Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 230, pp. 1-18. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF INFINITELY MANY RADIAL SOLUTIONS FOR QUASILINEAR SCHRÖDINGER EQUATIONS

GUI BAO, ZHI-QING HAN

$$
\begin{aligned}
& \text { ABSTRACT. In this article we prove the existence of radial solutions with ar- } \\
& \text { bitrarily many sign changes for quasilinear Schrödinger equation } \\
& -\quad \sum_{i, j=1}^{N} \partial_{j}\left(a_{i j}(u) \partial_{i} u\right)+\frac{1}{2} \sum_{i, j=1}^{N} a_{i j}^{\prime}(u) \partial_{i} u \partial_{j} u+V(x) u=|u|^{p-1} u, x \in \mathbb{R}^{N}
\end{aligned}
$$

where $N \geq 3, p \in\left(1, \frac{3 N+2}{N-2}\right)$. The proof is accomplished by using minimization under a constraint.

1. Introduction

We consider the quasilinear elliptic problem

$$
\begin{equation*}
-\sum_{i, j=1}^{N} \partial_{j}\left(a_{i j}(u) \partial_{i} u\right)+\frac{1}{2} \sum_{i, j=1}^{N} a_{i j}^{\prime}(u) \partial_{i} u \partial_{j} u+V(x) u=|u|^{p-1} u, \quad x \in \mathbb{R}^{N} \tag{1.1}
\end{equation*}
$$

where $N \geq 3,1<p<2\left(2^{*}\right)-1=\frac{3 N+2}{N-2}, 2^{*}=\frac{2 N}{N-2}$ is the critical Sobolev constant, $a_{i j} \in C^{1, \alpha}(\mathbb{R})$ is a symmetric matrix function, $\alpha \in(0,1)$ and $a_{i j}^{\prime}(u)=\frac{d}{d u} a_{i j}(u)$.

For $a_{i j}(u)=\left(1+u^{2}\right) \delta_{i j}$, Equation 1.1$)$ is reduced to the well known Modified Nonlinear Schrödinger Equation

$$
\begin{equation*}
-\Delta u+V(x) u-\frac{1}{2} u \Delta\left(u^{2}\right)=|u|^{p-1} u, \quad x \in \mathbb{R}^{N} \tag{1.2}
\end{equation*}
$$

This type of equations arise from the study of steady states and standing wave solutions of time-dependent nonlinear Schrödinger equations, and are derived as

In the literature several papers have considered problem 1.2 . For example, the existence of positive ground state solution of 1.2 was proved by Poppenberg, Schmitt and Wang [20] by using a constrained minimization argument. Liu et al [15], by a change of variables, transformed the quasilinear problem into a semilinear one, and used an Orlicz space was the working space. The authors proved the existence of soliton solutions of $(\sqrt{1.2}$ for a Lagrange multiplier $\lambda>0$. Colin and Jeanjean [10] also used the change variables but work in the Sobolev space $H^{1}\left(\mathbb{R}^{N}\right)$, they proved the existence of positive solution for 1.2 with a Lagrange multiplier

[^0]appears in the equation. The same method of changing variables was also used recently to obtain the existence of infinitely many solutions of problem (1.2) in [12]. See also 4 for the existence of positive solutions of problem (1.2) for the case of critical growth.

The main mathematical difficulties with problem 1.2 are caused by the term $\int_{\mathbb{R}^{N}} u^{2}|\nabla u|^{2} \mathrm{~d} x$ which is not convex. A further problem is caused by usual lack of compactness since these problems are dealt with in the whole \mathbb{R}^{N}.

In this article, we consider a general problem 1.1). Under a certain constraint, we prove that (1.1) possess infinitely many sign-changing solutions for $p \in\left(1, \frac{3 N+2}{N-2}\right)$. As far as we know, besides [14], there are very few results for the existence of sign-changing solutions for (1.1). However, we point out that in [14], solutions are founded in the case $p \geq 3$.

Throughout this article, we denote the positive constants (possibly different) by C, C_{1}, C_{2}, \ldots First we state the following assumptions.
(V1) $V(x) \in C^{\alpha}\left(\mathbb{R}^{\mathbb{N}}\right)$ is a radially symmetric function and satisfies

$$
0<V_{0} \leq V(x) \leq \lim _{|x| \rightarrow+\infty} V(x)=V_{\infty}<+\infty, \quad \forall x \in \mathbb{R}^{N}
$$

(V2) The function $x \longmapsto x \cdot \nabla V(x)$ belongs to $L^{\infty}\left(\mathbb{R}^{N}\right)$ and $\|x \cdot \nabla V(x)\|_{\infty} \leq$ $C_{0}<(p-1) V_{0}$.
(V3) The map $s \longmapsto s^{N+2} V(s x)$ is concave for any $x \in \mathbb{R}^{N}, s \in \mathbb{R}$.
(A1) There exist constants $C_{1}>0, C_{2}>0$, such that for all $\xi \in \mathbb{R}^{N}$ and $s \in \mathbb{R}$,

$$
C_{1}\left(1+s^{2}\right)|\xi|^{2} \leq \sum_{i, j=1}^{N} a_{i j}(s) \xi_{i} \xi_{j} \leq C_{2}\left(1+s^{2}\right)|\xi|^{2} .
$$

(A2) There exists constant $b>0$ such that for all $\xi \in \mathbb{R}^{N}$ and $s \in \mathbb{R}$ such that

$$
(b-2) \sum_{i, j=1}^{N} a_{i j}(s) \xi_{i} \xi_{j} \leq s \sum_{i, j=1}^{N} a_{i j}^{\prime}(s) \xi_{i} \xi_{j} \leq(p-1) \sum_{i, j=1}^{N} a_{i j}(s) \xi_{i} \xi_{j}-b|\xi|^{2} .
$$

(A3) $|s|^{N-1} \sum_{i, j=1}^{N}\left(a_{i j}(s)+\frac{1}{N} s a_{i j}^{\prime}(s)\right) \xi_{i} \xi_{j}$ is decreasing in $s \in(0,+\infty)$ and increasing in $s \in(-\infty, 0)$.

Here is our main result.
Theorem 1.1. Assume (V1)-(V3), (A1)-(A3). Then for any $k \in\{0,1,2, \ldots\}$, there exists a pair of radial solutions $u_{k}^{ \pm}$of 1.1 with the following properties:
(i) $u_{k}^{-}(0)<0<u_{k}^{+}(0)$;
(ii) $u_{k}^{ \pm}$possess exactly k nodes r_{l} with $0<r_{1}<r_{2}<\cdots<r_{k}<+\infty$, and $\left.u_{k}^{ \pm}(x)\right|_{|x|=r_{l}}=0, l=1,2, \ldots, k$.

We shall prove Theorem 1.1 under a convenient constraint, which is not of Nehari-type; instead, we use a Pohozaev identity. This kind of argument can be found in [23], see also [1, 24, 25] for different applications. Moreover, the main idea to prove Theorem 1.1 can be found in 11, see also [2, 9. However, since we deal with a more general case and $p \in\left(1, \frac{3 N+2}{N-2}\right)$, there are more difficulties.

This article is organized as follows: Section 2 is devoted to establish some preliminary results and useful lemmas. Theorem 1.1 will be proved in Section 3.

2. Preliminary lemmas

Set $H_{r}^{1}\left(\mathbb{R}^{N}\right)=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right): u(x)=u(|x|)\right\}$, and $X=\left\{u \in H_{r}^{1}\left(\mathbb{R}^{N}\right)\right.$: $\left.\int_{\mathbb{R}^{N}}|\nabla u|^{2}|u|^{2} \mathrm{~d} x<+\infty\right\}$, where $H^{1}\left(\mathbb{R}^{N}\right)$ is the usual Sobolev space and $\|u\|_{H^{1}}^{2}=$ $\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+V|u|^{2}\right) \mathrm{d} x . X$ is a complete metric space with distance:

$$
d_{X}(u, v)=\|u-v\|_{H^{1}}+\left\|\nabla u^{2}-\nabla v^{2}\right\|_{L^{2}} .
$$

Then, $u \in X$ is a weak solution of 1.1 if for all $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(\sum_{i, j=1}^{N} a_{i j}(u) \partial_{i} u \partial_{j} \phi+\frac{1}{2} \sum_{i, j=1}^{N} a_{i j}^{\prime}(u) \partial_{i} u \partial_{j} u \phi+V(x) u \phi-|u|^{p-1} u \phi\right) \mathrm{d} x=0 \tag{2.1}
\end{equation*}
$$

The corresponding functional is

$$
I(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(\sum_{i, j=1}^{N} a_{i j}(u) \partial_{i} u \partial_{j} u+V(x) u^{2}\right) \mathrm{d} x-\frac{1}{p+1} \int_{\mathbb{R}^{N}}|u|^{p+1} \mathrm{~d} x
$$

Given $u \in X$ and $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, the Gâteaux derivative of I in the direction ϕ at u, denoted by $\left\langle I^{\prime}(u), \phi\right\rangle$ is defined as $\lim _{t \rightarrow 0^{+}} \frac{I(u+t \phi)-I(u)}{t}$. It is easy to check that

$$
\begin{aligned}
& \left\langle I^{\prime}(u), \phi\right\rangle \\
& =\int_{\mathbb{R}^{N}}\left(\sum_{i, j=1}^{N} a_{i j}(u) \partial_{i} u \partial_{j} \phi+\frac{1}{2} \sum_{i, j=1}^{N} a_{i j}^{\prime}(u) \partial_{i} u \partial_{j} u \phi+V(x) u \phi-|u|^{p-1} u \phi\right) \mathrm{d} x .
\end{aligned}
$$

Hence, u is a weak solution of problem 1.1 if this derivative is zero in every direction $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$.

