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SOLUTIONS TO QUASILINEAR EQUATIONS OF
N-BIHARMONIC TYPE WITH DEGENERATE COERCIVITY

SAMI AOUAOUI

Abstract. In this article we show the existence of multiple solutions for quasi-

linear equations in divergence form with degenerate coercivity. Our strategy
is to combine a variational method and an iterative technique to obtain the

solutions.

1. Introduction and statement of main results

In this article, we study the quasilinear equation

−div
(
a(x, u)|∇u|N−2∇u

)
+V (x)|u|N−2u+∆2

Nu = f(x, u)+h(x), x ∈ RN , (1.1)

where N ≥ 2, ∆2
Nu = ∆(|∆u|N−2∆u), and h ∈ LN ′(RN ), N ′ = N

N−1 , h 6= 0 and
h ≥ 0. Concerning the functions V , f and a, we have the following assumptions:

(V1) V : RN → R is a continuous function such that

V (x) ≥ V0 > 0, ∀x ∈ RN ,

where V0 is a positive constant.
(V2) For every M > 0, meas({x ∈ RN , V (x) ≤ M}) < +∞, where “meas”

denotes the Lebesgue measure in RN .
(H1) f : RN × R → R is a Carathéodory function. We assume that for every

positive real number k > 0, there exist two positive constants αk > N − 1
and Ck > 0 such that

|f(x, s)| ≤ Ck|s|αk , a.e. x ∈ RN and for all s ∈ R with |s| ≤ k.

(H2) There exists ν > N such that

νF (x, s) ≤ f(x, s)s, ∀(x, s) ∈ RN × R, where F (x, s) =
∫ s

0

f(x, t)dt.

(H3) There exist two real numbers A > 0 and p > N , such that

F (x, s) ≥ Asp, a.e. x ∈ RN , ∀s ≥ 0.
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(H4) There exist two positive constants β0 and β1 such that

|f(x, s1)− f(x, s2)| ≤ β0z
β1 |s1 − s2|N−1,

a.e x ∈ RN , ∀z ∈ [0, 1] and ∀s1, s2 ∈ [−z, z].
(H5) a : RN ×R→ R is a continuous function satisfying the following property:

for every k > 0, there exist 0 < ak < a′k < +∞ such that

ak ≤ a(x, s) ≤ a′k, ∀x ∈ RN and |s| ≤ k.
(H6) There exists a constant L > 0 such that

|a(x, s1)− a(x, s2)| ≤ L|s1 − s2|N−1, a.e. x ∈ RN , ∀s1, s2 ∈ [−1, 1].

Examples. When N = 2, for f , we can choose:
(1) f(x, s) = λ|s|α−1s, λ > 0, α > 1.
(2) f(x, s) = λ|s|α−1s+ |s|β−1s(ep0s

2 − 1), λ > 0, α > 1, β > 1 and p0 > 0.
For a, we can choose:

(1) a(x, s) = 1 + |s|σ−1s, σ > 1.
(2) a(x, s) = 1

1+s2 .
Many articles about problems similar to (1.1), having a divergence part of the

form −div(A(x, u)|∇u|p−2∇u) with degenerate coercivity, have been published.
Among them, the following model is of special interest:

−div(
|∇u|p−2∇u
(1 + |u|)q

) = f in Ω,

where Ω is some open (bounded in the majority of cases) domain of RN , N ≥ 2,
q > 0, p > 1 and f is datum satisfying some summability condition. See for example
[4, 7, 8, 9, 10, 11] and references therein. We want to mention also the model

−div(A(x, u)|∇u|p(x)−2∇u) + |u|p(x)−2u = Z(x, u,∇u), in RN , N ≥ 3,

where p is some bounded and Lipschitz continuous function. This model was studied
in [6] in the very special framework of the generalized Sobolev space with variable
exponents. In the previously cited works, the authors use approximations in order
to overcome the lack of coercivity. Then, establish a priori estimates on the sequence
of approximative solutions, and then use the passage to the limit to finally obtain
a weak solution for the initial equation.

