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EXISTENCE OF SOLUTIONS TO NONLINEAR PARABOLIC
UNILATERAL PROBLEMS WITH AN OBSTACLE DEPENDING

ON TIME

NABILA BELLAL

Abstract. Using the penalty method, we prove the existence of solutions to
nonlinear parabolic unilateral problems with an obstacle depending on time.

To find a solution, the original inequality is transformed into an equality by

adding a positive function on the right-hand side and a complementary condi-
tion. This result can be seen as a generalization of the results by Mokrane in

[11] where the obstacle is zero.

1. Introduction

The main purpose of this article is to prove the existence of a solution to a
nonlinear parabolic inequality of obstacle type. Our problem is associated to a
second-order nonlinear operator of Leray-Lions type. We prove that actually the
solution satisfies an equation with a modification of the right-hand side by a positive
function and a complementary condition. This result can be seen as a generalization
of the result obtained Mokrane [11] when the obstacle is zero.

Statement of the problem. Let Ω be a bounded Lipschitz open set of RN with
boundary ∂Ω and T a positive real number. Set Q = Ω× (0, T ) and Σ = Γ× (0, T ).
Given functions u0 and ψ we look for a solution u to the problem

∂u

∂t
+A(u) + g(u,Du)− f = µ in Q = Ω×]0, T [, (1.1)

u ≥ ψ, µ ≥ 0, µ(u− ψ) = 0 in Q, (1.2)

u(x, t) = 0 on Σ, (1.3)

u(x, 0) = u0(x) in Ω. (1.4)

Here A is a Leray-Lions operator from Lp(0, T ;W 1,p
0 (Ω)) into its dual, f belongs

to Lp
′
(Q) and g(x, t, u,Du) is a nonlinear term, the prototype of which is u|Du|q

with q < p− 1, we suppose that p > 2.
When g is equal to zero, the corresponding result has been proved e.g. in [8]. On

the other hand, the equation associated with the unilateral problem (1.1), (1.3),
(1.4) (i.e. the case where µ = 0 in (1.1), the conditions (1.2) being omitted) has
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been solved in [5]. Here we extend Mokrane’s result [11], by utilizing different
techniques. For ψ = 0, [11] proved the existence of a solution.

Considered just as an equation (without obstacle) or as a variational inequality
this problem, or very similair ones with various types of hypotheses on the operator
A (or the function a(x, t, s, ξ) see below), g and the data have been addressed by
several authors, [1, 2, 9].

For some of these results, an extra condition on the form a(x, t, s, .) applied
to the positive part on any test function is added. It seems for us that it is more
interesting and realistic, to avoid this condition, and replace it by an extra regularity
condition on the obstacle. Moreover these authors did not deal with the existence
of the function µ and the complementary condition µ(u− ψ) = 0 in Q.

In this article we use a regularization-penalization procedure and a compactness
result analogous to the ones introduced [11], and some other different techniques.

This article is organised as follows. The first part is devoted to the hypothe-
ses and the setting of the main result. In the second one we proceed by the
regularization-penalisation method. We construct a one parameter family of so-
lutions and prove some estimates on these approximate solutions. In the third part
we prove the convergence of an extracted subsequence of this family, to a solution
of our problem.

2. Hypotheses and the main result

Let Ω be a bounded subset of RN , with Lipschitz boundary ∂Ω, Q be Ω×]0, T [ for
a given T , 0 < T <∞ and Σ = ∂Ω×]0, T [. Let p and p′ be fixed with 1

p + 1
p′ = 1,

2 < p < ∞, W 1,p
0 (Ω) is the usual Sobolev space equipped with the Lp norm of

the gradients. Let A be a nonlinear operator from Lp(0, T ;W 1,p
0 (Ω)) into its dual

Lp
′
(0, T ;W−1,p′(Ω)) of Leray-Lions type defined by

A(u) = −div(a(x, t, u,Du)),

where a(x, t, s, ξ) is a Carathéodory function such that

a(x, t, s, ξ) ≤ β[|s|p−1 + |ξ|p−1 + k(x, t)], k(x, t) ∈ Lp
′
(Q), β > 0

[a(x, t, s, ξ)− a(x, t, s, η)][ξ − η] > 0, ∀ξ 6= η

a(x, t, s, ξ)ξ ≥ α|ξ|p, α > 0.