From [20], we have the following two lemmas.
Lemma 2.1. For $N \geq 2$, there is a constant $C=C(N)>0$ such that

$$
|u(x)| \leq C|x|^{\frac{1-N}{2}}\|u\|_{H^{1}}
$$

for any $|x| \geq 1$ and $u \in H_{r}^{1}\left(\mathbb{R}^{N}\right)$.
Lemma 2.2. Let $\left\{u_{n}\right\} \subset H_{r}^{1}\left(\mathbb{R}^{N}\right)$ satisfy $u_{n} \rightharpoonup u$ in $H^{1}\left(\mathbb{R}^{N}\right)$. Then

$$
\liminf _{n} \int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2}\left|u_{n}\right|^{2} \mathrm{~d} x \geq \int_{\mathbb{R}^{N}}|\nabla u|^{2}|u|^{2} \mathrm{~d} x
$$

Lemma 2.3 ([26]). Let $N \geq 2$ and $2<q<2^{*}$. Then the imbedding

$$
H_{r}^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{q}\left(\mathbb{R}^{N}\right)
$$

is compact.
Lemma 2.4. (Brézis-Lieb lemma [7]) Let $\left\{u_{n}\right\} \subset L^{q}\left(\mathbb{R}^{N}\right)$ be a bounded sequence, where $1 \leq q<+\infty$, such that $u_{n} \rightarrow u$ almost everywhere in \mathbb{R}^{N}. Then

$$
\lim _{n \rightarrow+\infty}\left(\left|u_{n}\right|_{q}^{q}-\left|u_{n}-u\right|_{q}^{q}\right)=|u|_{q}^{q}
$$

Lemma 2.5 ([14). Let u be a weak solution of (1.1). Then u and ∇u are bounded. Moreover, u satisfies the following exponential decay at infinity

$$
|u(x)| \leq C e^{-\delta R}, \quad|x|=R, \quad \int_{\mathbb{R}^{N} \backslash B_{R}}\left(|\nabla u|^{2}+|u|^{2}\right) \mathrm{d} x \leq C e^{-\delta R}
$$

for some positive constants C, δ.

Let Ω be one of the following three types of domains:

$$
\begin{gather*}
\left\{x \in \mathbb{R}^{N}| | x \mid<R_{1}\right\}, \\
\left\{x \in \mathbb{R}^{N}\left|0<R_{2} \leq|x|<R_{3}<+\infty\right\},\right. \tag{2.2}\\
\left\{x \in \mathbb{R}^{N}| | x \mid \geq R_{4}>0\right\} .
\end{gather*}
$$

Set

$$
\begin{gathered}
H_{0, r}^{1}(\Omega)=\left\{u \in H_{0}^{1}(\Omega) \mid u(x)=u(|x|)\right\}, \\
X(\Omega)=\left\{\left.u \in H_{0, r}^{1}(\Omega)\left|\int_{\Omega}\right| \nabla u\right|^{2} u^{2} \mathrm{~d} x<+\infty\right\} .
\end{gathered}
$$

Now we consider the following equation on Ω :

$$
\begin{gather*}
-\sum_{i, j=1}^{N} \partial_{j}\left(a_{i j}(u) \partial_{i} u\right)+\frac{1}{2} \sum_{i, j=1}^{N} a_{i j}^{\prime}(u) \partial_{i} u \partial_{j} u+V(x) u=|u|^{p-1} u, \quad x \in \Omega \tag{2.3}\\
\left.u\right|_{\partial \Omega}=0
\end{gather*}
$$

The corresponding functional is

$$
I_{\Omega}(u)=\frac{1}{2} \int_{\Omega}\left(\sum_{i, j=1}^{N} a_{i j}(u) \partial_{i} u \partial_{j} u+V(x) u^{2}\right) \mathrm{d} x-\frac{1}{p+1} \int_{\Omega}|u|^{p+1} \mathrm{~d} x .
$$

Similarly we can define the Gâteaux derivative of I_{Ω} at $u \in X(\Omega)$ and weak solution of problem (2.3).

We extend any $u \in X(\Omega)$ to X by setting $u \equiv 0$ on $x \in \mathbb{R}^{N} \backslash \Omega$. Hereafter denote by u_{t} the map:

$$
\mathbb{R}^{+} \ni t \mapsto u_{t} \in X, u_{t}(x)=t u\left(t^{-1} x\right)
$$

and consider

$$
\begin{aligned}
f_{u}(t):=I\left(u_{t}\right)= & \frac{t^{N}}{2} \int_{\mathbb{R}^{N}} \sum_{i, j=1}^{N} a_{i j}(t u) \partial_{i} u \partial_{j} u \mathrm{~d} x \\
& +\frac{t^{N+2}}{2} \int_{\mathbb{R}^{N}} V(t x) u^{2} \mathrm{~d} x-\frac{t^{N+p+1}}{p+1} \int_{\mathbb{R}^{N}}|u|^{p+1} \mathrm{~d} x .
\end{aligned}
$$

By conditions (V 1) and (A1), and the fact that $p+1>2$, it is easy to see that $f_{u}(t)$ is positive for small t and tends to $-\infty$ if $t \rightarrow+\infty$. This implies that $f_{u}(t)$ attains its maximum. Moreover, thanks to (V2), $f_{u}: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is C^{1}, and

$$
\begin{aligned}
f_{u}^{\prime}(t)= & \frac{N}{2} t^{N-1} \int_{\mathbb{R}^{N}} \sum_{i, j=1}^{N} a_{i j}(t u) \partial_{i} u \partial_{j} u \mathrm{~d} x+\frac{t^{N}}{2} \int_{\mathbb{R}^{N}} u \sum_{i, j=1}^{N} a_{i j}^{\prime}(t u) \partial_{i} u \partial_{j} u \mathrm{~d} x \\
& +\frac{N+2}{2} t^{N+1} \int_{\mathbb{R}^{N}} V(t x) u^{2} \mathrm{~d} x+\frac{t^{N+2}}{2} \int_{\mathbb{R}^{N}} \nabla V(t x) \cdot x u^{2} \mathrm{~d} x \\
& -\frac{N+p+1}{p+1} t^{N+p} \int_{\mathbb{R}^{N}}|u|^{p+1} \mathrm{~d} x .
\end{aligned}
$$

Let

$$
M(\Omega)=\left\{u \in X(\Omega) \backslash\{0\}: J_{\Omega}(u)=0\right\}
$$

where $J_{\Omega}: X(\Omega) \rightarrow \mathbb{R}$ is defined as

$$
\begin{aligned}
J_{\Omega}(u)= & \frac{N}{2} \int_{\Omega} \sum_{i, j=1}^{N} a_{i j}(u) \partial_{i} u \partial_{j} u \mathrm{~d} x+\frac{1}{2} \int_{\Omega} u \sum_{i, j=1}^{N} a_{i j}^{\prime}(u) \partial_{i} u \partial_{j} u \mathrm{~d} x \\
& +\frac{N+2}{2} \int_{\Omega} V(x) u^{2} \mathrm{~d} x+\frac{1}{2} \int_{\Omega} \nabla V(x) \cdot x u^{2} \mathrm{~d} x-\frac{N+p+1}{p+1} \int_{\Omega}|u|^{p+1} \mathrm{~d} x .
\end{aligned}
$$

In other words, $M(\Omega)$ is the set of functions $u \in X(\Omega)$ such that $f_{u}^{\prime}(1)=0$. Moreover, $M(\Omega) \neq \emptyset$ (actually, given any $u \neq 0$, there exists $t>0$ such that $u_{t} \in M(\Omega)(c f$. [23]) $)$.

In the appendix of [14], by using Moser and De Giorgi iterations, the authors proved that weak solutions of (1.1) are bounded in $L^{\infty}\left(\mathbb{R}^{N}\right)$. Their arguments work also for $p \in(1,3)$. A density argument show that weak formulation (2.1) holds also for test functions in $H^{1}\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right)$. By [18, theorems 5.2 and 6.2 in chapter 4] it follows that $u \in C^{1, \alpha}$. From Schauder theory we conclude that $u \in C^{2, \alpha}$ is a classical solution of 1.1 . Moreover, if $u \in X$ is a solution, $u, D u, D^{2} u$ have an exponential decay as $|x| \rightarrow+\infty$ (see [14]). By [21], assume that $u \in X$ is a C^{2} solution of (1.1). Then, for all $a \in \mathbb{R}$, we have the identity

$$
\begin{align*}
& \left(\frac{N-2}{2}-a\right) \int_{\mathbb{R}^{N}} \sum_{i, j=1}^{N} a_{i j}(u) \partial_{i} u \partial_{j} u \mathrm{~d} x-\frac{a}{2} \int_{\mathbb{R}^{N}} u \sum_{i, j=1}^{N} a_{i j}^{\prime}(u) \partial_{i} u \partial_{j} u \mathrm{~d} x \\
& +\left(\frac{N}{2}-a\right) \int_{\mathbb{R}^{N}} V(x) u^{2} \mathrm{~d} x+\frac{1}{2} \int_{\mathbb{R}^{N}} \nabla V(x) \cdot x u^{2} \mathrm{~d} x \tag{2.4}\\
& +\left(a-\frac{N}{p+1}\right) \int_{\mathbb{R}^{N}}|u|^{p+1} \mathrm{~d} x=0
\end{align*}
$$

Observe also that $M(\Omega)$ is nothing but the set of functions $u \in X(\Omega)$ such that the identity 2.4 holds for $a=-1$. Then, all solutions belong to $M(\Omega)$.