In this article, we develop a new method to deal with such kind of problems. The
main idea in this new method is inspired by the work [14]. In [14], de Figueiredo,
Girardi and Matzeu considered the semilinear elliptic equation

−∆u = f(x, u,∇u) in Ω,
u = 0 on ∂Ω,

(1.2)

where Ω is a bounded smooth domain of RN , N ≥ 3. Because the dependence
of the nonlinearity on the gradient of the solution, (1.2) is non-variational and a
direct attack to it using critical point theory is not possible. The new approach
by de Figueiredo, Girardi and Matzeu consists of associating with (1.2) a family of
semilinear elliptic problems with no dependence on the gradient. Namely, for each
w ∈ H1

0 (Ω), they considered the problem

−∆u = f(x, u,∇w) in Ω,
u = 0 on ∂Ω.

(1.3)
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Thus, the authors have “frozen” the gradient term. Problem (1.3) is of variational
nature and could be treated by variational method. We have to mention that this
idea was used in some later works dealing also with nonlinear problems involving
nonlinearities with dependence on the gradient. We can cite [15, 17, 18, 26, 27, 29].

In this article, we try to use this idea to discuss a completely different kind
of problem. In fact, in the problem (1.1) and in contrast with (1.2) (and similar
equations), the nonvariational nature is not due to the dependence of the right-
hand term on the gradient of the solution but it is in reality due to the presence
of the coefficient a(x, u) in the divergence part. Hence, we will try to “freeze” the
term a(x, u). The “associated” problem will be variational and consequently could
be treated using the critical point theory. An iterative scheme will be performed
in order to obtain weak solutions for the initial problem (1.1). This method allows
us to obtain a multiplicity result which, knowing that in the majority of cases the
classical nonvariational methods give the existence of one solution, could be seen
as an interesting result.

The existence of the N−biharmonic operator, ∆2
N , is remarkable. The impor-

tance of studying fourth-order equations lies in the fact that they can describe some
physical phenomena as the deformations of an elastic beam in equilibrium state (see
[24, 36]). Laser and McKenna [23] pointed out that this type of nonlinearity pro-
vides a model to study travelling waves in suspension bridges. For this reason,
there is a wide literature that deals with existence and multiplicity of solutions for
nonlinear fourth-order elliptic problems in bounded and unbounded domains. See
for example [19, 20, 25, 28] and references therein. On the other hand, the study
of nonlinear equations involving the N -Laplacian operator, N ≥ 2, which is a bor-
derline case for the Sobolev embedding, could be considered as one of the most
interesting topics of research during last decades. A special interest has been given
to equation of N -Laplacian type containing nonlinear terms which have a subcriti-
cal or critical exponential growth. See [1, 2, 3, 12, 16, 21, 22, 30, 31, 32, 33, 34, 35]
and references therein. Here, we highlight the fact that in the present work we deal
with a more general type of nonlinearity which includes the case of exponential
growth.

The appropriate space in which the problem (1.1) will be studied is the subspace
of W 2,N (RN ),

E =
{
u ∈W 2,N (RN ) :

∫
RN

V (x)|u|N dx < +∞
}
,

which is a Banach reflexive space equipped with the norm

‖u‖ =
(∫

RN

(|∇u|N + V (x)|u|N + |∆u|N ) dx
)1/N

.

In view of (V1), we clearly have

E ↪→W 2,N (RN ) ↪→ Lq(RN ), ∀N ≤ q ≤ +∞.
Also there exists a positive constant δ0 > 0 such that

|u|L∞(RN ) ≤ δ0‖u‖, ∀u ∈ E. (1.4)

Furthermore, since (V2) holds, we obtain (see [31]) the compactness of the embed-
ding

E ↪→ Lp(RN ), for all p ≥ N.
This compact embedding will be crucial in the proof of our multiplicity result.
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Definition 1.1. A function u ∈ E is said to be a weak solution of the problem
(1.1) if it satisfies∫

RN

a(x, u)|∇u|N−2∇u∇v dx+
∫

RN

V (x)|u|N−2uv dx+
∫

RN

|∆u|N−2∆u∆v dx

=
∫

RN

f(x, u)v dx+
∫

RN

hv dx, ∀v ∈ E.

The main result in the present paper is given by the following theorem.

Theorem 1.2. Assume that (V1), (V2), (H1)–(H6) hold. Then, there exist A0 > 0
and d0 > 0 with the following property: if A > A0, and |h|LN′ (RN ) < d0, then
problem (1.1) admits at least two nontrivial weak solutions.

2. Proof of main resutls

The proof of Theorem 1.2 will be divided into several steps. First, for w ∈ E,
we introduce the functional Iw defined on E by

Iw(u) =
∫

RN

a(x,w)|∇u|N + V (x)|u|N + |∆u|N

N
dx−

∫
RN

F (x, u) dx−
∫

RN

hu dx.

