(m * z_{2}+q\right)(t)=0$.

To show necessity, we again use the contrapositive, and suppose that there is a function $\zeta(\cdot)$ which is not everywhere zero and $\zeta(t)(m * \zeta)(t) \leq 0$ for all $t \geq 0$. Let $\omega=m * \zeta$. Note that $\omega(t) \zeta(t) \leq 0$. We wish to find functions $q(\cdot), z_{1}(\cdot)$, and $z_{2}(\cdot)$ such that $z_{1}(\cdot)$ and $z_{2}(\cdot)$ are both solutions to 1.1). Let $E^{+}=\{t \geq 0 \mid \omega(t)>0\}$, $E^{-}=\{t \geq 0 \mid \omega(t)<0\}$, and $E^{0}=\{t \geq 0 \mid \omega(t)=0\}$. Let $w_{1}(t)=\max (\omega(t), 0)$ and $w_{2}(t)=\max (-\omega(t), 0)$. For $t \in E^{+}$we set $z_{1}(t)=0$ and $z_{2}(t)=-\zeta(t)>0$; for $t \in E^{-}$we set $z_{1}(t)=\zeta(t) \geq 0$ and $z_{2}(t)=0$; for $t \in E^{0}$ we set $z_{1}(t)=\max (\zeta(t), 0)$ and $z_{2}(t)=\max (-\zeta(t), 0)$. Then $\zeta(t)=z_{1}(t)-z_{2}(t)$ and $z_{1}(t), z_{2}(t), w_{1}(t), w_{2}(t) \geq$ 0 for all $t \geq 0$. For $t \in E^{+}, w_{1}(t) z_{1}(t)=0$ since $z_{1}(t)=0$, and $w_{2}(t) z_{2}(t)=0$ since $w_{2}(t)=0$; for $t \in E^{-}, w_{1}(t) z_{1}(t)=0$ since $w_{1}(t)=0$, and $w_{2}(t) z_{2}(t)=0$ since $z_{2}(t)=0$; for $t \in E^{0}, w_{1}(t) z_{1}(t)=w_{2}(t) z_{2}(t)=0$ since $w_{1}(t)=w_{2}(t)=0$. Thus both $\left(z_{1}(\cdot), w_{1}(\cdot)\right)$ and $\left(z_{2}(\cdot), w_{2}(\cdot)\right)$ satisfy the complementarity conditions. We now check the dynamic conditions.

Let $q(t)=w_{1}(t)-\left(m * z_{1}\right)(t)$ for all $t \geq 0$. Then, clearly, $w_{1}(t)=\left(m * z_{1}\right)(t)+q(t)$. On the other hand, $w_{1}(t)-w_{2}(t)=\omega(t)$ and $z_{1}(t)-z_{2}(t)=\zeta(t)$ for all $t \geq 0$, so

$$
\begin{aligned}
w_{2}(t) & =w_{1}(t)-\omega(t) \\
& =\left(m * z_{1}\right)(t)+q(t)-(m * \zeta)(t) \\
& =\left(m *\left(z_{1}-\zeta\right)\right)(t)+q(t) \\
& =\left(m * z_{2}\right)(t)+q(t) .
\end{aligned}
$$

Thus the dynamic conditions also hold, and we have two distinct solutions of (1.1), as we wanted.

This theorem can be extended to the $n>1$ case by working componentwise.

3. Constructing the counter-Example

Much like the examples given for related non-smooth dynamical systems [1, [3, 7, there is a self-similar structure to the counter-example created here. The counter-example involves non-analytic $q(\cdot)$. The construction begins with a "bump" function $\theta: \mathbb{R} \rightarrow \mathbb{R}$ where $\theta(s) \geq 0$ for all $s \in \mathbb{R}$, $\operatorname{supp} \theta \subseteq[-1,+1], \int_{-\infty}^{+\infty} \theta(s) d s=$ 1 , and θ is C^{∞}.