Lemma 2.6. For any $u \in X(\Omega)$, the map f_{u} attains its maximum at exactly one point t^{u}. Moreover, f_{u} is positive and increasing for $t \in\left[0, t^{u}\right]$ and decreasing for $t>t^{u}$. Also,

$$
c:=\inf _{M(\Omega)} I_{\Omega}=\inf _{u \in X(\Omega), u \neq 0} \max _{t>0} I\left(u_{t}\right) .
$$

Proof. We employ a similar argument as in [23, Lemma 3.1]. Set

$$
g(t)=\frac{t^{N}}{2} \int_{\mathbb{R}^{N}} \sum_{i, j=1}^{N} a_{i j}(t u) \partial_{i} u \partial_{j} u \mathrm{~d} x-\frac{t^{N+p+1}}{p+1} \int_{\mathbb{R}^{N}}|u|^{p+1} \mathrm{~d} x
$$

Let $t_{1} \in \mathbb{R}^{+}, t_{2} \in \mathbb{R}^{+}, t_{1} \neq t_{2}$, then we have

$$
\begin{aligned}
g^{\prime}\left(t_{1}\right)-g^{\prime}\left(t_{2}\right)= & \frac{N}{2} \int_{\mathbb{R}^{N}} t_{1}^{N-1}\left(\sum_{i, j=1}^{N} a_{i j}\left(t_{1} u\right)+\frac{1}{N} t_{1} u \sum_{i, j=1}^{N} a_{i j}^{\prime}\left(t_{1} u\right)\right) \partial_{i} u \partial_{j} u \mathrm{~d} x \\
& -\frac{N}{2} \int_{\mathbb{R}^{N}} t_{2}^{N-1}\left(\sum_{i, j=1}^{N} a_{i j}\left(t_{2} u\right)+\frac{1}{N} t_{2} u \sum_{i, j=1}^{N} a_{i j}^{\prime}\left(t_{2} u\right)\right) \partial_{i} u \partial_{j} u \mathrm{~d} x \\
& -\frac{N+p+1}{p+1}\left(t_{1}^{N+p}-t_{2}^{N+p}\right) \int_{\mathbb{R}^{N}}|u|^{p+1} \mathrm{~d} x
\end{aligned}
$$

By using (A3) we obtain

$$
\left(g^{\prime}\left(t_{1}\right)-g^{\prime}\left(t_{2}\right)\right)\left(t_{1}-t_{2}\right) \leq 0
$$

This implies that $g(t)$ is a concave function. Then by assumption (V3),

$$
f_{u}(t)=g(t)+\frac{t^{N+2}}{2} \int_{\mathbb{R}^{N}} V(t x) u^{2} \mathrm{~d} x
$$

is a concave function. We already know that it attains its maximum. Let t^{u} be the unique point at which this maximum is achieved. Then t^{u} is the unique critical point of f_{u} and f_{u} is positive and increasing for $0<t<t^{u}$ and decreasing for $t>t^{u}$.

In particular, for any $u \in X(\Omega) \backslash\{0\}, t^{u} \in \mathbb{R}$ is the unique value such that $u_{t^{u}}$ belongs to $M(\Omega)$, and $I\left(u_{t}\right)$ reaches a global maximum for $t=t^{u}$.

Similar to [23, Proposition 3.3], we can prove the coercivity of $\left.I_{\Omega}\right|_{M(\Omega)}$.
Proposition 2.7. There exists $C>0$ such that for any $u \in M(\Omega)$,

$$
I_{\Omega}(u) \geq C \int_{\Omega}\left(u^{2}+|\nabla u|^{2}+u^{2}|\nabla u|^{2}\right) \mathrm{d} x
$$

Proof. Take $u \in M(\Omega)$ and extend u to X by setting $u \equiv 0$ on $\mathbb{R}^{N} \backslash \Omega$. Choose $t \in(0,1)$, then

$$
\begin{aligned}
I\left(u_{t}\right)-t^{N+p+1} I(u)= & \int_{\mathbb{R}^{N}} \sum_{i, j=1}^{N}\left(\frac{t^{N}}{2} a_{i j}(t u) \partial_{i} u \partial_{j} u-\frac{t^{N+p+1}}{2} a_{i j}(u) \partial_{i} u \partial_{j} u\right) \mathrm{d} x \\
& +\int_{\mathbb{R}^{N}}\left(\frac{t^{N+2}}{2} V(t x)-\frac{t^{N+p+1}}{2} V(x)\right) u^{2} \mathrm{~d} x
\end{aligned}
$$

Observe that $V(t x) \geq V_{0} \geq \delta V_{\infty} \geq \delta V(x)$, for some positive $\delta \in(0,1)$ depending only on V_{0} and V_{∞}. By choosing a smaller t, if necessary, we obtain

$$
\frac{t^{N+2}}{2} V(t x)-\frac{t^{N+p+1}}{2} V(x) \geq\left(\delta \frac{t^{N+2}}{2}-\frac{t^{N+p+1}}{2}\right) V(x) \geq \gamma_{0}
$$

for a fixed constant $\gamma_{0}>0$. Since $u \in M(\Omega)$, from Lemma 2.6 we obtain that $I\left(u_{t}\right) \leq I(u)$. By choosing $t \in\left(0,\left(\frac{C_{1}}{C_{2}}\right)^{\frac{1}{p-1}}\right)$ small enough, from (A1) we have

$$
\begin{aligned}
& \left(1-t^{N+p+1}\right) I(u) \\
& \geq I\left(u_{t}\right)-t^{N+p+1} I(u) \\
& \geq \int_{\mathbb{R}^{N}}\left(\frac{t^{N}}{2} C_{1}\left(1+(t u)^{2}\right)|\nabla u|^{2}-\frac{t^{N+p+1}}{2} C_{2}\left(1+u^{2}\right)|\nabla u|^{2}\right) \mathrm{d} x+\gamma_{0} \int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x \\
& =\frac{t^{N}}{2} \int_{\mathbb{R}^{N}}\left(\left(C_{1}-t^{p+1} C_{2}\right)+\left(C_{1}-C_{2} t^{p-1}\right)(t u)^{2}\right)|\nabla u|^{2} \mathrm{~d} x+\gamma_{0} \int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x \\
& \geq \frac{t^{N}}{2}\left(C_{1}-C_{2} t^{p-1}\right) \int_{\mathbb{R}^{N}}\left(1+t^{2} u^{2}\right)|\nabla u|^{2} \mathrm{~d} x+\gamma_{0} \int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x \\
& \geq \frac{t^{N+2}}{2}\left(C_{1}-C_{2} t^{p-1}\right) \int_{\mathbb{R}^{N}}\left(1+u^{2}\right)|\nabla u|^{2} \mathrm{~d} x+\gamma_{0} \int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x .
\end{aligned}
$$

Note that $u \equiv 0$ on $\mathbb{R}^{N} \backslash \Omega$, we conclude by defining

$$
C=\min \left\{\frac{C_{1} t^{N+2}-C_{2} t^{N+p+1}}{2\left(1-t^{N+p+1}\right)} \frac{\gamma_{0}}{1-t^{N+p+1}}\right\}
$$

Lemma 2.8. Suppose that the domain Ω is one of the forms of 2.2 . Then $c=\inf _{M(\Omega)} I_{\Omega}(u)$ can be achieved by some positive function u which is a solution of problem 2.3. Moreover, $\int_{\Omega} u^{2}|\nabla \phi|^{2} \mathrm{~d} x<+\infty, \int_{\Omega} \phi^{2}|\nabla u|^{2} \mathrm{~d} x<+\infty$.

Proof. We divide the proof into three steps.
Step 1. c is attained. By the definition of c, there exists a sequence $\left\{u_{n}\right\} \subset M(\Omega)$ such that

$$
I_{\Omega}\left(u_{n}\right)=c+o(1), \quad J_{\Omega}\left(u_{n}\right)=0
$$

By Proposition 2.7, $\left\{u_{n}\right\}$ is bounded in $X(\Omega)$. Hence, by Lemma 2.3, we can extract a subsequence of $\left\{u_{n}\right\}$ (still denoted by $\left\{u_{n}\right\}$), such that

$$
\begin{gathered}
u_{n} \rightharpoonup u \quad \text { in } X(\Omega), \\
u_{n} \rightarrow u \quad \text { in } L^{q}(\Omega), 2<q<2^{*} .
\end{gathered}
$$

Since $\nabla\left(u_{n}\right)^{2}$ is uniformly bounded in $L^{2}(\Omega)$, by Sobolev's inequality we have $\left|u_{n}^{2}\right|_{2^{*}} \leq C$, which gives $\left|u_{n}\right|_{22^{*}} \leq C$. By Hölder's inequality we have

$$
u_{n} \rightarrow u \quad \text { in } L^{q}(\Omega), 2<q<22^{*}
$$

Taking the limit in n, it follows from $J_{\Omega}\left(u_{n}\right)=0$ that

$$
\begin{aligned}
J_{\Omega}(u)= & \frac{N}{2} \int_{\Omega} \sum_{i, j=1}^{N} a_{i j}(u) \partial_{i} u \partial_{j} u \mathrm{~d} x+\frac{1}{2} \int_{\Omega} u \sum_{i, j=1}^{N} a_{i j}^{\prime}(u) \partial_{i} u \partial_{j} u \mathrm{~d} x \\
& +\frac{N+2}{2} \int_{\Omega} V(x) u^{2} \mathrm{~d} x+\frac{1}{2} \int_{\Omega} \nabla V(x) \cdot x u^{2} \mathrm{~d} x-\frac{N+p+1}{p+1} \int_{\Omega}|u|^{p+1} \mathrm{~d} x \\
\leq & 0
\end{aligned}
$$

By Lemma 2.6, there exists $t>0$ such that $J_{\Omega}\left(u_{t}\right)=0$. Extend u_{n} and u to X by setting $u_{n} \equiv 0$ and $u \equiv 0$ on $\mathbb{R}^{N} \backslash \Omega$. In the following we just need to recall the expression of $I\left(\left(u_{n}\right)_{t}\right)$,

$$
c=\lim _{n \rightarrow+\infty} I_{\Omega}\left(u_{n}\right)=\lim _{n \rightarrow+\infty} I\left(u_{n}\right) \geq \lim _{n \rightarrow+\infty} \inf I\left(\left(u_{n}\right)_{t}\right) \geq I\left(u_{t}\right), \quad \forall t>0
$$