Lemma 2.1. Assume that (V1), (V2), (H1), (H5) hold. Then, there exist 0 < ρ <
1
δ0

, µ > 0, and d > 0 independent of w such that

Iw(u) ≥ µ, for ‖u‖ = ρ,

provided that ‖w‖ ≤ 1
δ0

and |h|LN′ (RN ) < d.

Proof. For ‖w‖ ≤ 1
δ0

, by (1.4) it yields |w|L∞(RN ) ≤ 1 and by (H5) we can assert
that there exist 0 < a1 < a′1 < +∞ such that

a1 ≤ a(x,w(x)) ≤ a′1, ∀x ∈ RN . (2.1)

For ‖u‖ ≤ 1/δ0, then by (1.4) it yields

|u(x)| ≤ 1, a.e. x ∈ RN .

By (H1), we get the existence of two constants α > N − 1 and c1 > 0 such that

|f(x, u(x))| ≤ c1|u(x)|α, a.e x ∈ RN . (2.2)

This implies ∫
RN

F (x, u) dx ≤ c2‖u‖α+1.

This inequality and (2.1) give

Iw(u) ≥ min{1, a1}
‖u‖N

N
− c2‖u‖α+1 − |h|LN′ (RN )‖u‖.

Since α + 1 > N , then one can easily find 0 < ρ < min{1, 1
δ0
} small enough such

that

min{1, a1}
ρN

N
− c2ρ1+α ≥ min{1, a1}

ρN

2N
.

It follows that

Iw(u) ≥ min{1, a1}
ρN

2N
− |h|LN′ (RN )ρ, for ‖u‖ = ρ.
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We complete the proof of Lemma 2.1 by taking d = min{1, a1}ρ
N−1

4N and µ =

min{1, a1} ρ
N

4N . �

Lemma 2.2. Assume that (V1), (V2), (H1), (H3), (H5) hold. Then, there exists
ϑ ∈ E independent of w such that ‖ϑ‖ > ρ and Iw(ϑ) < 0 for all w ∈ E with
‖w‖ ≤ 1

δ0
.

Proof. Let ϕ ∈ C∞0 (RN ) be such that ϕ 6= 0 and ϕ ≥ 0. For t > 0, we have

Iw(tϕ) ≤ max{1, a′1}
tN

N
‖ϕ‖N −

∫
RN

F (x, tϕ) dx

≤ max{1, a′1}
tN

N
‖ϕ‖N −Atp|ϕ|p

Lp(RN )
.

Since p > N , we have

max{1, a′1}
tN

N
‖ϕ‖N −Atp|ϕ|p

Lp(RN )
→ −∞, as t→ +∞.

Thus, we can choose ϑ = t0ϕ where t0 is large enough such that ‖t0ϕ‖ > 1 > ρ.
This completes the proof. �

Now, by the Mountain Pass Theorem without the Palais-Smale condition (see
[5, 37]), there exists a sequence (un,w) ⊂ E such that I ′w(un,w)→ 0 and Iw(un,w)→
cw = infγ∈Γ sup0≤t≤1 Iw(γ(t)), where

Γ = {γ ∈ C([0, 1], E), γ(0) = 0, γ(1) = t0ϕ = ϑ}.

Lemma 2.3. Assume that (V1), (V2), (H1)–(H3), (H5) hold. Let w ∈ E with
‖w‖ ≤ 1

δ0
. Then, for every 0 < η < 1

δ0
, there exist Aη > 0 and dη > 0 such that:

if A > Aη, and |h|LN′ (RN ) < dη then the functional Iw admits a nontrivial critical
point uw ∈ E such that 0 < µ ≤ Iw(uw) = cw, where µ is given by Lemma 2.1.
Moreover, ‖uw‖ ≤ η.

Proof. We have

Iw(un,w)− 1
ν
〈I ′w(un,w), un,w〉 ≤ cw + on(1)(1 + ‖un,w‖).

Using (H2) and (2.1), we have

min{1, a1}(
1
N
− 1
ν

)‖un,w‖N ≤ cw + on(1)(1 + ‖un,w‖) + |h|LN′ (RN )‖un,w‖. (2.3)

Then, (un,w) is a bounded sequence in E. Now, by Young’s inequality, there exists
c3 > 0 such that

|h|LN′ (RN )‖un,w‖ ≤
min{1, a1}

2
(

1
N
− 1
ν

)‖un,w‖N + c3|h|N
′

LN′ (RN )
.