Let $\psi_{\alpha}(t)=t^{\alpha}$ for $t>0$ and $\psi_{\alpha}(t)=0$ for $t \leq 0$. We will consider $0<\alpha<1$; the CCP

$$
\begin{equation*}
0 \leq z(t) \perp\left(\psi_{\alpha} * z\right)(t)+q(t) \geq 0 \tag{3.1}
\end{equation*}
$$

then has index $1+\alpha$. The case $\alpha=\frac{1}{2}$ corresponds to the viscoelastic impact problem in Petrov and Schatzman [4] where, asymptotically, $m(t) \sim m_{0} \sqrt{t}$ as $t \downarrow 0$. The case $m(t)=t^{\alpha}$ has additional structure that we will exploit in the construction here. We will construct a function $\zeta(t)$ satisfying $\zeta(t)\left(\psi_{\alpha} * \zeta\right)(t) \leq 0$ for all $t \geq 0$ and $\zeta(t)=0$ for $t<0$.

Let $\zeta_{1}(s ; \eta)=\eta^{-1} \theta\left(\eta^{-1}(s-\widehat{s})\right)$ where $\eta>0$ and \widehat{s} are parameters to be determined. We set

$$
\begin{equation*}
\zeta(t ; \eta)=\sum_{k \in \mathbb{Z}}(-1)^{k} \mu^{-k} \zeta_{1}\left(\gamma^{k} t ; \eta\right) \tag{3.2}
\end{equation*}
$$

where $0<\mu, 1<\gamma$ are to be determined. Let $\widehat{s}=\frac{1}{2}(1+\gamma)$. Note that $\zeta_{1}(s ; \eta) \rightarrow$ $\delta(s-\widehat{s})$ as $\eta \downarrow 0$ in the sense of distributions where δ is the "Dirac- δ function". If we write

$$
\widehat{\zeta}(t)=\sum_{k \in \mathbb{Z}}(-1)^{k} \mu^{-k} \gamma^{-k} \delta\left(t-\gamma^{-k} \widehat{s}\right)
$$

then $\zeta(\cdot ; \eta) \rightarrow \widehat{\zeta}$ as $\eta \downarrow 0$ in the sense of distributions, and in terms of weak* convergence of measures.

Note that

$$
\begin{align*}
\zeta(\gamma t ; \eta) & =\sum_{k \in \mathbb{Z}}(-1)^{k} \mu^{-k} \zeta_{1}\left(\gamma^{k+1} t ; \eta\right) \\
& =\sum_{\ell \in \mathbb{Z}}(-1)^{\ell-1} \mu^{-\ell+1} \zeta_{1}\left(\gamma^{\ell} t ; \eta\right) \quad(\ell=k+1) \tag{3.3}\\
& =-\mu \sum_{\ell \in \mathbb{Z}}(-1)^{\ell} \mu^{-\ell} \zeta_{1}\left(\gamma^{\ell} t ; \eta\right)=-\mu \zeta(t ; \eta)
\end{align*}
$$

Also note that

$$
\begin{aligned}
\left(\psi_{\alpha} * f(\gamma \cdot)\right)(t) & =\int_{0}^{t} \psi_{\alpha}(t-\tau) f(\gamma \tau) d \tau \\
& =\int_{0}^{\gamma t}\left(t-\gamma^{-1} \sigma\right)^{\alpha} f(\sigma) \gamma^{-1} d \sigma \quad(\sigma=\gamma \tau) \\
& =\gamma^{-1-\alpha} \int_{0}^{\gamma t}(\gamma t-\sigma)^{\alpha} f(\sigma) d \sigma \\
& =\gamma^{-1-\alpha}\left(\psi_{\alpha} * f\right)(\gamma t)
\end{aligned}
$$

Thus $-\mu \gamma^{1+\alpha}\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t)=\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(\gamma t)$. From these relationships, if $\zeta(t ; \eta)\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t) \leq 0$ for $1 \leq t \leq \gamma$, then $\zeta(t ; \eta)\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t) \leq 0$ for all $t>0$. The reason is that $\zeta(\gamma t ; \eta)=(-\mu \zeta(t ; \eta))$ and so $\zeta(\gamma t ; \eta)\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(\gamma t)=$ $(-\mu)\left(-\mu \gamma^{1+\alpha}\right) \zeta(t ; \eta)\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t)$ and therefore

$$
\operatorname{sign} \zeta(t ; \eta)\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t)=\operatorname{sign} \zeta(\gamma t ; \eta)\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(\gamma t)
$$

Once we know that $\zeta(t ; \eta)\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t) \leq 0$ for all $t \in[1, \gamma]$, it follows that $\zeta(t ; \eta)\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t) \leq 0$ for all $t>0$.