So $\max _{t} I\left(u_{t}\right)=c$. Then, by Lemma 2.6, there exists $t_{0}>0$ such that $u_{t_{0}} \in M(\Omega)$, which implies that c is attained.
Step 2. u is a radial solution of 2.3 . We use an indirect argument which is based on a general idea used in 14. Suppose that $u \in M(\Omega), I_{\Omega}(u)=c$ but $I_{\Omega}^{\prime}(u) \neq 0$. In such a case, we can find a function $\phi \in X(\Omega)$ with the property that $\int_{\Omega} u^{2}|\nabla \phi|^{2} \mathrm{~d} x<+\infty, \int_{\Omega} \phi^{2}|\nabla u|^{2} \mathrm{~d} x<+\infty$ but

$$
\left\langle I_{\Omega}^{\prime}(u), \phi\right\rangle \leq-1
$$

Extend $u \in X(\Omega)$ to X as above and choose $\varepsilon>0$ small enough such that

$$
\left\langle I^{\prime}\left(u_{t}+\sigma \phi\right), \phi\right\rangle \leq-\frac{1}{2}, \quad \forall|t-1|+|\sigma| \leq \varepsilon
$$

Let η be a cut-off function,

$$
\eta(t)= \begin{cases}1, & |t-1| \leq \frac{1}{2} \varepsilon \\ 0, & |t-1| \geq \varepsilon\end{cases}
$$

Define

$$
\gamma(t)= \begin{cases}u_{t}, & |t-1| \geq \varepsilon \\ u_{t}+\varepsilon \eta(t) \phi, & |t-1|<\varepsilon\end{cases}
$$

Next we estimate $\sup _{t} I(\gamma(t))$. If $|t-1| \leq \varepsilon$, then

$$
\begin{align*}
I(\gamma(t)) & =I\left(u_{t}+\varepsilon \eta(t) \phi\right) \\
& =I\left(u_{t}\right)+\int_{0}^{1}\left\langle I^{\prime}\left(u_{t}+\sigma \varepsilon \eta(t) \phi\right), \varepsilon \eta(t) \phi\right\rangle \mathrm{d} \sigma \tag{2.5}\\
& \leq I\left(u_{t}\right)-\frac{1}{2} \varepsilon \eta(t) .
\end{align*}
$$

If $|t-1| \geq \varepsilon$, then $\eta(t)=0$, and the above estimate is trivial. Now since $u \in M(\Omega)$, for $t \neq 1$ we get $I\left(u_{t}\right)<I(u)$. Hence it follows from 2.5) that

$$
I\left(u_{t}+\varepsilon \eta(t) \phi\right) \leq \begin{cases}I\left(u_{t}\right)<I(u), & t \neq 1 \tag{2.6}\\ I(u)-\frac{1}{2} \varepsilon \eta(1)=I(u)-\frac{1}{2} \varepsilon, & t=1\end{cases}
$$

In any case we have $I(\gamma(t))<I(u)=c$.
To conclude observe that $J(\gamma(1-\varepsilon))>0$ and $J(\gamma(1+\varepsilon))<0$. As a result, we can find $t_{0} \in(1-\varepsilon, 1+\varepsilon)$ such that $J\left(\gamma\left(t_{0}\right)\right)=0$, which implies that $\gamma\left(t_{0}\right)=$ $u_{t_{0}}+\varepsilon \eta\left(t_{0}\right) \phi \in M(\Omega)$. However, it follows from 2.6) that $I_{\Omega}\left(\gamma\left(t_{0}\right)\right)<c$. This is a contradiction.
Step 3. $u>0$. Consider $u \in M(\Omega)$ a minimizer of $\left.I_{\Omega}\right|_{M(\Omega)}$. Then the absolute value $|u| \in M(\Omega)$ is also a minimizer. By the classical maximum principle and the fact that solutions are $C^{2},|u|>0$.

3. Proof of Theorem 1.1

For given $k+2$ numbers $r_{l}(l=0,1, \ldots, k+1)$ such that $0=r_{0}<r_{1}<\cdots<$ $r_{k}<r_{k+1}=+\infty$, denote

$$
\Omega^{1}=\left\{x \in \mathbb{R}^{N}:|x|<r_{1}\right\}, \quad \Omega^{l}=\left\{x \in \mathbb{R}^{N}: r_{l-1}<|x|<r_{l}\right\} .
$$

We will always extend $u_{l} \in X\left(\Omega^{l}\right)$ to X by setting $u \equiv 0$ on $x \in \mathbb{R}^{N} \backslash \Omega^{l}$ for every $u_{l} \in X\left(\Omega^{l}\right), l=1,2, \ldots, k+1$. In this sense, we use $I\left(u_{l}\right)$ to replace $I_{\Omega^{l}}\left(u_{l}\right)$ and $J\left(u_{l}\right)$ to replace $J_{\Omega^{l}}\left(u_{l}\right)$. Define

$$
\begin{gathered}
Y_{k}^{ \pm}\left(r_{1}, r_{2}, \ldots, r_{k+1}\right)=\left\{u \in X: u= \pm \sum_{l=1}^{k+1}(-1)^{l-1} u_{l}, u_{l} \geq 0\right. \\
\left.u_{l} \not \equiv 0, u_{l} \in X\left(\Omega^{l}\right), l=1,2, \ldots, k+1\right\} \\
M_{k}^{ \pm}=\left\{u \in X: \exists 0<r_{1}<r_{2}<\cdots<r_{k}<r_{k+1}=+\infty,\right. \text { such that } \\
\left.u \in Y_{k}^{ \pm}\left(r_{1}, r_{2}, \ldots, r_{k}, r_{k+1}\right) \text { and } u_{l} \in M\left(\Omega^{l}\right), l=1,2, \ldots, k+1\right\} .
\end{gathered}
$$

Note that $M_{k}^{ \pm} \neq \emptyset, k=1,2, \ldots$. In the following we always refer to M_{k} and we drop the " + ". For M_{k}^{-}, everything could be done exactly in the same way. By Lemma 2.6, it is easy to verify that for all u,

$$
\begin{equation*}
u=\sum_{l=1}^{k+1}(-1)^{l-1} u_{l} \in M_{k} \Leftrightarrow I(u)=\max _{\substack{\alpha_{l}>0 \\ 1 \leq l \leq k+1}} I\left(\sum_{l=1}^{k+1}(-1)^{l-1}\left(u_{l}\right)_{\alpha_{l}}\right) . \tag{3.1}
\end{equation*}
$$

Set

$$
c_{k}=\inf _{M_{k}} I(u), k=1,2, \ldots
$$

Lemma 3.1. c_{k} is attained, $k=0,1,2, \ldots$.
Proof. By induction we prove that for each k there exists $u_{k} \in M_{k}$ such that

$$
I\left(u_{k}\right)=c_{k} .
$$

The case that $k=0$ can be deduced by setting $\Omega=\mathbb{R}^{N}$ in Lemma 2.8. We suppose the claim is true for $k-1$ and discuss the case $k \geq 1$ in the following. For convenience, we divide the proof of the rest proof into four steps.
Step 1. I is bounded from below on M_{k} by a positive constant. Since

$$
I(u)=I\left(\sum_{l=1}^{k+1}(-1)^{l-1} u_{l}\right)=\sum_{l=1}^{k+1} I_{\Omega^{l}}\left(u_{l}\right), \quad \forall u \in M_{k}
$$

We just need to prove that, for $l=1,2, \ldots, k+1, I_{\Omega^{l}}$ is bounded from below on $M\left(\Omega^{l}\right)$ by a positive constant.

For any $u_{l} \in M\left(\Omega^{l}\right)$, we extend it to X by setting $u_{l} \equiv 0$ on $\mathbb{R}^{N} \backslash \Omega^{l}$. By (V1) and (A1) we have

$$
I\left(u_{l}\right) \geq \frac{1}{2} \int_{\mathbb{R}^{N}}\left(C_{1}\left(1+u_{l}^{2}\right)\left|\nabla u_{l}\right|^{2}+V_{0} u_{l}^{2}\right) \mathrm{d} x-\frac{1}{p+1} \int_{\mathbb{R}^{N}}\left|u_{l}\right|^{p+1} \mathrm{~d} x
$$

Let

$$
\bar{I}\left(u_{l}\right)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(C_{1}\left(1+u_{l}^{2}\right)\left|\nabla u_{l}\right|^{2}+V_{0} u_{l}^{2}\right) \mathrm{d} x-\frac{1}{p+1} \int_{\mathbb{R}^{N}}\left|u_{l}\right|^{p+1} \mathrm{~d} x .
$$

Obviously,

$$
\bar{c}:=\inf _{u_{l} \in X\left(\Omega^{l}\right), u_{l} \neq 0} \max _{t>0} \bar{I}\left(\left(u_{l}\right)_{t}\right) \leq \inf _{u_{l} \in X\left(\Omega^{l}\right), u_{l} \neq 0} \max _{t>0} I\left(\left(u_{l}\right)_{t}\right)=c .
$$

Let us define

$$
\bar{M}\left(\Omega^{l}\right)=\left\{u_{l} \in X\left(\Omega^{l}\right) \backslash\{0\}: g_{u_{l}}^{\prime}(1)=0\right\} \quad \text { where } g_{u_{l}}(t)=\bar{I}\left(\left(u_{l}\right)_{t}\right)
$$

Similar to Lemma 2.6, we know that

$$
\bar{c}=\inf _{u_{l} \in \bar{M}\left(\Omega^{l}\right)} \bar{I}_{\Omega^{l}}\left(u_{l}\right)
$$