Putting this inequality in (2.3), we obtain

min{1, a1}
2

(
1
N
− 1
ν

)‖un,w‖N ≤ cw + on(1)(1 + ‖un,w‖) + c3|h|N
′

LN′ (RN )
.

By passing to the upper limit, we obtain

lim sup
n→+∞

‖un,w‖N ≤
2cw

min{1, a1}( 1
N −

1
ν )

+ c4|h|N
′

LN′ (RN )
. (2.4)
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Now, observe that by the even definition of cw, we have

cw ≤ max
t≥0

Iw(tϕ) ≤ max
t≥0

(max{1, a′1}tN‖ϕ‖N

N
−Atp|ϕ|p

Lp(RN )

)
.

It is clear that the function

K(t) =
max{1, a′1}tN‖ϕ‖N

N
−Atp|ϕ|p

Lp(RN )

defined on [0,+∞[ attains its maximum at

tmax = (
max{1, a′1}‖ϕ‖N

Ap|ϕ|p
Lp(RN )

)
1

p−N .

Thus,

max
t≥0

K(t) = max{1, a′1}‖ϕ‖N (
1
N
− 1
p

)
(max{1, a′1}‖ϕ‖N

pA|ϕ|p
Lp(RN )

) N
p−N

.

Hence,

cw ≤ max{1, a′1}‖ϕ‖N (
1
N
− 1
p

)
(max{1, a′1}‖ϕ‖N

pA|ϕ|p
Lp(RN )

) N
p−N

. (2.5)

Denote

Σ(A) = max{1, a′1}‖ϕ‖N (
1
N
− 1
p

)(
max{1, a′1}‖ϕ‖N

pA|ϕ|p
Lp(RN )

)
N

p−N .

Fix 0 < η < 1
δ0

. It is clear that there exists Aη > 0 large enough such that

Σ(A) ≤ min{1, a1}
4

(
1
N
− 1
ν

)ηN ,

provided that A > Aη. On the other hand, we can choose |h|LN′ (RN ) small enough
such that

c4|h|N
′

LN′ (RN )
≤ ηN

2
.

Hence, by (2.4) and (2.5) we deduce that

lim sup
n→+∞

‖un,w‖N ≤ ηN .

It follows, that there exists n0 > 1 large enough such that

‖un,w‖ ≤
( 2Σ(A)

min{1, a1}( 1
N −

1
ν )

+ c4|h|N
′

LN′ (RN )

)1/N ≤ η < 1
δ0
, ∀n ≥ n0.

Up to a subsequence, (un,w) is weakly convergent to some point uw in E. We claim
that, up to a subsequence, (un,w) is strongly convergent to uw in E. First, observe
that by (2.2) we have∫

RN

|f(x, un,w)|N
′
dx ≤ c5

∫
RN

|un,w|αN
′
dx.

Thus, we get the boundedness of the sequence (f(·, un,w)) in LN
′
(RN ). This fact

together with the compact embedding E ↪→↪→ LN (RN ) imply∫
RN

|f(x, un,w)(un,w − uw)| dx→ 0, n→ +∞. (2.6)
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Using (2.6) and the weak convergence of (un,w) to uw in E, we obtain∫
RN

a(x,w)(|∇un,w|N−2∇un,w − |∇uw|N−2∇uw)∇(un,w − uw) dx

+
∫

RN

V (x)(|un,w|N−2un,w − |uw|N−2uw)(un,w − uw) dx

+
∫

RN

(|∆un,w|N−2∆un,w − |∆uw|N−2∆uw)∆(un,w − uw) dx

→ 0, as n→ +∞.
Recalling the standard inequality

(|x|N−2x− |y|N−2y)(x− y) ≥ 2−N |x− y|N , ∀x, y ∈ Rr, ∀r ≥ 1, (2.7)

we can deduce that, up to a subsequence, (un,w) is strongly convergent to uw in
E. Consequently, uw is a critical point of Iw and Iw(uw) = cw ≥ µ > 0. Moreover,
taking into account that

‖un,w‖ ≤ η, ∀n ≥ n0,

and passing to the limit as n→ +∞, we obtain ‖uw‖ ≤ η. �

Lemma 2.4. Assume that (V1)–(V2), (H1), (H5) hold. Let w ∈ E be such that
‖w‖ ≤ 1

δ0
. Then, the functional Iw admits a nontrivial weak solution Uw ∈ E such

that Iw(Uw) ≤ −σ < 0 and ‖Uw‖ ≤ ρ, where ρ is given by Lemma 2.1 and σ is
some positive constant independent of w.