Since $\operatorname{supp} \zeta \cap[1, \gamma]=\widehat{s}+[-\eta,+\eta]$, it is sufficient to check that $\zeta(t ; \eta)\left(\psi_{\alpha} *\right.$ $\zeta(\cdot ; \eta))(t) \leq 0$ for $t \in \widehat{s}+[-\eta,+\eta]$; since $\zeta(t ; \eta) \geq 0$ for $1 \leq t \leq \gamma$, it suffices to check that $\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t) \leq 0$ for $t \in \widehat{s}+[-\eta,+\eta]$. We will consider the limit as $\eta \downarrow 0$, so it becomes a matter of ensuring simply that $\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(\widehat{s})<0$. There are some additional technical issues that must be addressed, but this will be done later.

Now we compute $\psi_{\alpha} * \zeta(\cdot ; \eta)$:

$$
\begin{aligned}
\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t) & =\sum_{k \in \mathbb{Z}}(-1)^{k} \mu^{-k}\left(\psi_{\alpha} * \zeta_{1}\left(\gamma^{k} \cdot ; \eta\right)\right)(t) \\
& =\sum_{k \in \mathbb{Z}}(-1)^{k} \mu^{-k}\left(\gamma^{k}\right)^{-1-\alpha}\left(\psi_{\alpha} * \zeta_{1}(\cdot ; \eta)\right)\left(\gamma^{k} t\right) \\
& =\sum_{k=\lfloor\ln t / \ln \gamma\rfloor}^{\infty}(-1)^{k}\left(\mu \gamma^{1+\alpha}\right)^{-k}\left(\psi_{\alpha} * \zeta_{1}(\cdot ; \eta)\right)\left(\gamma^{k} t\right)
\end{aligned}
$$

since $\zeta_{1}(s ; \eta)=0$ for $s \leq 1$ and therefore $\left(\psi_{\alpha} * \zeta_{1}(\cdot ; \eta)\right)(s)=0$ for $s \leq 1$. In particular, for $1 \leq t \leq \gamma$,

$$
\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t)=\sum_{k=0}^{\infty}(-1)^{k}\left(\mu \gamma^{1+\alpha}\right)^{-k}\left(\psi_{\alpha} * \zeta_{1}(\cdot ; \eta)\right)\left(\gamma^{k} t\right)
$$

For this sum to converge, we need $\mu \gamma>1$: asymptotically $\left(\psi_{\alpha} * \zeta_{1}(\cdot ; \eta)\right)(s) \sim s^{\alpha}$ as $s \rightarrow \infty$, so $\left(\psi_{\alpha} * \zeta_{1}(\cdot ; \eta)\right)\left(\gamma^{k} t\right) \sim\left(\gamma^{\alpha}\right)^{k} t^{\alpha}$ as $k \rightarrow \infty$. Furthermore, $\left(\psi_{\alpha} *\right.$ $\left.\zeta_{1}(\cdot ; \eta)\right)(s) \rightarrow \psi_{\alpha}(s-\widehat{s})=(s-\widehat{s})^{\alpha}$ as $\eta \downarrow 0$. So for $1 \leq t \leq \gamma$,

$$
\begin{aligned}
\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t) & \rightarrow \sum_{k=0}^{\infty}(-1)^{k}\left(\mu \gamma^{1+\alpha}\right)^{-k}\left(\gamma^{k} t-\widehat{s}\right)^{\alpha} \quad \text { as } \eta \downarrow 0 \\
& =\sum_{k=0}^{\infty}(-1)^{k}(\mu \gamma)^{-k}\left(t-\gamma^{-k} \widehat{s}\right)^{\alpha}
\end{aligned}
$$

In particular, for $t=\widehat{s}$,

$$
\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(\widehat{s}) \rightarrow \sum_{k=0}^{\infty}(-1)^{k}(\mu \gamma)^{-k}\left(1-\gamma^{-k}\right)^{\alpha}(\widehat{s})^{\alpha} \quad \text { as } \eta \downarrow 0
$$