(2.1)

Let g(x, t, u,Du) be a nonlinear lower order term having growth of order q,
(q < p − 1) with respect to |Du| and of order m (1 < m < p − q) with respect
to |u| and satisfying a sign condition. To be more precise we assume that g is a
Carathéodory function such that

|g(x, t, s, ξ)| ≤ b(|s|)(h(x, t) + |ξ|q) (2.2)

where 1 < q < p − 1, h ∈ L∞(Q), and b : R+ → R+ is a continuous, nonnegative
increasing function, having growth of order m, (1 < m < p− q) with respect to |u|:

b(|u|) ≤ ρ+ |u|m, ρ > 0, 1 < m < p− q; (2.3)

g(x, t, s, ξ)s ≥ 0 ∀(x, t, s, ξ) ∈ Ω× R2 × RN . (2.4)

We have the following assumptions on u0, f and ψ:

u0 ∈ L2(Ω), (2.5)

f ∈ Lp
′
(Q), (2.6)
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ψ ∈ Lp(0, T ;W 1,p(Ω)) with ψ ≤ 0 on Σ, (2.7)

ψ(0) ≤ u0 a.e. in Ω, (2.8)

ψ+ ∈ L∞(Q), (2.9)
∂ψ

∂t
∈ Lp

′
(Q) (2.10)

Also we assume a complementary condition on a and ψ,

div(a(x, t, u,Dψ) ∈ Lp
′
(Q) for u ∈ Lp(0, T,W 1,p

0 (Ω)) (2.11)

and is bounded in Lp
′
(Q) on bounded sets of Lp(0, T,W 1,p

0 (Ω)).
Our main result is the following.

Theorem 2.1. Under assumptions (2.1)–(2.10) there exist at least one pair of
functions u and µ which are a solution of (1.1)–(1.4) and satisfy

u ∈ L∞(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)), (2.12)

∂u

∂t
= λ1 + λ2 with λ1 ∈ Lp

′
(0, T ;W−1,p′(Ω)), λ2 ∈ L1(Q), (2.13)

u ≥ ψ in Q, (2.14)

µ ∈ Lp
′
(Q), (2.15)

µ ≥ 0, (2.16)

g(x, t, u,Du) ∈ L1(Q) and ug(x, t, u,Du) ∈ L1(Q), (2.17)
∂u

∂t
+A(u) + g(x, t, u,Du)− f = µ in Q, (2.18)

µ(u− ψ) = 0 in Q, (2.19)

u ∈ C0(0, T ;W−1,r(Ω)) for r < inf(p,
p

p− 1
,

N

N − 1
), (2.20)

u(x, 0) = u0(x) in Ω. (2.21)

3. Proof of the Theorem 2.1

3.1. Approximate solutions. For ε > 0, we define

gε(x, t, s, ξ) =
g(x, t, s, ξ)

1 + ε|g(x, t, s, ξ)|
(3.1)

and we denote by uε the solution of the approximate and penalized problem

∂uε
∂t
− div(a(x, t, uε, Duε)) + gε(x, t, uε, Duε)

− 1
εp−1

|(uε − ψ)−|p−2(uε − ψ)− = f, in Q,

uε(x, 0) = u0(x), x ∈ Ω,
uε = 0 on Σ,

uε ∈ Lp(0, T ;W 1,p
0 (Ω))

(3.2)

which has a weak solution by the classical result of Lions [10], Donati [8], where v−

denotes the negative part of v, i.e. v− = sup(0,−v), for any function v.
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The function uε is a solution of (3.2) in the following sense:

uε ∈ Lp(]0, T [,W 1,p
0 (Ω)) ∩ C([0, T ], L2(Ω)),

∂uε
∂t
∈ Lp

′
(0, T ;W−1,p′(Ω)), uε(x, 0) = u0(x),∫ T

0

〈∂uε
∂t

, v〉dt+
∫
Q

a(x, t, uε, Duε)Dv dx dt+
∫
Q

gε(x, t, uε, Duε)v dx dt

− 1
εp−1

∫
Q

((uε − ψ)−)p−2(uε − ψ)−v dx dt

=
∫
Q

fv dx dt, ∀v ∈ Lp(]0, T [,W 1,p
0 (Ω))