Proof. Let ϕ be the function introduced and used in Lemma 2.2. Clearly, we can
choose 0 ≤ ϕ(x) ≤ 1 for all x ∈ RN . For 0 < t < 1, we have

Iw(tϕ) ≤ max{1, a′1}
tN

N
‖ϕ‖N −

∫
RN

F (x, tϕ) dx− t
∫

RN

hϕdx. (2.8)

By (H1), we can easily obtain

lim
t→0+

∫
RN

F (x, tϕ)
t

dx = 0.

Moreover, since ∫
RN

hϕdx > 0,

by (2.8) one can easily find 0 < t1 < inf(1, ρ
‖ϕ‖ ) small enough and independent of

w, and σ > 0 also independent of w such that

Iw(t1ϕ) ≤ −σ < 0.

Now, denote
θw = inf{Iw(u), ‖u‖ ≤ ρ}.

In view of Lemma 2.1 and by the Ekeland’s variational principle (see [13]), there
exists a sequence (Un,w) ⊂ E such that

‖Un,w‖ ≤ ρ, Iw(Un,w)→ θw, and I ′w(Un,w)→ 0.

Up to a subsequence, (Un,w) is weakly convergent to some point Uw in E. Observe
that ρ < 1

δ0
and arguing as for (2.6), we can prove that∫

RN

f(x, Un,w)(Un,w − Uw) dx→ 0, as n→ +∞.



8 S. AOUAOUI EJDE-2014/228

Proceeding exactly as for the sequence (un,w), we can easily show that, up to a
subsequence, (Un,w) is strongly convergent to Uw in E. Therefore, the point Uw is
a critical point of Iw satisfying

Iw(Uw) = θw ≤ −σ < 0, and ‖Uw‖ ≤ ρ.

This completes the proof. �

Proof of Theorem 1.2 completed. To conclude the proof, an iterative scheme
will be performed. Let 0 < η < 1/δ0 and fix u0 ∈ E such that ‖u0‖ ≤ η. By Lemma
2.3, under the condition A > Aη, and |h|LN′ (RN ) < dη, the functional Iu0 admits a
nontrivial critical point u1 ∈ E such that

Iu0(u1) ≥ µ > 0, ‖u1‖ ≤ η.

Similarly, the functional Iu1 admits a critical point u2 such that

Iu1(u2) ≥ µ > 0, ‖u2‖ ≤ η.

This way, we construct a sequence (un) ⊂ E such that

‖un‖ ≤ η, Iun−1(un) ≥ µ > 0,

and un is a critical point of the functional Iun−1 . Thus, we have∫
RN

a(x, un−1)|∇un|N−2∇un∇v dx

+
∫

RN

V (x)|un|N−2unv dx+
∫

RN

|∆un|N−2∆un∆v dx

=
∫

RN

f(x, un)v dx+
∫

RN

hv dx, ∀v ∈ E.

(2.9)

Similarly, we have∫
RN

a(x, un)|∇un+1|N−2∇un+1∇v dx

+
∫

RN

V (x)|un+1|N−2un+1v dx+
∫

RN

|∆un+1|N−2∆un+1∆v dx

=
∫

RN

f(x, un+1)v dx+
∫

RN

hv dx, ∀v ∈ E.

(2.10)

Taking v = un+1 − un as test function in (2.9) and (2.10), and subtracting one
equation from the other, we obtain∫

RN

a(x, un)
(
|∇un+1|N−2∇un+1 − |∇un|N−2∇un

)
∇(un+1 − un) dx

+
∫

RN

(a(x, un)− a(x, un−1))|∇un|N−2∇un∇(un+1 − un) dx

+
∫

RN

V (x)
(
|un+1|N−2un+1 − |un|N−2un

)
(un+1 − un) dx

+
∫

RN

(
|∆un+1|N−2∆un+1 − |∆un|N−2∆un

)
∆(un+1 − un) dx

=
∫

RN

(f(x, un+1)− f(x, un))(un+1 − un) dx.