For any $u_{l} \in \bar{M}\left(\Omega^{l}\right)$,

$$
\begin{aligned}
& \frac{N+2}{2} V_{0} \int_{\Omega^{l}} u_{l}^{2} \mathrm{~d} x+\frac{C_{1}(N+2)}{2} \int_{\Omega^{l}}\left|\nabla u_{l}\right|^{2} u_{l}^{2} \mathrm{~d} x \\
& \leq \frac{N+p+1}{p+1} \int_{\Omega^{l}}\left|u_{l}\right|^{p+1} \mathrm{~d} x \\
& \leq \frac{N+2}{2} V_{0} \int_{\Omega^{l}} u_{l}^{2} \mathrm{~d} x+C \int_{\Omega^{l}}\left|u_{l}\right|^{\frac{4 N}{N+2}} \mathrm{~d} x
\end{aligned}
$$

for a suitable constant $C>0$. So, by using the Sobolev's inequality,

$$
\frac{C_{1}(N+2)}{2} \int_{\Omega^{l}}\left|\nabla u_{l}\right|^{2} u_{l}^{2} \mathrm{~d} x \leq C \int_{\Omega^{l}}\left|u_{l}\right|^{\frac{4 N}{N+2}} \mathrm{~d} x \leq C^{\prime}\left(\int_{\Omega^{l}}\left|\nabla u_{l}\right|^{2} u_{l}^{2} \mathrm{~d} x\right)^{\frac{N}{N-2}}
$$

this shows that $\int_{\Omega^{l}}\left|\nabla u_{l}\right|^{2} u_{l}^{2} \mathrm{~d} x$ is bounded away from zero on $\bar{M}\left(\Omega^{l}\right)$. Since the functional $\bar{I}_{\Omega^{l}}$ restricted to $\bar{M}\left(\Omega^{l}\right)$ has the expression

$$
\begin{aligned}
\bar{I}_{\Omega^{l}}\left(u_{l}\right)= & \frac{C_{1}}{2} \frac{p+1}{N+p+1} \int_{\Omega^{l}}\left|\nabla u_{l}\right|^{2} \mathrm{~d} x+\frac{V_{0}}{2} \frac{p-1}{N+p+1} \int_{\Omega^{l}} u_{l}^{2} \mathrm{~d} x \\
& +\frac{C_{1}(p-1)}{N+p+1} \int_{\Omega^{l}}\left|\nabla u_{l}\right|^{2}\left|u_{l}\right|^{2} \mathrm{~d} x
\end{aligned}
$$

We obtain that $\bar{c}>0$, and hence $c>0$. This implies that $d_{X}\left(M\left(\Omega^{l}\right), 0\right)>0$. Then by Proposition 2.7. we get that $I_{\Omega^{l}}$ is bounded from below on $M\left(\Omega^{l}\right)$ by a positive constant.
Step 2. We suppose $\left\{u_{m}\right\}_{m \geq 1}$ be a minimizing sequence of c_{k} in M_{k}; that is

$$
\lim _{m \rightarrow+\infty} I\left(u_{m}\right)=c_{k}, \quad u_{m} \in M_{k}, \quad m=1,2, \ldots
$$

u_{m} corresponds to k nodes, $r_{m}^{1}, r_{m}^{2}, \ldots, r_{m}^{k}$ with $0<r_{m}^{1}<r_{m}^{2}<\cdots<r_{m}^{k}<+\infty$. By Proposition 2.7. we know that $\left\{u_{m}\right\}$ is bounded in X. Set

$$
\begin{gathered}
\Omega_{m}^{l}=\left\{x \in \mathbb{R}^{N}: r_{m}^{l-1}<|x|<r_{m}^{l}\right\}, \\
u_{m}^{l}= \begin{cases}u_{m}, & x \in \Omega_{m}^{l} \\
0, & x \notin \Omega_{m}^{l}\end{cases}
\end{gathered}
$$

By selecting a subsequence, we may assume that $\lim _{m \rightarrow+\infty} r_{m}^{l}=r^{l}$, and clearly $0 \leq r^{1} \leq r^{2} \leq \cdots \leq r^{k} \leq+\infty$.

Next we prove that $r^{l} \neq r^{l-1}, l=1,2, \ldots, k$. Here we denote $r^{0}=0$. If there exists some $l \in\{1,2, \ldots, k\}$ such that $r^{l}=r^{l-1}$, then $\lim _{m \rightarrow+\infty} r_{m}^{l}=\lim _{m \rightarrow+\infty} r_{m}^{l-1}$. We denote the measure of Ω_{m}^{l} by $\left|\Omega_{m}^{l}\right|$, so that $\left|\Omega_{m}^{l}\right| \rightarrow 0$ as $m \rightarrow+\infty$. From (A1) and the fact that $\left\{u_{m}\right\}$ is bounded in X, we have

$$
\begin{align*}
I\left(u_{m}^{l}\right) & =\frac{1}{2} \int_{\Omega_{m}^{l}}\left(\sum_{i, j=1}^{N} a_{i j}\left(u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l}+V\left(u_{m}^{l}\right)^{2}\right) \mathrm{d} x-\frac{1}{p+1} \int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{p+1} \mathrm{~d} x \\
& \leq \frac{1}{2} \int_{\Omega_{m}^{l}}\left(C_{2}\left(1+\left(u_{m}^{l}\right)^{2}\right)\left|\nabla u_{m}^{l}\right|^{2}+V_{\infty}\left(u_{m}^{l}\right)^{2}\right) \mathrm{d} x-\frac{1}{p+1} \int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{p+1} \mathrm{~d} x \\
& \leq C-\frac{1}{p+1} \int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{p+1} \mathrm{~d} x \tag{3.2}
\end{align*}
$$

By using Hölder's inequality,

$$
\int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{2} \mathrm{~d} x \leq\left(\int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{p+1} \mathrm{~d} x\right)^{\frac{2}{p+1}}\left|\Omega_{m}^{l}\right|^{1-\frac{2}{p+1}}
$$

i.e.,

$$
\begin{equation*}
\int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{p+1} \mathrm{~d} x \geq\left(\int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{2} \mathrm{~d} x\right)^{\frac{p+1}{2}}\left|\Omega_{m}^{l}\right|^{\frac{1-p}{2}} \tag{3.3}
\end{equation*}
$$

Since $u_{m}^{l} \in M_{k}$,

$$
\begin{align*}
& \frac{N+p+1}{p+1} \int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{p+1} \mathrm{~d} x \\
& = \\
& \frac{N}{2} \int_{\Omega_{m}^{l}} \sum_{i, j=1}^{N} a_{i j}\left(u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l} \mathrm{~d} x+\frac{1}{2} \int_{\Omega_{m}^{l}} u_{m}^{l} \sum_{i, j=1}^{N} a_{i j}^{\prime}\left(u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l} \mathrm{~d} x \tag{3.4}\\
& \quad+\frac{N+2}{2} \int_{\Omega_{m}^{l}} V(x)\left(u_{m}^{l}\right)^{2} \mathrm{~d} x+\frac{1}{2} \int_{\Omega_{m}^{l}} \nabla V(x) \cdot x\left(u_{m}^{l}\right)^{2} \mathrm{~d} x \\
& \geq \\
& \quad \frac{C_{1}(N+b-2)}{2} \int_{\Omega_{m}^{l}}\left(1+\left(u_{m}^{l}\right)^{2}\right)\left|\nabla u_{m}^{l}\right|^{2} \mathrm{~d} x+\frac{N+2}{2} V_{0} \int_{\Omega_{m}^{l}}\left(u_{m}^{l}\right)^{2} \mathrm{~d} x \\
& \quad-\frac{1}{2} C_{0} \int_{\Omega_{m}^{l}}\left(u_{m}^{l}\right)^{2} \mathrm{~d} x \\
& \geq \\
& \geq \frac{C_{1}(N+b-2)}{2} \int_{\Omega_{m}^{l}}\left(u_{m}^{l}\right)^{2}\left|\nabla u_{m}^{l}\right|^{2} \mathrm{~d} x+\frac{(N+3-p) V_{0}}{2} \int_{\Omega_{m}^{l}}\left(u_{m}^{l}\right)^{2} \mathrm{~d} x .
\end{align*}
$$

On the other hand,

$$
\frac{N+p+1}{p+1} \int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{p+1} \mathrm{~d} x \leq \frac{(N+3-p) V_{0}}{2} \int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{2} \mathrm{~d} x+C \int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{\frac{4 N}{N+2}} \mathrm{~d} x
$$

for a suitable $C>0$. So by using Sobolev's inequality

$$
\begin{aligned}
\frac{C_{1}(N+b-2)}{2} \int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{2}\left|\nabla u_{m}^{l}\right|^{2} \mathrm{~d} x & \leq C \int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{\frac{4 N}{N+2}} \mathrm{~d} x \\
& \leq C^{\prime} \int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{2}\left|\nabla u_{m}^{l}\right|^{2} \mathrm{~d} x
\end{aligned}
$$

This shows that $\int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{2}\left|\nabla u_{m}^{l}\right|^{2} \mathrm{~d} x$ is bounded away from zero on M_{k}. This implies that

$$
\int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{2} \mathrm{~d} x \geq \delta>0
$$

Then from 3.3 we obtain

$$
\int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{p+1} \mathrm{~d} x \geq\left(\int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{2} \mathrm{~d} x\right)^{\frac{p+1}{2}}\left|\Omega_{m}^{l}\right|^{\frac{1-p}{2}} \geq \delta^{\frac{p+1}{2}}\left|\Omega_{m}^{l}\right|^{\frac{1-p}{2}} .
$$

Note that $\left|\Omega_{m}^{l}\right| \rightarrow 0$ as $m \rightarrow+\infty$ and $p>1$, we have

$$
\int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{p+1} \mathrm{~d} x \rightarrow+\infty, \quad \text { as } m \rightarrow+\infty
$$

This and (3.2) implies that $I\left(u_{m}^{l}\right) \rightarrow-\infty$ as $m \rightarrow+\infty$, which contradicts Step 1. Thus $r^{l} \neq r^{l-1}, l=1,2, \ldots, k$.