(3.3)

3.2. Lp(0, T ;W 1,p
0 (Ω)) - estimate of uε. Recall that since ψ ∈ Lp(]0, T [,W 1,p(Ω)),

p > 2 and ∂ψ
∂t ∈ Lp

′
(Q), we have ψ ∈ W 1,p′(Q). From this and by a slight

modifaction of the [14, Lemma 1.1], we deduce that ∂ψ+

∂t ∈ L
p′(Q) and (uε − ψ+)

is a possible test function. We use it in (3.3).
Multiplying (3.2) by the test function (uε − ψ+) we get, denoting by 〈, 〉 the

duality pairing between W 1,p
0 (Ω) and its dual

∫ t

0

〈∂(uε − ψ+)
∂t

, uε − ψ+
〉
dt′ +

∫ t

0

∫
Ω

a(x, t′, uε, Duε)D(uε − ψ+) dx dt′

+
∫ t

0

∫
Ω

gε(x, t′, uε, Duε)(uε − ψ+) dx dt′

− 1
εp−1

∫ t

0

∫
Ω

|(uε − ψ)−|p−2(uε − ψ)−(uε − ψ+) dx dt′

=
∫ t

0

∫
Ω

(f − ∂ψ+

∂t
)(uε − ψ+) dx dt′.

(3.4)

which implies

1
2
‖uε(t)− ψ+(t)‖2L2(Ω) +

∫ t

0

∫
Ω

a(x, t′, uε, Duε)Duε dx dt′

+
∫ t

0

∫
Ω

uεgε(x, t′, uε, Duε) dx dt′

+
1

εp−1

∫ t

0

‖(uε − ψ)−(t′)‖pLp(Ω)dt
′ +

1
εp−1

∫ t

0

∫
Ω

|(uε − ψ)−|p−1ψ− dx dt′

=
1
2
‖(u0 − ψ+(0))‖2L2(Ω) +

∫ t

0

∫
Ω

(f − ∂ψ+

∂t
)uε dx dt′ −

∫ t

0

∫
Ω

(f − ∂ψ+

∂t
)ψ+ dx dt′

+
∫ t

0

∫
Ω

a(x, t′, uε, Duε)Dψ+ dx dt′ +
∫ t

0

∫
Ω

ψ+gε(x, t′, uε, Duε) dx dt′ .

(3.5)
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Using the conditions (2.1), (2.2), (2.3), (2.4), (2.9), Poincaré and Hölder inequal-
ities we obtain∫

Q

|a(x, t, uε, Duε)Dψ+| dx dt

≤ β
∫
Q

|uε|p−1|Dψ+| dx dt+ β

∫
Q

|Duε|p−1|Dψ+| dx dt+
∫
Q

|k(x, t)| |Dψ+| dx dt

≤ θ
∫
Q

|Duε|p dx dt+M1 +M2,

(3.6)
and ∣∣ ∫

Q

ψ+gε(x, t, uε, Duε) dx dt
∣∣ ≤ 3θ

∫ t

0

|Duε|pLp(Ω) dt
′ +M3,

where θ is any positive real number and M1, M2 and M3 depend on the data θ and
T .

By (2.1), we obtain∫ t

0

∫
Ω

a(x, t′, uε, Duε)Duε dx dt′ ≥ α
∫ t

0

∫
Ω

|Duε|p dx dt′ = α

∫ t

0

‖Duε‖pLp(Ω)dt
′.