Note that the term in the sum with $k=0$ is zero, and so can be ignored in the limit as $\eta \downarrow 0$. So we now want to evaluate the sum

$$
\begin{equation*}
\widehat{v}(\mu, \gamma):=\sum_{k=1}^{\infty}(-1)^{k}(\mu \gamma)^{-k}\left(1-\gamma^{-k}\right)^{\alpha} \tag{3.4}
\end{equation*}
$$

and check that the value is negative. Note that if $\mu \gamma=\rho>1$ is held fixed, then $\widehat{v}(\mu, \gamma)=\sum_{k=1}^{\infty}(-1)^{k} \rho^{-k}\left(1-\gamma^{-k}\right)^{\alpha} \rightarrow \sum_{k=1}^{\infty}(-1)^{k} \rho^{-k}=-\rho^{-1} /\left(1+\rho^{-1}\right)<0$ as
$\gamma \rightarrow \infty$. Thus for sufficiently large $\gamma>1$ with $\mu \gamma=\rho>1$ fixed, we have $\widehat{v}(\mu, \gamma)<0$ as we want. Also, $\rho \widehat{v}(\mu, \gamma) \rightarrow-\left(1-\gamma^{-1}\right)^{\alpha}$ as $\rho \rightarrow \infty$ with fixed $\gamma>1$.
3.1. Regularity of ζ and $\psi_{\alpha} * \zeta$, and choice of parameters. First we consider the question of how to ensure that $\zeta \in L^{1}(0, \gamma)$: Since $\left\|\zeta_{1}(\cdot ; \eta)\right\|=1$ independently of $\eta>0$, we have

$$
\|\zeta(\cdot ; \eta)\|_{L^{1}(0, \gamma)} \leq \sum_{k=0}^{\infty}(\mu \gamma)^{-k}=\frac{1}{1-\rho^{-1}}
$$

which is finite as long as $\rho=\mu \gamma>1$. Note that this bound is independent of $\eta>0$. Also, ψ_{α} is uniformly Hölder continuous: $\left|\psi_{\alpha}(t)-\psi_{\alpha}(s)\right|=\left|t^{\alpha}-s^{\alpha}\right| \leq|t-s|^{\alpha}$ for any $s, t \in \mathbb{R}$ as $0<\alpha<1$. Combining these results shows that for $s, t \in[0, \gamma]$, $\left|\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t)-\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(s)\right| \leq|t-s|^{\alpha}\|\zeta(\cdot ; \eta)\|_{L^{1}(0, \gamma)}$. That is, $\left.\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)\right|_{[0, \gamma]}$ is uniformly Hölder continuous, independently of $\eta>0$.

Thus, provided (3.4) is negative, for sufficiently small $\eta>0$, we have $\zeta(t ; \eta)\left(\psi_{\alpha} *\right.$ $\zeta(\cdot ; \eta))(t) \leq 0$ for all $1 \leq t \leq \gamma$. To see this rigorously, recall that $\zeta(t) \neq 0$ for $1 \leq t \leq \gamma$ only if $|t-\widehat{s}|<\eta$. Choose $\eta>0$ sufficiently small so that $\mid\left(\psi_{\alpha} *\right.$ $\zeta(\cdot ; \eta)) \left.(\widehat{s})-\widehat{v}(\mu, \gamma)\left|\leq \frac{1}{4}\right| \widehat{v}(\mu, \gamma) \right\rvert\,$. Now for $|t-\widehat{s}| \leq \eta$,

$$
\begin{aligned}
\left|\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t)-\widehat{v}(\mu, \gamma)\right| & \leq\left|\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t)-\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(\widehat{s})\right|+\frac{1}{4}|\widehat{v}(\mu, \gamma)| \\
& \leq|t-\widehat{s}|^{\alpha}\|\zeta(\cdot ; \eta)\|_{L^{1}(0, \gamma)}+\frac{1}{4}|\widehat{v}(\mu, \gamma)| \\
& \leq \eta^{\alpha}\|\zeta(\cdot ; \eta)\|_{L^{1}(0, \gamma)}+\frac{1}{4}|\widehat{v}(\mu, \gamma)|
\end{aligned}
$$

Choose $\eta>0$ sufficiently small so that it also satisfies $\eta^{\alpha}\|\zeta(\cdot ; \eta)\|_{L^{1}(0, \gamma)} \leq \frac{1}{4}|\widehat{v}(\mu, \gamma)|$. Then $\zeta(t ; \eta) \neq 0$ and $1 \leq t \leq \gamma$ imply that $\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t) \leq \frac{1}{2} \widehat{v}(\mu, \gamma)<0$. Since $\zeta(t ; \eta) \geq 0$ for $1 \leq t \leq \gamma$, we have $\zeta(t ; \eta)\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t) \leq 0$ for all $1 \leq t \leq \gamma$.