Step 3. $r^{k}<+\infty$. If $r^{k}=+\infty$, then $\lim _{m \rightarrow+\infty} r_{m}^{k}=+\infty$. Since $u_{m}^{k} \in M\left(\Omega_{m}^{k}\right)$, from (V1), (V2), (A1) and (A2) we have

$$
\begin{align*}
& I\left(u_{m}^{k}\right) \\
&= \frac{1}{2} \int_{\Omega_{m}^{k}}\left(\sum_{i, j=1}^{N} a_{i j}\left(u_{m}^{k}\right) \partial_{i} u_{m}^{k} \partial_{j} u_{m}^{k}+V(x)\left(u_{m}^{k}\right)^{2}\right) \mathrm{d} x-\frac{1}{p+1} \int_{\Omega_{m}^{k}}\left|u_{m}^{k}\right|^{p+1} \mathrm{~d} x \\
&= \frac{1}{2} \int_{\Omega_{m}^{k}}\left(\sum_{i, j=1}^{N} a_{i j}\left(u_{m}^{k}\right) \partial_{i} u_{m}^{k} \partial_{j} u_{m}^{k}+V(x)\left(u_{m}^{k}\right)^{2}\right) \mathrm{d} x \\
&-\frac{1}{N+p+1}\left(\frac{N}{2} \int_{\Omega_{m}^{k}} \sum_{i, j=1}^{N} a_{i j}\left(u_{m}^{k}\right) \partial_{i} u_{m}^{k} \partial_{j} u_{m}^{k} \mathrm{~d} x\right. \\
&+\frac{1}{2} \int_{\Omega_{m}^{k}} u_{m}^{k} \sum_{i, j=1}^{N} a_{i j}^{\prime}\left(u_{m}^{k}\right) \partial_{i} u_{m}^{k} \partial_{j} u_{m}^{k} \mathrm{~d} x+\frac{N+2}{2} \int_{\Omega_{m}^{k}} V(x)\left(u_{m}^{k}\right)^{2} \mathrm{~d} x \\
&\left.+\frac{1}{2} \int_{\Omega_{m}^{k}} \nabla V(x) \cdot x\left(u_{m}^{k}\right)^{2} \mathrm{~d} x\right) \\
& \geq\left(\frac{1}{2}-\frac{N}{2(N+p+1)}-\frac{p-1}{2(N+p+1)}\right) \int_{\Omega_{m}^{k}} \sum_{i, j=1}^{N} a_{i j}\left(u_{m}^{k}\right) \partial_{i} u_{m}^{k} \partial_{j} u_{m}^{k} \mathrm{~d} x \\
&+\left(\left(\frac{1}{2}-\frac{N+2}{2(N+p+1)}\right) V_{0}-\frac{C}{2(N+p+1)}\right) \int_{\Omega_{m}^{k}}\left(u_{m}^{k}\right)^{2} \mathrm{~d} x \\
&+\frac{b}{2(N+p+1)} \int_{\Omega_{m}^{k}}\left|\nabla u_{m}^{k}\right|^{2} \mathrm{~d} x \\
& \geq \frac{1}{N+p+1} \int_{\Omega_{m}^{k}} C_{1}\left(1+\left(u_{m}^{k}\right)^{2}\right)\left|\nabla u_{m}^{k}\right|^{2} \mathrm{~d} x+\frac{(p-1) V_{0}-C_{0}}{2(N+p+1)} \int_{\Omega_{m}^{k}}\left(u_{m}^{k}\right)^{2} \mathrm{~d} x \\
& \geq C \eta^{2}\left(u_{m}^{k}\right), \\
&+\frac{b}{2(N+p+1)} \int_{\Omega_{m}^{k}}^{\left|\nabla u_{m}^{k}\right|^{2} \mathrm{~d} x} \tag{3.5}\\
&
\end{align*}
$$

where

$$
\eta^{2}\left(u_{m}^{k}\right)=\int_{\Omega_{m}^{k}}\left(1+\left(u_{m}^{k}\right)^{2}\right)\left|\nabla u_{m}^{k}\right|^{2} \mathrm{~d} x+\int_{\Omega_{m}^{k}}\left(u_{m}^{k}\right)^{2} \mathrm{~d} x
$$

From Step 1 we know that $\int_{\Omega_{m}^{k}}\left|u_{m}^{k}\right|^{2}\left|\nabla u_{m}^{k}\right|^{2} \mathrm{~d} x$ is bounded away from zero on $M\left(\Omega_{m}^{k}\right)$. Then there exists some $\delta_{0}>0$ such that

$$
\int_{\Omega_{m}^{k}}\left|u_{m}^{k}\right|^{2} \mathrm{~d} x \geq \delta_{0}>0
$$

This and (3.4) imply that there exists some $\delta_{1}>0$ such that

$$
\int_{\Omega_{m}^{k}}\left|u_{m}^{k}\right|^{p+1} \mathrm{~d} x \geq \delta_{1}>0
$$

Then from (3.2), we have

$$
\begin{align*}
I\left(u_{m}^{k}\right) & \leq C-\frac{1}{p+1} \int_{\Omega_{m}^{k}}\left|u_{m}^{k}\right|^{p+1} \mathrm{~d} x \\
& \leq C+C \int_{\Omega_{m}^{k}}\left|u_{m}^{k}\right|^{p+1} \mathrm{~d} x \\
& \leq C \int_{\Omega_{m}^{k}}\left|u_{m}^{k}\right|^{p+1} \mathrm{~d} x\left(\left(\int_{\Omega_{m}^{k}}\left|u_{m}^{k}\right|^{p+1} \mathrm{~d} x\right)^{-1}+1\right) \tag{3.6}\\
& \leq C \int_{\Omega_{m}^{k}}\left|u_{m}^{k}\right|^{p+1} \mathrm{~d} x\left(\delta_{1}^{-1}+1\right) \\
& \leq C \int_{\Omega_{m}^{k}}\left|u_{m}^{k}\right|^{p+1} \mathrm{~d} x,
\end{align*}
$$

for some suitable $C>0$. It follows from (3.5, (3.6) and Lemma 2.1 that

$$
\begin{aligned}
\eta^{2}\left(u_{m}^{k}\right) & \leq I\left(u_{m}^{k}\right) \\
& \leq C \int_{\Omega_{m}^{k}}\left|u_{m}^{k}\right|^{p+1} \mathrm{~d} x \\
& \leq C \int_{\Omega_{m}^{k}}\left|u_{m}^{k}\right|^{2}\left|u_{m}^{k}\right|^{p-1} \mathrm{~d} x \\
& \leq C\left\|u_{m}^{k}\right\|^{p-1} \int_{\Omega_{m}^{k}}\left|u_{m}^{k}\right|^{2}|x|^{\frac{(1-N)(p-1)}{2}} \mathrm{~d} x \\
& \leq C\left(\eta^{2}\left(u_{m}^{k}\right)\right)^{\frac{p+1}{2}}\left|r_{m}^{k}\right|^{\frac{(1-N)(p-1)}{2}} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\eta^{2}\left(u_{m}^{k}\right) \geq C\left|r_{m}^{k}\right|^{N-1} \tag{3.7}
\end{equation*}
$$

From (3.7) we have

$$
\eta^{2}\left(u_{m}^{k}\right) \rightarrow+\infty \quad \text { as } m \rightarrow+\infty
$$

So (3.5) implies

$$
\begin{equation*}
I\left(u_{m}^{k}\right) \rightarrow+\infty \quad \text { as } m \rightarrow+\infty \tag{3.8}
\end{equation*}
$$

By the inductive assumption and 3.8 , for $\varepsilon>0$ fixed we choose $M>0$ such that

$$
I\left(u_{m}^{k}\right)>c_{k}-c_{k-1}+\varepsilon, \quad\left|I\left(u_{m}\right)-c_{k}\right|<\varepsilon, \quad \text { as } m \geq M
$$

Then we may define $\hat{u}(x) \in M_{k-1}$ by

$$
\hat{u}(x)= \begin{cases}u_{m}^{s}(x), & x \in \Omega_{m}^{s} \text { as } s<k \\ 0, & x \in \Omega_{m}^{k}\end{cases}
$$

Hence $I(\hat{u})=I\left(u_{m}\right)-I\left(u_{m}^{k}\right)<c_{k}+\varepsilon-\left(c_{k}-c_{k-1}+\varepsilon\right)=c_{k-1}$ as $m \geq M$, which contradicts the fact that $c_{k-1}=\inf _{M_{k-1}} I(u)$. Then, we obtain $r^{k}<+\infty$.
Step 4. c_{k} is attained. By Proposition 2.7 we can find a subsequence (still denoted by $\left\{u_{m}\right\}$) such that

$$
\begin{gathered}
u_{m} \rightharpoonup u \quad \text { in } X \\
u_{m} \rightarrow u \quad \text { in } L^{p+1}\left(\mathbb{R}^{N}\right) .
\end{gathered}
$$

Set $\Omega^{l}=\left\{x \in \mathbb{R}^{N}\left|r^{l-1}<|x|<r^{l}\right\}\right.$, for all $l=1,2, \ldots, k+1, r^{0}=0$ and $r^{k+1}=+\infty$. Lemma 2.8 implies that $c=\inf _{u \in M\left(\Omega^{l}\right)} I(u)$ is attained by some positive function \hat{u}^{l} which satisfies the boundary-value problem

$$
\begin{gathered}
-\sum_{i, j=1}^{N} \partial_{j}\left(a_{i j}(u) \partial_{i} u\right)+\frac{1}{2} \sum_{i, j=1}^{N} a_{i j}^{\prime}(u) \partial_{i} u \partial_{j} u+V(x) u=|u|^{p-1} u, \quad x \in \Omega^{l}, \\
\left.u\right|_{\partial \Omega^{l}}=0 .
\end{gathered}
$$

Define $u_{k}=\sum_{l=1}^{k+1}(-1)^{l-1} \hat{u}^{l}(x),\left(\hat{u}^{l}(x)=0, x \notin \Omega^{l}\right)$. Then, clearly, $u_{k} \in M_{k}$. Consider the coordinate transformations $\Phi_{m}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}, m=1,2, \ldots$, defined by

$$
\Phi_{m}(x)=\varphi_{m}(|x|) \frac{x}{|x|}, \quad x \in \mathbb{R}^{N},
$$

where

$$
\varphi_{m}(r)=\frac{\left(r^{l}-r^{l-1}\right)\left(r-r_{m}^{l-1}\right)}{r_{m}^{l}-r_{m}^{l-1}}+r^{l-1}
$$