(3.7)
Moreover, since f, ∂ψ

+

∂t ∈ L
p′(Q) and u0 ∈ L2(Ω) we deduce from (2.9) and Hölder

inequality that∫ t

0

∫
Ω

(f − ∂ψ+

∂t
)uε dx dt′ −

∫ t

0

∫
Ω

(f − ∂ψ+

∂t
)ψ+ dx dt′ +

1
2
‖(u0 − ψ+(0))‖2L2(Ω)

≤M4 + θ

∫ t

0

‖Duε‖pLp(Ω)dt
′.

(3.8)
Now we deduce from (3.5) and inequalities (3.6), (3.7) and (3.8) that

1
2
‖uε(t)− ψ+(t)‖2L2(Ω) + (α− 5θ)

∫ t

0

‖uε‖pW 1,p
0 (Ω)

dt′

+
∫ t

0

∫
Ω

uεgε(x, t′, uε, Duε) dx dt′ +
1

εp−1

∫ t

0

‖(uε − ψ)−(t′)‖pLp(Ω)dt
′

+
1

εp−1

∫ t

0

∫
Ω

|(uε − ψ)−|p−2(uε − ψ)−ψ− dx dt′

≤M1 +M2 +M3 +M4.

(3.9)

Choosing θ small enough (for example θ = α
10 ) it results that

‖uε‖Lp(0,T ;W 1,p
0 (Ω)) ≤ C1, (3.10)

‖uε‖L∞(0,T ;L2(Ω)) ≤ C2, (3.11)∫
Q

uεgε(x, t, uε, Duε) dx dt ≤ C3. (3.12)

Note that θ,Mi and Ci denote nonnegative constants which do no depend on ε.
Then by extracting a subsequence also denoted by uε, we see that there exists

uε ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) (3.13)
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such that

uε ⇀ u weakly in Lp(0, T ;W 1,p
0 (Ω)), (3.14)

uε ⇀ u weakly star in L∞(0, T ;L2(Ω)) (3.15)

Then (2.12) is proved.

3.3. Lp(Q)-estimate of (uε−ψ)−

ε . The equation (3.2) can be written as

∂(uε − ψ)
∂t

− div[(a(x, t, uε, Duε)− a(x, t, uε, Dψ))] + gε(x, t, uε, Duε)

− 1
εp−1

|(uε − ψ)−|p−2(uε − ψ)−

= f − ∂ψ

∂t
+ div(a(x, t, uε, Dψ)), in Q.

(3.16)

Multiplying (3.16) by the test function − (uε−ψ)−

ε , we obtain

− 1
ε

∫ T

0

〈∂(uε − ψ)
∂t

, (uε − ψ)−
〉
dt

− 1
ε

∫
Q

[(a(x, t, uε, Duε)− a(x, t, uε, Dψ))]D(uε − ψ)− dx dt

− 1
ε

∫
Q

(uε − ψ)−gε(x, t, uε, Duε) dx dt+
1
εp

∫
Q

|(uε − ψ)−|p dx dt

= −1
ε

∫ T

0

〈
f − ∂ψ

∂t
+ div(a(x, t, uε, Dψ)), (uε − ψ)−

〉
dt.

(3.17)

Using (2.6), (2.10), (2.11), we have f− ∂ψ
∂t +div(a(x, t, uε, Dψ)) ∈ Lp′(0, T ;Lp

′
(Ω)),

then using Young inequality the right hand side of (3.17) is absorbed by the fourth
term of the left hand side. On the set where uε ≤ ψ, thanks to the strict monotony,
the second term is non negative.

Concerning the third term of (3.17), we can rewrite it in the form

I = −1
ε

∫
{uε≤ψ,uε<0}

(uε − ψ)−gε(x, t, uε, Duε) dx dt

− 1
ε

∫
{0≤uε≤ψ}

(uε − ψ)−gε(x, t, uε, Duε) dx dt = I1 + I2,

by the sign condition on g, I1 is non negative.
For I2 using the growth condition on g, h, b and ψ+, we can easily obtain two

positive constants K1 and K2 such that |g(x, t, uε, Duε)| ≤ K1 + K2|Duε|q. Then
I2 can be estimated as follows

|I2| ≤ K1

∫
{0≤uε≤ψ}

(uε − ψ)−

ε
dx dt+K2

∫
{0≤uε≤ψ}

|Duε|q
(uε − ψ)−

ε
dx dt

= A1 +A2.