Consequently, from the self-similarity property 3.3 , $\zeta(t ; \eta)\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t) \leq 0$ for all $t \geq 0$.

If we allow $\mu>1$ we can get much stronger regularity on ζ. If $\mu>1$ then by the Weierstass M-test (see, e.g., [10, Thm. 3.106, p. 141]), $\zeta(\cdot ; \eta)$ is continuous. Furthermore, if $\mu \gamma^{-p}>1, \zeta$ is p-times continuously differentiable for $p=1,2, \ldots$, again by the Weierstrass M-test but applied to $\zeta^{(p)}(\cdot ; \eta)$. This is equivalent to the condition that $\rho \gamma^{-p-1}>1$.

If we set $\rho=2 \gamma^{m p+1}$, then

$$
\begin{aligned}
\gamma^{p+1} \widehat{v}(\mu, \gamma) & =\gamma^{p+1} \sum_{k=1}^{\infty}(-1)^{k} \rho^{-k}\left(1-\gamma^{-k}\right)^{\alpha} \\
& =\gamma^{p+1} \sum_{k=1}^{\infty}(-1)^{k}\left(2 \gamma^{m+1}\right)^{-k}\left(1-\gamma^{-k}\right)^{\alpha} \\
& =\sum_{k=1}^{\infty}(-1)^{k} \frac{1}{2}\left(2 \gamma^{p+1}\right)^{-k+1}\left(1-\gamma^{-k}\right)^{\alpha} \\
& \rightarrow-\frac{1}{2} \quad \text { as } \gamma \rightarrow \infty
\end{aligned}
$$

So for sufficiently large $\gamma>1, \widehat{v}(\mu, \gamma)<0$. Then $\mu \gamma=\rho=2 \gamma^{p+1}$, so we set $\mu=2 \gamma^{p}$. We then choose $\eta>0$ sufficiently small so that $\zeta(t ; \eta)\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t) \leq 0$ for $1 \leq t \leq$
γ. Since $\zeta\left(\gamma^{-k} t ; \eta\right)=(-\mu)^{-k} \zeta(t ; \eta)$ and $\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)\left(\gamma^{-k} t\right)=\left(-\mu \gamma^{1+\alpha}\right)^{-k}\left(\psi_{\alpha} *\right.$ $\zeta(\cdot ; \eta))(t)$, we have $\zeta(t ; \eta)\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t) \leq 0$ for $\gamma^{-k} \leq t \leq \gamma^{-k+1}$ for any $k \in \mathbb{Z}$; thus $\zeta(t ; \eta)\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t)=0$ for any $t>0$. In addition, $\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(0)=0$, so $\zeta(t ; \eta)\left(\psi_{\alpha} * \zeta(\cdot ; \eta)\right)(t) \leq 0$ for all $t \geq 0$, and there is a counter-example to uniqueness as we wanted. Furthermore, the counter-example is in C^{p}.

4. Extension to general $m(t) \sim m_{0} t^{\alpha}$

Here we assume not only that $0<\alpha<1$ but also that $m_{0}>0$. If $m_{0}<0$ so that $m(t)<0$ for $0 \leq t \leq T_{1}$ with $T_{1}>0$ and $z_{1}(t)$ is a positive smooth function of t, then for $q_{1}(t)=-\left(m * z_{1}\right)(t)$ not only is $z(t)=z_{1}(t)$ for $t \geq 0$ a solution to

$$
0 \leq z(t) \perp(m * z)(t)+q_{1}(t) \geq 0 \quad \text { for all } t \geq 0
$$

but $z(t)=0$ for $0 \leq t \leq T_{1}$ is also a solution as $q_{1}(t)>0$ for $0 \leq t \leq T_{1}$.
The assumptions made on m are that $m(t) \sim m_{0} t^{\alpha}, m^{\prime}(t) \sim m_{0} \alpha t^{\alpha-1}$ as $t \downarrow 0$, and $m^{\prime}(t)$ is continuous in t away from $t=0$. This implies that on bounded sets, $m(\cdot)$ is uniformly Hölder continuous: given a bounded interval [a, b], there is an M where $|m(t)-m(s)| \leq M|t-s|^{\alpha}$ for all $s, t \in[a, b]$.