For any $r \in \mathbb{R}$, clearly $\Phi_{m}\left(\Omega_{m}^{l}\right)=\Omega^{l}$. Let $y=\Phi_{m}(x) \in \Omega^{l}$, if $x \in \Omega_{m}^{l}$. It is easy to show that

$$
\begin{gather*}
|\nabla u(y)|=\left(R_{m}^{l}\right)^{-1}|\nabla u(x)|, \tag{3.9}\\
\mathrm{d} y=\left|J_{m}^{l}\right| \mathrm{d} x, \tag{3.10}\\
a_{m}^{l} \leq\left(\frac{\Phi_{m}(r)}{r}\right)^{N-1} \leq A_{m}^{l}, \tag{3.11}
\end{gather*}
$$

where

$$
\begin{gathered}
R_{m}^{l}=\frac{r^{l}-r^{l-1}}{r_{m}^{l}-r_{m}^{l-1}}, \quad J_{m}^{l}=\left(\varphi_{m}(|x|)\right)^{N-1}\left(\varphi_{m}(|x|)\right)^{\prime}|x|^{1-N}, \\
a_{m}^{l}=\left(\min \left\{\frac{r^{l}}{r_{m}^{l}}, \frac{r^{l-1}}{r_{m}^{l-1}}\right\}\right)^{N-1}, \quad A_{m}^{l}=\left(\max \left\{\frac{r^{l}}{r_{m}^{l}}, \frac{r^{l-1}}{r_{m}^{l-1}}\right\}\right)^{N-1} .
\end{gathered}
$$

Clearly,

$$
\begin{equation*}
a_{m}^{l} R_{m}^{l} \leq\left|J_{m}^{l}\right| \leq A_{m}^{l} R_{m}^{l}, \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{m}^{l} \rightarrow 1, \quad a_{m}^{l} \rightarrow 1, \quad A_{m}^{l} \rightarrow 1, \quad J_{m}^{l} \rightarrow 1, \quad \text { as } m \rightarrow+\infty . \tag{3.13}
\end{equation*}
$$

Let

$$
\begin{aligned}
\gamma(t)= & \frac{N}{2} t^{N-1} \int_{\Omega^{l}} \sum_{i, j=1}^{N} a_{i j}\left(t u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l} \mathrm{~d} y \\
& +\frac{t^{N}}{2} \int_{\Omega^{l}} u_{m}^{l} \sum_{i, j=1}^{N} a_{i j}^{\prime}\left(t u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l} \mathrm{~d} y+\frac{N+2}{2} t^{N+1} \int_{\Omega^{l}} V(t y)\left(u_{m}^{l}\right)^{2} \mathrm{~d} y \\
& +\frac{t^{N+2}}{2} \int_{\Omega^{l}} \nabla V(t y) \cdot y\left(u_{m}^{l}\right)^{2} \mathrm{~d} y-\frac{N+p+1}{p+1} t^{N+p} \int_{\Omega^{l}}\left|u_{m}^{l}\right|^{p+1} \mathrm{~d} y .
\end{aligned}
$$

From Lemma 2.6. there exists some $t_{m}^{l}>0$, such that $\gamma\left(t_{m}^{l}\right)=0$, thus $\left(u_{m}^{l}\right)_{t_{m}^{l}} \in$ $M\left(\Omega^{l}\right)$. Now we claim that

$$
\begin{equation*}
t_{m}^{l} \rightarrow 1 \quad \text { as } m \rightarrow+\infty, l=1,2, \ldots, k \tag{3.14}
\end{equation*}
$$

Indeed, since $\gamma\left(t_{m}^{l}\right)=0$, we have

$$
\begin{align*}
& \frac{N}{2}\left(t_{m}^{l}\right)^{N-1} \int_{\Omega^{l}} \sum_{i, j=1}^{N} a_{i j}\left(t_{m}^{l} u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l} \mathrm{~d} y \\
& +\frac{\left(t_{m}^{l}\right)^{N}}{2} \int_{\Omega^{l}} u_{m}^{l} \sum_{i, j=1}^{N} a_{i j}^{\prime}\left(t_{m}^{l} u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l} \mathrm{~d} y \\
& +\frac{N+2}{2}\left(t_{m}^{l}\right)^{N+1} \int_{\Omega^{l}} V\left(t_{m}^{l} y\right)\left(u_{m}^{l}\right)^{2} \mathrm{~d} y+\frac{\left(t_{m}^{l}\right)^{N+2}}{2} \int_{\Omega^{l}} \nabla V\left(t_{m}^{l} y\right) \cdot y\left(u_{m}^{l}\right)^{2} \mathrm{~d} y \\
& -\frac{N+p+1}{p+1}\left(t_{m}^{l}\right)^{N+p} \int_{\Omega^{l}}\left|u_{m}^{l}\right|^{p+1} \mathrm{~d} y=0 \tag{3.15}
\end{align*}
$$

We can prove that there exists a constant $\tilde{t}>0$ such that

$$
0<t_{m}^{l} \leq \tilde{t}<+\infty
$$

By selecting a subsequence, we may assume that $\lim _{m \rightarrow+\infty} t_{m}^{l}=t_{*}^{l}$. Using (3.9)(3.13), we have

$$
\begin{gather*}
\lim _{m \rightarrow+\infty} \int_{\Omega^{l}} \sum_{i, j=1}^{N} a_{i j}\left(t_{m}^{l} u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l} \mathrm{~d} y \\
=\lim _{m \rightarrow+\infty} \int_{\Omega_{m}^{l}} \sum_{i, j=1}^{N} a_{i j}\left(t_{m}^{l} u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l} \mathrm{~d} x \tag{3.16}\\
\lim _{m \rightarrow+\infty} \int_{\Omega^{l}} u_{m}^{l} \sum_{i, j=1}^{N} a_{i j}^{\prime}\left(t_{m}^{l} u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l} \mathrm{~d} y \tag{3.17}\\
=\lim _{m \rightarrow+\infty} \int_{\Omega_{m}^{l}} u_{m}^{l} \sum_{i, j=1}^{N} a_{i j}^{\prime}\left(t_{m}^{l} u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l} \mathrm{~d} x \\
\lim _{m \rightarrow+\infty} \int_{\Omega^{l}} \nabla V\left(t_{m}^{l} y\right) \cdot y\left(u_{m}^{l}\right)^{2} \mathrm{~d} y=\lim _{m \rightarrow+\infty} \int_{\Omega_{m}^{l}} \nabla V\left(t_{m}^{l} x\right) \cdot x\left(u_{m}^{l}\right)^{2} \mathrm{~d} x \tag{3.18}\\
\lim _{\Omega^{l}} \int_{m} V\left(t_{m}^{l} y\right)\left(u_{m}^{l}\right)^{2} \mathrm{~d} y=\lim _{m \rightarrow+\infty} \int_{\Omega_{m}^{l}} V\left(t_{m}^{l} x\right)\left(u_{m}^{l}\right)^{2} \mathrm{~d} x \tag{3.19}\\
\lim _{m \rightarrow+\infty} \int_{\Omega^{l}}\left|u_{m}^{l}\right|^{p+1} \mathrm{~d} y=\lim _{m \rightarrow+\infty} \int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{p+1} \mathrm{~d} x \tag{3.20}
\end{gather*}
$$

Substituting 3.16-3.20 in 3.15 we find that

$$
\begin{aligned}
& \lim _{m \rightarrow+\infty}\left(\frac{N}{2}\left(t_{m}^{l}\right)^{N-1} \int_{\Omega_{m}^{l}} \sum_{i, j=1}^{N} a_{i j}\left(t_{m}^{l} u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l} \mathrm{~d} x\right. \\
& +\frac{\left(t_{m}^{l}\right)^{N}}{2} \int_{\Omega_{m}^{l}} u_{m}^{l} \sum_{i, j=1}^{N} a_{i j}^{\prime}\left(t_{m}^{l} u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l} \mathrm{~d} x \\
& +\frac{N+2}{2}\left(t_{m}^{l}\right)^{N+1} \int_{\Omega_{m}^{l}} V\left(t_{m}^{l} x\right)\left(u_{m}^{l}\right)^{2} \mathrm{~d} x+\frac{\left(t_{m}^{l}\right)^{N+2}}{2} \int_{\Omega_{m}^{l}} \nabla V\left(t_{m}^{l} x\right) \cdot x\left(u_{m}^{l}\right)^{2} \mathrm{~d} x
\end{aligned}
$$

$$
\begin{equation*}
\left.-\frac{N+p+1}{p+1}\left(t_{m}^{l}\right)^{N+p} \int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{p+1} \mathrm{~d} x\right)=0 . \tag{3.21}
\end{equation*}
$$

But for $u_{m}^{l}(x) \in M\left(\Omega_{m}^{l}\right)$, we know that

$$
\begin{align*}
& \frac{N}{2} \int_{\Omega_{m}^{l}} \sum_{i, j=1}^{N} a_{i j}\left(u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l} \mathrm{~d} x+\frac{1}{2} \int_{\Omega_{m}^{l}} u_{m}^{l} \sum_{i, j=1}^{N} a_{i j}^{\prime}\left(u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l} \mathrm{~d} x \\
& +\frac{N+2}{2} \int_{\Omega_{m}^{l}} V\left(t_{m}^{l} x\right)\left(u_{m}^{l}\right)^{2} \mathrm{~d} x+\frac{1}{2} \int_{\Omega_{m}^{l}} \nabla V(x) \cdot x\left(u_{m}^{l}\right)^{2} \mathrm{~d} x \tag{3.22}\\
& -\frac{N+p+1}{p+1} \int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{p+1} \mathrm{~d} x=0 .
\end{align*}
$$