(2.11)
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Since ‖un‖ ≤ η, for all n ≥ 1, it follows by (1.4) that

|un|L∞(RN ), |un+1|L∞(RN ) ≤ δ0η < 1, ∀n ≥ 0.

By (H4), it yields

|f(x, un+1(x))− f(x, un(x))| ≤ β0(δ0η)β1 |un+1(x)− un(x)|N−1,

a.e. x ∈ RN , for all n ≥ 0. Consequently∫
RN

(f(x, un+1)−f(x, un))(un+1−un) dx ≤ β0(δ0η)β1

∫
RN

|un+1−un|N dx. (2.12)

If we take η small enough such that

β0(δ0η)β1 ≤ V0 min{1, a1}2−N

4
,

then from (2.12) we infer∫
RN

(f(x, un+1)− f(x, un))(un+1 − un) dx

≤ min{1, a1}2−N

4

∫
RN

V (x)|un+1 − un|N dx

≤ min{1, a1}2−N

4
‖un+1 − un‖N .

(2.13)

On the other hand, by Young’s inequality we have∫
RN

|a(x, un)− a(x, un−1)| |∇un|N−1|∇(un+1 − un)| dx

≤ min{1, a1}2−N

4

∫
RN

|∇(un+1 − un)|N dx

+ c6

∫
RN

|a(x, un)− a(x, un−1)|N
′
|∇un|N dx,

and by (H6) it follows that∫
RN

|a(x, un)− a(x, un−1)| |∇un|N−1|∇(un+1 − un)| dx

≤ min{1, a1}2−N

4
‖un+1 − un‖N + c6L

N ′ |un − un−1|NL∞(RN )‖un‖
N

≤ min{1, a1}2−N

4
‖un+1 − un‖N + (c6LN

′
δN0 η

N )‖un − un−1‖N .

(2.14)

Using (2.7), (2.11), (2.13) and (2.14), we obtain

min{1, a1}
2N+1

‖un+1 − un‖N ≤ (c6LN
′
δN0 η

N )‖un − un−1‖N . (2.15)

Set

Γ(η) =
(c6LN ′δN0 ηN2N+1

min{1, a1}

)1/N

.

By (2.15), it yields

‖un+1 − un‖ ≤ Γ(η)‖un − un−1‖, ∀n ≥ 1. (2.16)
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Clearly, we can choose η small enough such that Γ(η) < 1. Therefore, by (2.16)
(un) is a Cauchy sequence and by consequence it is strongly convergent to some
point u ∈ E. Passing to the limit as n→ +∞ in (2.9), we conclude that u satisfies∫

RN

a(x, u)|∇u|N−2∇u∇v dx+
∫

RN

V (x)|u|N−2uv dx+
∫

RN

|∆u|N−2∆u∆v dx

=
∫

RN

f(x, u)v dx+
∫

RN

hv dx, ∀v ∈ E.

According to Definition 1.1, this means that u is a weak solution of problem (1.1).
On the other hand, we have Iun−1(un) ≥ µ > 0, for all n ≥ 2. Hence,∫

RN

a(x, un−1)|∇un|N + V (x)|un|N + |∆un|N

N
dx

−
∫

RN

F (x, un) dx−
∫

RN

hun dx ≥ µ > 0.

Passing to the limit as n→ +∞, it follows

Ψ(u) =
∫

RN

a(x, u)|∇u|N + V (x)|u|N + |∆u|N

N
dx

−
∫

RN

F (x, u) dx−
∫

RN

hu dx ≥ µ > 0.

Now, using Lemma 2.4 it is immediate that an iterative scheme could be performed
to construct a sequence (Un) ⊂ E such that, for all n ≥ 1,

‖Un‖ ≤ ρ <
1
δ0
, IUn−1(Un) ≤ −σ < 0,

and Un is a critical point of the functional IUn−1 . Moreover, using the same ar-
guments as for the sequence (un), we can easily prove that the sequence (Un) is
strongly convergent to some point U ∈ E which is a weak solution of problem (1.1).
Furthermore, we have

Ψ(U) =
∫

RN

a(x, U)|∇U |N + V (x)|U |N + |∆U |N

N
dx

−
∫

RN

F (x, U) dx−
∫

RN

hU dx ≤ −σ < 0.

Hence, u 6= U . This completes the proof of Theorem 1.2.
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