Note that dividing $m(t)$ by $m_{0}>0$ does not affect the existence of multiple solutions as 1.1 is equivalent to

$$
0 \leq z(t) \perp\left(\left(m / m_{0}\right) * z\right)(t)+q(t) / m_{0} \geq 0 \quad \text { for all } t \geq 0
$$

So we consider without loss of generality the case where $m(t) \sim t^{\alpha}$. As in Section 2 we look for a non-zero function $\zeta:[0, \infty) \rightarrow \mathbb{R}$ where $\zeta(t)(m * \zeta)(t) \leq 0$ for all $t \geq 0$. The constructed ζ from the previous Section will also work here with some small modifications.

Let $r(t)=\left(m(t) / \psi_{\alpha}(t)\right)-1$. Note that $r(t) \rightarrow 0$ as $t \downarrow 0$. Using (3.2) to define $\zeta(\cdot)$,

$$
\zeta(t)=\sum_{k \in \mathbb{Z}}(-1)^{k} \mu^{-k} \zeta_{1}\left(\gamma^{k} t ; \eta\right)
$$

we can show that for $\gamma^{-j} \leq t<\frac{1}{2} \gamma^{-j}(1+\gamma)$,

$$
\begin{aligned}
(m * \zeta)(t) & =\sum_{k=j}^{\infty}(-1)^{k} \mu^{-k}\left(m * \zeta_{1}\left(\gamma^{k} \cdot ; \eta\right)\right)(t) \\
& \rightarrow \sum_{k=j+1}^{\infty}(-1)^{k} \mu^{-k} \gamma^{-k} m\left(t-\gamma^{-k+j} \widehat{s}\right) \quad \text { as } \eta \downarrow 0
\end{aligned}
$$

using $\left(m * \zeta_{1}(\cdot ; \eta)\right)(s) \rightarrow m(s-\widehat{s})$ as $\eta \downarrow 0$, and $m(0)=0$. We need to distinguish between the value and the limit. First, note that if $\operatorname{supp} g \subseteq[\widehat{s}-\rho, \widehat{s}+\rho]$ and g is non-negative, then for continuous f,

$$
\left|\int_{-\infty}^{+\infty} f(s) g(s) d s-f(\widehat{s}) \int_{\widehat{s}-\rho}^{\widehat{s}+\rho} g(s) d s\right| \leq \max _{s:|s-\widehat{s}| \leq \rho}|f(s)-f(\widehat{s})| \int_{\widehat{s}-\rho}^{\widehat{s}+\rho} g(s) d s
$$

Then

$$
\left|\left(m * \zeta_{1}\left(\gamma^{k} \cdot ; \eta\right)\right)(t)-\gamma^{-k} m\left(t-\gamma^{-k} \widehat{s}\right)\right| \leq M\left(\gamma^{-k} \eta\right)^{\alpha} \gamma^{-k}=M \eta^{\alpha}\left(\gamma^{1+\alpha}\right)^{-k}
$$

So, for $t=\gamma^{-j \widehat{s} \text {, }, \text {, }, \text {, }}$

$$
\left|(m * \zeta)\left(\gamma^{-j} \widehat{s}\right)-\sum_{k=j}^{\infty}(-1)^{k} \mu^{-k} \gamma^{-k} m\left(\left(1-\gamma^{-k+j}\right) \gamma^{-j} \widehat{s}\right)\right|
$$

$$
\leq \sum_{k=j}^{\infty} \mu^{-k}\left(\gamma^{1+\alpha}\right)^{-k} M \eta^{\alpha}=\frac{\left(\mu \gamma^{1+\alpha}\right)^{-j} M \eta^{\alpha}}{1-\left(\mu \gamma^{1+\alpha}\right)^{-1}}
$$