It is clear that |A1| ≤ C‖ (uε−ψ)−

ε ‖Lp(Q). For A2 we use (3.10) and Hölder inequality
to obtain

A2 = K2

∫
{0≤uε≤ψ}

|Duε|q
(uε − ψ)−

ε
dx dt
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≤ K2

∫
{0≤uε≤ψ}

(
|Duε|qr

) 1
r
(

(
(uε − ψ)−

ε
)r
′
) 1
r′
dx dt

with 1
r + 1

r′ = 1. Choosing r such that qr = p and thus r′ = p
p−q , one has A2 ≤

C‖ (uε−ψ)−

ε ‖Lr′ (Q). Since q < p−1 and thus r′ < p, we get |A2| ≤ C‖ (uε−ψ)−

ε ‖Lp(Q).
Therefore, we obtain

‖ (uε − ψ)−

ε
‖pLp(Q) ≤ C (3.18)

From (3.18) we infer that

(uε − ψ)− → 0 strongly in Lp(Q) (3.19)

and thus
u ≥ ψ a.e. on Q (3.20)

which proves (2.14).

3.4. Equi-integrability of gε(x, t, uε, Duε). Now we adapt a method of [15] to
prove the equi-integrability of gε(x, t, uε, Duε). For δ > 0, define the sets

Fδ = {(x, t) ∈ Q : |u| ≤ δ},
Gδ = {(x, t) ∈ Q : |u| > δ}.

Using the estimates (3.10) on uε, the conditions (2.2), (2.3) and (2.4), for any
measurable subset E ⊂ Q, we have∫

E

|gε(x, t, uε, Duε)| dx dt

=
∫
E∩Fδ

|gε(x, t, uε, Duε)| dx dt+
∫
E∩Gδ

|gε(x, t, uε, Duε)| dx dt

≤
∫
E∩Fδ

(ρ+ |uε|m)(h(x, t) + |Duε|q) dx dt+
1
δ

∫
E∩Gδ

uεgε(x, t, uε, Duε) dx dt

≤ (ρ+ δm)
∫
E

(h(x, t) + |Duε|q) dx dt+
1
δ

∫
E

uεgε(x, t, uε, Duε) dx dt

≤ (ρ+ δm)(‖h‖L∞(Q)|E|+ C
q/p
1 (|E|)1− qp ) +

1
δ
C3.

(3.21)
From (3.21), by choosing first δ sufficiently large and the measure of E sufficiently

small, we deduce that

gε(x, t, uε, Duε) is equi-integrable. (3.22)

Note also that (3.21) with E = Q implies

gε(x, t, uε, Duε) is bounded in L1(Q). (3.23)

3.5. Almost pointwise convergence of uε and Duε. From (3.2) we can write
∂uε
∂t = λε1+λε2, with λε2 = gε(x, t, uε, Duε). Since uε is bounded in Lp(0, T ;W 1,p

0 (Ω))

(see (3.10) and (uε−ψ)−

ε is bounded in Lp(Q) (see (3.18)) we deduce from (3.23)
that

∂uε
∂t

= λε1 + λε2 (3.24)

with λε1 bounded in Lp
′
(0, T ;W−1,p′(Ω)) and λε2 bounded in L1(Q).
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Since gε(x, t, uε, Duε) is equi-integrable in L1(Q) we can extract subsequences
(still denoted by λε1 and λε2) such that

λε1 ⇀ λ1 weakly in Lp
′
(0, T ;W−1,p′(Ω)), (3.25)

λε2 ⇀ λ2 weakly in L1(Q) (3.26)

This implies
∂u

∂t
= λ1 + λ2 ∈ Lp

′
(0, T ;W−1,p′(Ω)) + L1(Q) (3.27)

which proves (2.13).
From (3.24) and the estimate (3.10) on uε we have

uε is bounded in Lp(0, T ;W 1,p
0 (Ω)) with ∂uε

∂t bounded in
Lp
′
(0, T ;W−1,p′(Ω)) + L1(0, T ;L1(Ω)) ⊂ L1(0, T ;W−1,r(Ω))

for all r < inf{ N
N−1 ,

p
p−1}.