Set

$$
\begin{align*}
h(s)= & \frac{N}{2} s^{N-1} \int_{\Omega_{m}^{l}} \sum_{i, j=1}^{N} a_{i j}\left(s u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l} \mathrm{~d} x \\
& +\frac{s^{N}}{2} \int_{\Omega_{m}^{l}} u_{m}^{l} \sum_{i, j=1}^{N} a_{i j}^{\prime}\left(s u_{m}^{l}\right) \partial_{i} u_{m}^{l} \partial_{j} u_{m}^{l} \mathrm{~d} x \\
& +\frac{N+2}{2} s^{N+1} \int_{\Omega_{m}^{l}} V(s x)\left(u_{m}^{l}\right)^{2} \mathrm{~d} x+\frac{s^{N+2}}{2} \int_{\Omega_{m}^{l}} \nabla V(s x) \cdot x\left(u_{m}^{l}\right)^{2} \mathrm{~d} x \\
& -\frac{N+p+1}{p+1} s^{N+p} \int_{\Omega_{m}^{l}}\left|u_{m}^{l}\right|^{p+1} \mathrm{~d} x . \tag{3.23}
\end{align*}
$$

From the proof of Lemma 2.6. we know that $h(s)$ has only one zero on $(0,+\infty)$. So, from $(\sqrt{3.21})-(\sqrt{3.23})$ we get that $t_{*}^{l}=1$. Moreover,

$$
\lim _{m \rightarrow+\infty} I\left(\left(u_{m}^{l}\right)_{t_{m}^{l}}\right)=\lim _{m \rightarrow+\infty} I\left(u_{m}^{l}\right)
$$

On the other hand, since $I\left(\hat{u}^{l}\right)=\inf _{M\left(\Omega_{m}^{l}\right)} I(u)$ and $\left(u_{m}^{l}\right)_{t_{m}^{l}} \in M\left(\Omega_{m}^{l}\right)$, we obtain

$$
I\left(\hat{u}^{l}\right) \leq I\left(\left(u_{m}^{l}\right)_{t_{m}^{l}}\right)
$$

Hence $\lim _{m \rightarrow+\infty} I\left(\left(u_{m}^{l}\right)_{t_{m}^{l}}\right) \geq I\left(\hat{u}^{l}\right), l=1,2, \ldots, k+1$. Thus

$$
c_{k}=\lim _{m \rightarrow+\infty} I\left(u_{m}\right)=\lim _{m \rightarrow+\infty} \sum_{l=1}^{k+1} I\left(u_{m}^{l}\right) \geq \sum_{l=1}^{k+1} I\left(\hat{u}^{l}\right)=I\left(u_{k}\right) .
$$

Since $u_{k} \in M_{k}$, we have that $c_{k}=I\left(u_{k}\right)$, which means that c_{k} is attained.
Proof of Theorem 1.1. By Lemma 3.1, there exists $u_{k} \in M_{k}$ which attains c_{k}. We will prove that u_{k} is indeed a solution to problem 1.1. For convenience, we denote $u:=u_{k}$. Thus we get k nodes: $r_{1}, r_{2}, \ldots, r_{k}, 0<r_{1}<r_{2}<\cdots<r_{k}<+\infty$. Clearly, u satisfies (1.1) in $E=\left\{x \in \mathbb{R}^{N}:|x| \neq r_{l}, l=1,2, \ldots, k+1\right\}$. We know already that u is of class C^{2} on E and satisfies, for $x \in E$

$$
\begin{equation*}
-\sum_{i, j=1}^{N} \partial_{j}\left(a_{i j}(u) \partial_{i} u\right)+\frac{1}{2} \sum_{i, j=1}^{N} a_{i j}^{\prime}(u) \partial_{i} u \partial_{j} u+V(x) u=|u|^{p-1} u \tag{3.24}
\end{equation*}
$$

We will prove that u satisfies 3.24 for all $x \in \mathbb{R}^{N}$.

We use an indirect argument. Assume that for some $l=1,2, \ldots, k$, there exists $x_{0} \in \mathbb{R}^{N},\left|x_{0}\right|=r_{l}$ such that 3.24 does not hold. To complete the proof, it suffices to show that for $a_{i j}(u)=\left(1+u^{2}\right) \delta_{i j}$, there exists a contradiction.

The existence of the contradiction can be proved similar to that as in [11, by a slight modification, their arguments worked also for $p \in(1,3]$. We just sketch the proof. We set $r:=|x|$ and treat the special case $a_{i j}(u)=\left(1+u^{2}\right) \delta_{i j}$ as an ordinary differential equation:

$$
-\left(1+u^{2}\right)\left(r^{N-1} u^{\prime}\right)^{\prime}=r^{N-1}\left(|u|^{p-1}-V+\left|u^{\prime}\right|^{2}\right) u
$$

where ' denotes $\frac{d}{d r}$. Then our assumption becomes to

$$
u_{+}^{\prime}=\lim _{r \rightarrow r_{l}^{+}} u^{\prime}(r) \neq \lim _{r \rightarrow r_{l}^{-}} u^{\prime}(r)=u_{-}^{\prime} .
$$

Firstly, we construct some w such that $w \in M_{k}$. Let

$$
\psi(h)=\int_{r_{l-1}}^{r_{l+1}}\left(\frac{1}{2}\left(h^{\prime 2}+V h^{2}+h^{2} h^{2}\right)-\frac{1}{p+1}|h|^{p+1}\right) r^{N-1} \mathrm{~d} r .
$$

Then, according to the definition of u, there holds

$$
\psi(u) \leq \psi(w)
$$

However, under the assumption $u_{+}^{\prime} \neq u_{-}^{\prime}$, we can prove that $\psi(w)<\psi(u)$ (cf. [11]). This is a contradiction. As a result, we complete the proof.

Acknowledgments. Z.-Q. Han was supported by NSFC 11171047.

References

[1] A. Azzollini, A. Pomponio; On the Schrödinger equation in \mathbb{R}^{N} under the effect of a general nonlinear term, Indiana Univ. Math. J., 58 (2009) 1361-1378.
[2] T. Bartsch, M. Willem; Infinitely many radial solutions of a semilinear elliptic problem on \mathbb{R}^{N}, Arch. Rational Mech. Anal., 124 (1993) 261-276.
[3] A. V. Borovskii, A. L. Galkin; Dynamical modulation of an ultrashort high-intensity laser pulse in matter, JETP 77 (1993) 562-573.
[4] J. M. Bezerra do Ó, O. H. Miyagaki, S. H. M. Soares; Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010) 722-744.
[5] L. Brizhik, A. Eremko, B. Piette, W. J. Zakrzewski; Electron self-trapping in a discrete two-dimensional lattice, Phys. D 159 (2001) 71-90.
[6] L. Brizhik, A. Eremko, B. Piette, W. J. Zakrzewski; Static solutions of a D-dimensional modified nonlinear Schrödinger equation, Nonlinearity 16 (2003) 1481-1497.
[7] H. Brüzis, E. Lieb; A relation between pointwise convergence of function and convergence of functional, Proc. Amer. Math. Soc 88 (1983) 486-490.
[8] L. Brüll, H. Lange; Solitary waves for quasilinear Schrödinger equations, Expo. Math. 4 (1986) 278-288.
[9] D. M. Cao, X. P. Zhu; On the existence and nodal character of solutions of semilinear elliptic equations, Acta Math. Sci. 8 (1988) 345-359.
[10] M. Colin, L. Jeanjean; Solutions for a quasilinear Schrödinger equation: a dual approach, Nonl. Anal. 56 (2004) 213-226.
[11] Y. B. Deng, S. J. Peng, J. X. Wang; Infinitely many sign-changing solutions for quasilinear Schrödinger equations in \mathbb{R}^{N}, Commun. Math. Sci. 9 (2011) 859-878.
[12] X. D. Fang, A. Szulkin; Multiple solutions for a quasilinear Schrödinger equation, J. Differential Equations 254 (2013) 2015-2032.
[13] B. Hartmann, W. J. Zakrzewski; Electrons on hexagonal lattices and applications to nanotubes, Phys. Rev. B 68 (2003) 184-302.
[14] J. Q. Liu, Y. Q. Wang, Z. Q. Wang; Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations 29 (2004) 879-901.
[15] J. Q. Liu, Y. Q. Wang, Z. Q. Wang; Soliton solutions for quasilinear Schrödinger equations, II, J. Differential Equations, 187 (2003) 473-493.
[16] A. M. Kosevich, B. Ivanov, A. S. Kovalev; Magnetic solitons, Phys. Rep. 194 (1990) 117-238.
[17] S. Kurihura; Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan 50 (1981) 3262-3267.
[18] O. A. Ladyzhenskaya, N. N. Ural'tseva; Linear and quasilinear elliptic equations, New YorkLondon, 1968.
[19] V. G. Makhankov, V. K. Fedyanin; Non-linear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep. 104 (1984) 1-86.
[20] M. Poppenburg, K. Schmitt, Z. Q. Wang; On the existence of solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002) 329-344.
[21] P. Pucci, J. Serrin; A general variational identity, Indiana Univ. Math. J. 35 (1986) 681-703.
[22] B. Ritchie; Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994) 687-689.
[23] D. Ruiz, G. Siciliano; Existence of ground states for a modified nonlinear Schrödinger equation, Nonlinearity, 23 (2010) 1221-1233.
[24] D. Ruiz; The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006) 655-674.
[25] J. Shatah; Unstable ground state of nonlinear Klein-Gordon equations, Trans. Amer. Math. Soc. 290 (1985) 701-710.
[26] W. A. Strauss; Existence of solitary waves in higher dimensions, Commun. Math. Phys, 55 (1977) 149-162.

Gui Bao
School of Mathematics and Statistics Science, Ludong University, Yantai, Shandong 264025, China

E-mail address: baoguigui@163.com
Zhiqing Han
School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

E-mail address: hanzhiq@dlut.edu.cn

[^0]: 2000 Mathematics Subject Classification. 37J45, 58E05, 34C37,70H05.
 Key words and phrases. Quasilinear elliptic equations; variational methods; radial solutions. (C)2014 Texas State University - San Marcos.

 Submitted September 1, 2014. Published October 27, 2014.