Note that

$$
\begin{aligned}
& \sum_{k=j+1}^{\infty}(-1)^{k} \mu^{-k} \gamma^{-k} m\left(\left(1-\gamma^{-k+j}\right) \gamma^{-j \widehat{s})}\right. \\
& =(-1)^{j}(\mu \gamma)^{-j} \sum_{\ell=1}^{\infty}(-1)^{\ell}(\mu \gamma)^{-\ell} m\left(\left(1-\gamma^{-\ell}\right) \gamma^{-j \widehat{s})}\right. \\
& =(-1)^{j}(\mu \gamma)^{-j} \sum_{\ell=1}^{\infty}(-1)^{\ell}(\mu \gamma)^{-\ell}\left(\left(1-\gamma^{-\ell}\right) \gamma^{-j \widehat{s}}\right)^{\alpha}\left[1+r\left(\left(1-\gamma^{-\ell}\right) \gamma^{-j \widehat{s})]}\right.\right. \\
& =(-1)^{j}\left(\mu \gamma^{1+\alpha}\right)^{-j} \widehat{s}^{\alpha} \sum_{\ell=1}^{\infty}(-1)^{\ell}(\mu \gamma)^{-\ell}\left(1-\gamma^{-\ell}\right)^{\alpha}\left[1+r\left(\left(1-\gamma^{-\ell}\right) \gamma^{-j} \widehat{s}\right)\right] .
\end{aligned}
$$

Since $r(t) \rightarrow 0$ as $t \downarrow 0$, for every $\epsilon>0$ there is a $\delta>0$ where $0<t<\delta$ implies $|r(t)|<\epsilon$. Thus for $j \geq-\ln (\delta / \widehat{s}) / \ln \gamma,\left|r\left(\left(1-\gamma^{-\ell}\right) \gamma^{-j} \widehat{s}\right)\right|<\epsilon$, and so

$$
\left|\sum_{\ell=1}^{\infty}(-1)^{\ell}(\mu \gamma)^{-\ell}\left(1-\gamma^{-\ell}\right)^{\alpha} r\left(\left(1-\gamma^{-\ell}\right) \gamma^{-j} \widehat{s}\right)\right| \leq \frac{\epsilon}{1-(\mu \gamma)^{-1}}
$$

Since $\gamma^{-j} \leq t \leq \gamma^{-j+1}$ and $\zeta(t) \neq 0$ implies $\left|t-\gamma^{-j} \widehat{s}\right| \leq \gamma^{-j} \eta$, we can use the bound $\left|(m * \zeta)(t)-(m * \zeta)\left(\gamma^{-j} \widehat{s}\right)\right| \leq M\left(\eta \gamma^{-j}\right)^{\alpha}\|\zeta\|_{L^{1}\left(0, \gamma^{-j+1}\right)} \leq M \eta^{\alpha} \gamma^{-\alpha j}(\mu \gamma)^{-j} /(1-$ $\left.(\mu \gamma)^{-1}\right)$ for $\left|t-\gamma^{-j} \widehat{s}\right| \leq \gamma^{-j} \eta$. Thus for $\gamma^{-j} \leq t \leq \gamma^{-j+1}$ and $\zeta(t) \neq 0$,

$$
\begin{aligned}
& \left|(m * \zeta)(t)-(-1)^{j} \widehat{s}^{\alpha}\left(\mu \gamma^{1+\alpha}\right)^{-j} \widehat{v}(\mu, \gamma)\right| \\
& \leq \frac{M \eta^{\alpha}\left(\mu \gamma^{1+\alpha}\right)^{-j}}{1-(\mu \gamma)^{-1}}+\frac{\left(\mu \gamma^{1+\alpha}\right)^{-j} M \eta^{\alpha}}{1-\left(\mu \gamma^{1+\alpha}\right)^{-1}}+\frac{\widehat{s}^{\alpha}\left(\mu \gamma^{1+\alpha}\right)^{-j} \epsilon}{1-(\mu \gamma)^{-1}} \\
& \leq\left(\mu \gamma^{1+\alpha}\right)^{-j}\left[\frac{M \eta^{\alpha}}{1-(\mu \gamma)^{-1}}+\frac{M \eta^{\alpha}}{1-\left(\mu \gamma^{1+\alpha}\right)^{-1}}+\frac{\widehat{s}^{\alpha} \epsilon}{1-(\mu \gamma)^{-1}}\right]
\end{aligned}
$$