(3.28)

Since W 1,p
0 (Ω) ⊂ Lp(Ω) ⊂W−1,r(Ω) for p > r, the first injection being compact, a

lemma of Aubin’s type (see eg. [13, corollary 4]) implies that

uε → u strongly in Lp(0, T ;Lp(Ω)) (3.29)

which also implies that at least for a subsequence; still denoted by uε,

uε → u a.e in Q. (3.30)

Then we apply a compactness result due to Boccardo and Murat [5, 6], and more
precisely [6, Theorem 4.3 and Remark 4.1]. Since uε is bounded in Lp(0, T ;W 1,p

0 (Ω))
and since

∂uε
∂t
− div(a(x, t, uε, Duε)) = λε1 + λε2is bounded in Lp

′
(Q) + L1(Q), (3.31)

in view of the approximation gε(x, t, uε, Duε) which is weakly compact in L1(Q)
see (3.22), (3.23) and (3.18), we have (for a subsequence)

Duε → Du strongly in Lq(Q)∀q < p, (3.32)

which implies
Duε → Du a.e in Q. (3.33)

3.6. Passing to the limit in the equation. Using (3.1) and

gε(x, t, uε, Duε)→ g(x, t, u,Du) a.e in Q, (3.34)

which follows from (3.30), (3.33) and (3.22), we deduce, by Vitali’s theorem, that

gε(x, t, uε, Duε)→ g(x, t, u,Du) strongly in L1(Q). (3.35)

Moreover since uεgε(x, t, uε, Duε) ≥ 0 a.e. in Q and by (3.12), Fatou’s lemma
implies

ug(x, t, u;Du) belongs to L1(Q). (3.36)

which completes the proof of (2.17).
Similarly since uε is bounded in Lp(0, T ;W 1,p

0 (Ω)) (see (3.10)) and since uε and
Duε tends to u and Du a.e in Q we have

a(x, t, uε, Duε) ⇀ a(x, t, u,Du) weakly in Lp
′
(Q). (3.37)
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Since (uε−ψ)−

ε is bounded in Lp(Q) (see (3.18))

1
εp−1

|(uε − ψ)−|p−2(uε − ψ)− ⇀ µ weakly in Lp
′
(Q) (3.38)

and we have µ ∈ Lp′(Q), µ ≥ 0 which proves (2.15), (2.16). Therefore we can pass
to the limit in each term of (3.2) and thus prove that equation (2.18) holds.

Let us now prove (2.19); i.e,

µ · (u− ψ) = 0 a.e. in Q .

This follows from the equality

1
εp−1

|(uε − ψ)−|p−2(uε − ψ)−(uε − ψ) = −ε| (uε − ψ)−

ε
|p

since uε tends to u strongly in Lp(Q) (see (3.29)) while 1
εp−1 |(uε−ψ)−|p−2(uε−ψ)−

tends weakly to µ in Lp
′
(Q) and (uε−ψ)−

ε is bounded in Lp(Q).

3.7. Initial condition. To complete the proof of the Theorem it remains to prove
that (2.20) and (2.21) hold. We first prove that for r < inf{ N

N−1 ,
p
p−1}

uε → u strongly in C0(0, T ;W−1,r(Ω)). (3.39)

This allows us to pass to the limit in uε(x, 0) = u0(x) and implies that u satisfies
the initial condition.