Note that $\gamma>1$ so that $\mu \gamma^{1+\alpha}>\mu \gamma>1$. By choosing $\eta>0$ and $\epsilon>0$ sufficiently small, we can guarantee that the sign of $(m * \zeta)(t)$ for $\gamma^{-j} \leq t \leq \gamma^{-j+1}$ and $\zeta(t) \neq 0$ is the sign of $(-1)^{j} \widehat{v}(\mu, \gamma)$. After choosing $\eta>0$ and $\epsilon>0$ so that this holds, we can ensure that $\zeta(t)(m * \zeta)(t) \leq 0$ for $\gamma^{-j} \leq t \leq \gamma^{-j+1}$ where $j \geq J:=\lceil-\ln (\delta / \widehat{s}) / \ln \gamma\rceil$. Thus $\zeta(t)(m * \zeta)(t) \leq 0$ for all $0<t \leq \gamma^{-J}$. By setting $\widehat{\zeta}(t)=\zeta(t)$ for $0 \leq t \leq \gamma^{-J}$ and $\widehat{\zeta}(t)=0$ for $t \geq \gamma^{-J}$ (noting that $\zeta(t)=0$ in a neighborhood of γ^{-k} for any $k \in \mathbb{Z})$, we see that $\widehat{\widehat{\zeta}}(t)(m * \widehat{\zeta})(t) \leq 0$ for all $t \geq 0$, and thus we have non-uniqueness of solutions for 1.1 where $m(t) \sim m_{0} t^{\alpha}$ and $m^{\prime}(t) \sim m_{0} \alpha t^{\alpha-1}$ as $t \downarrow 0$ provided $m_{0}>0$ and $0<\alpha<1$.

5. Conclusions

Non-uniqueness of convolution complementarity problems of the form with convolution kernel $m(t) \sim m_{0} t^{\alpha}$ and $m^{\prime}(t) \sim m_{0} \alpha t^{\alpha-1}$ with $m_{0}>0$ and $0<\alpha<$ 1 has been demonstrated via a generalization of a result of Mandelbaum. Note that the counter-examples can belong to any space $C^{p}, p=1,2,3, \ldots$. Counterexamples must have infinitely many oscillations in a finite time interval, and so cannot be analytic. The main non-uniqueness result is of particular interest for questions of contact mechanics, as the perpendicular impact of a Kelvin-Voigt
viscoelastic rod on a rigid obstacle can be model by such a CCP (see 4). Note that this non-uniqueness holds in spite of the existence of an energy balance for this situation [4. By contrast, the perpendicular impact of a purely elastic rod on a rigid obstacle does have uniqueness of solutions, by using CCP formulations but with $\alpha=$ 0 [5]. Multidimensional contact problems then either have a problem of existence (for purely elastic bodies) or with uniqueness (for Kelvin-Voigt viscoelastic bodies). How this can be resolved is a subject for future investigation.

References

[1] Alain Bernard and Ahmed el Kharroubi. Régulations déterministes et stochastiques dans le premier "orthant" de R ${ }^{n}$. Stochastics Stochastics Rep., 34(3-4):149-167, 1991.
[2] Virginia Kiryakova. Generalized fractional calculus and applications, volume 301 of Pitman Research Notes in Mathematics Series. Longman Scientific \& Technical, Harlow, 1994.
[3] Avishai Mandelbaum. The dynamic complementarity problem. Unpublished manuscript, 1989.
[4] Adrien Petrov and Michelle Schatzman. Viscoélastodynamique monodimensionnelle avec conditions de Signorini. Comptes Rendus Acad. Sci., Sér. I, 334:983-988, 2002.
[5] David E. Stewart. Convolution complementarity problems with application to impact problems. IMA J. Applied Math., 71(1):92-119, 2006.
[6] David E. Stewart. Differentiating complementarity problems and fractional index convolution complementarity problems. Houston J. Mathematics, 33(1):301-322, 2006.
[7] David E. Stewart. Uniqueness for solutions of differential complementarity problems. Math. Program., 118(2, Ser. A):327-345, 2009.
[8] David E. Stewart. Dynamics with Inequalities: impacts and hard constraints. Number 123 in Applied Mathematics Series. SIAM Publ., Philadelphia, PA, July 2011.
[9] David E. Stewart and Theodore J. Wendt. Fractional index convolution complementarity problems. Nonlinear Anal. Hybrid Syst., 1(1):124-134, 2007.
[10] K. R. Stromberg. An Introduction to Classical Real Analysis. Wadsworth, Belmont, CA, 1981.

David E. Stewart
Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA
E-mail address: david-e-stewart@uiowa.edu

[^0]: 2000 Mathematics Subject Classification. 90C33, 74M20, 34A08.
 Key words and phrases. Convolution complementarity problem; mechanical impact; viscoelasticity; uniqueness.
 (C) 2014 Texas State University - San Marcos.

 Submitted June 4, 2014. Published October 22, 2014.