Recalling that gε(x, t, uε, Duε) converges in the strong topology of L1(Q), (see
(3.35)) we can improve (3.24) to

∂uε
∂t

= λε1 + λε2 (3.40)

with λε1 bounded in the space Lp
′
(0, T ;W−1,p′(Ω)) and λε2 relatively compact in

L1(0, T ;L1(Ω)). Since

W−1,p′(Ω) + L1(Ω) ⊂W−1,r(Ω), (3.41)

for all h > 0 we have

‖uε(t+ h)− uε(t)‖W−1,r(Ω)

= ‖
∫ t+h

t

(λε1 + λε2)dt′‖W−1,r(Ω)

≤ C
∫ t+h

t

‖λε1‖W−1,p′ (Ω)dt
′ + C

∫ t+h

t

‖λε2‖L1(Ω)dt
′

≤ Ch
1
p ‖λε1‖Lp′ (0,T ;W−1,p′ (Ω)) + C‖λε2‖L1(t,t+h;L1(Ω)),

(3.42)

which in view of (3.40) implies that the function uε is uniformly equicontinuous
in C0(0, T ;W−1,r(Ω)). Since uε is bounded in L∞(0, T ;L2(Ω)), (see (3.11)) we
deduce from Ascoli’s theorem (see, eg [13, Lemma 1]) that uε is relatively compact
in C0(0, T ;W−1,r(Ω)) which proves (3.39).
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Remarks. In this article, we assumed that p > 2, and realized that does not seem
to be easy extending this method for the case p < 2.

It seems difficult to avoid a supplementary condition on ψ like (2.11). A similar
condition is assumed for example in [8, hypotheses (9), (10)]. The condition (2.11)
can be seen as follows: let us define for u ∈ Lp(0, T,W 1,p

0 (Ω)) the function G = f −
∂ψ
∂t +div a(x, t, u,Dψ). The hypotheses on a, ψ are set in order to have G ∈ Lp′(Q).
In the case where a is independent of u, this is essentially a regularity condition on
the obstacle ψ. If a depends on u, then with suitable condition on the derivative of
a(x, t, s, ξ) with respect to x, s, ξ one can see that(2.11) is satisfied by a function a
of the form a(x, t, s, ξ) = b(x, t, s)|ξ|p−2ξ.

Acknowledgements. The author is indebted to the anonymous referees for their
valuable comments and suggestions that helped improving the original manuscript.

References

[1] L. Aharouch, E. Azroul, M. Rhoudaf; Existence result for variational degenerated parabolic

problems via pseudo-monotonicity, Oujda International Conference on Nonlinear Analysis.

Electronic Journal of Differential Equations, Conference 14, (2006), pp. 9-20.
[2] Y. Akdim, J. Bennouna, A. Bouajaja, M. Mekkour; Strongly nonliear parabolic unilateral

problems without sign conditions and three unbounded non linearities, IJCSI International

Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November (2012).
[3] H. Brezis, F. E. Browder; Strongly nonlinear parabolic variational inequalities, Proc. Nat.

Acad. Sci. USA 77 (1980), pp. 713-715.

[4] A. Bensoussan, J. L. Lions, G. Papanicolaou; Asymptotic analysis for periodic structures,
North-Holland, Amsterdam (1978).

[5] L. Boccardo, F. Murat; Strongly nonlinear Cauchy problems with gradient dependent lower

order nonlinearity, in Recent Advances in Nonlinear Elliptic and Parabolic Problems, (Pro-
ceedings, Nancy, 1988) ed. by P. Benilan, M. Chipot, L. C. Evans, M. Pierre, Pitman Research

Notes in Mathematics series 208 (1989), Longman, Harlow, pp. 247-254.
[6] L. Boccardo, F. Murat; Almost everywhere convergence of the gradients of solutions to elliptic

and parabolic equations, Nonlinear Analysis, Theory, Methods & Applications, Vol. 19, No.

6, (1992), pp. 581-597.
[7] P. Charrier, G. M. Troianiello; On strong solutions to parabolic unilateral problems with

obstacle dependent on time, J. Math. Anal. Appl. 65 (1978), pp. 110-125.

[8] F. Donati; A penality method approach to strong solutions of some nonlinear parabolic unilat-
eral problems, Nonlinear Analysis, Theory, Methods and Applications 6 (1982), pp. 285-297.

[9] R. Korte, T. Kuusi, J. Siljander; Obstacle problem for nonlinear parabolic equations, J.

Differential Equations 246 (9), (2009), pp. 3668 -3680.
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