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MIXED TYPE BOUNDARY-VALUE PROBLEMS OF
SECOND-ORDER DIFFERENTIAL SYSTEMS WITH

P-LAPLACIAN

WEIGAO GE, YU TIAN

Abstract. In this article we show the existence of solutions to a mixed

boundary-value problem of second-order differential systems with a p-Laplacian.
The associated Hamiltonian actions are indefinite and the discussion of the ex-

istence of solutions is due to the application of duality principle.

1. Introduction

Second-order differential systems that include the p-Laplacian appear in physical
application; see for example [5]. In this article, we study mixed type boundary-value
problems of the form

(ϕp(x′))′ +∇F (t, x) = 0, p ≥ 2,

x(0) = x′(1) = 0,
(1.1)

where x ∈ Rn, ϕp(x) = (ϕp(x1), . . . , ϕp(xn))T with ϕp(s) = |s|p−2s for s ∈ R,
F : [0, 1]×Rn → R is measurable in t for all x ∈ Rn and continuously differentiable
in x for a.e. t ∈ [0, 1]. Also we study systems of the form

(ψp(x′))′ +∇F (t, x) = 0, p ≥ 2,

x(0) = x′(1) = 0,
(1.2)

where ψp(x) = |x|p−2x.
When lim|x|→∞ F (t, x) = −∞, it is easy to obtain a solution of (1.1), by using

a minimizing sequence of this functional

Φ(x) =
∫ 1

0

[Φp(x′(t))− F (t, x(t))]dt,

where Φp(x′(t)) =
∑n
i=1

1
p |x
′
i|p. However, such an approach is not applicable if

lim|x|→∞ F (t, x) = +∞, since Φ(x) does not admit maximum, and does not admit
minimum. In such a case, for α > 0, we set u = (u1, u2) = (x,−ϕp(αx′)) for (1.1),
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and u = (u1, u2) = (x,−ψp(αx′)) for (1.2), α > 0. Then (1.1) becomes

−u′2 + ϕp(α)∇F (t, u1) = 0,

u′1 +
1
α
ϕq(u2) = 0,

u1(0) = u2(1) = 0,

and (1.2) becomes

−u′2 + ψp(α)∇F (t, u1) = 0,

u′1 +
1
α
ψq(u2) = 0,

u1(0) = u2(1) = 0.

So (1.1) and (1.2) become
Ju̇+∇G(t, u) = 0,

u1(0) = u2(1) = 0,
(1.3)

and
Ju̇+∇H(t, u) = 0,

u1(0) = u2(1) = 0,
(1.4)

respectively, where

G(t, u) = Φq(u2) + ϕp(α)F (t, u1) =
n∑
i=1

1
qα
|u2,i|q + ϕp(α)F (t, u1),

H(t, u) = Φ̃q(u2) + ϕp(α)F (t, u1) =
1
qα
|u2|q + ϕp(α)F (t, u1),

with u1 = (u1,1, . . . , u1,n), u2 = (u2,1, . . . , u2,n), q = p
p−1 ,

J =
(

0 −In
In 0

)
where In is the n× n identity matrix. Then G : [0, 1]× R2n → R is measurable in
t for all u ∈ R2n and continually differentiable in u for a.e. t ∈ [0, 1]. Furthermore,
if F is strictly convex in u1, then G and H are strictly convex in u.

When n = 1, different types of BVPs have been studied there is a series of results
[1, 2, 3, 4], whereas there are only a few results for the case n ≥ 2, except periodic
boundary value problems in [6, 7].

Let X = {u ∈ C([0, 1],R2n) : u1(0) = u2(1) = 0}. For u ∈ X we construct
functionals in the forms

Ψ(u) =
∫ 1

0

[
1
2

(Ju̇, u) +G(t, u)]dt, (1.5)

K(u) =
∫ 1

0

[
1
2

(Ju̇, u) +H(t, u)]dt. (1.6)

The Euler equations Ψ(u) and K(u) are the differential systems in (1.3) and (1.4),
respectively. The boundary conditions in (1.3) and (1.4) are given by the definition
of X.
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Let uk(t) = (uk,1(t), uk,2(t)) = (cosλkt · c, sinλkt · c) with c = (c1, . . . , cn),
λk = (2k+1)π

2 and |c| = 1. Then

1
2

∫ 1

0

(Ju̇k(t), uk(t))dt =
λk
2

∫ 1

0

[− cos2 λkt|c|2 − sin2 λkt|c|2]dt

= −1
2
λk = − (2k + 1)π

4
→ ∓∞

as k → ±∞. So Ψ(u) and K(u) are neither bounded from below nor from above.
Since G(t, u) is continually differentiable in u and strictly convex with respect

to u, we can make Fenchel transform

G∗(t, v̇) = sup
u∈R2n

[(v̇, u)−G(t, u)]. (1.7)

By the transform theory, there is only one uv for v such that

(v̇, uv)−G(t, uv) = sup
u∈R2n

[(v̇, u)−G(t, u)].

Therefore v̇ = ∇G(t, uv), uv = ∇G∗(t, v̇) and

G(t, uv) +G∗(t, v̇) = (v̇, uv).

Let u = uv, we have the relations

G(t, u) +G∗(t, v̇) = (v̇, u)

v̇ = ∇G(t, u), u = ∇G∗(t, v̇)

and among them any one implies the others.
The same is true for the relations

H(t, u) +H∗(t, v̇) = (v̇, u)

v̇ = ∇H(t, u), u = ∇H∗(t, v̇)

where H∗(t, v̇) = supu∈R2n [(v̇, u)−H(t, u)]. With the duality we aim to prove the
following theorem.

Theorem 1.1. Suppose F (t, x) is measurable in t for all x ∈ Rn, strictly con-
vex and lower semicontinuous (l.s.c.) in x for a.e. t ∈ [0, 1] and there are
a ∈ C(Rn,R+), b ∈ L2([0, 1],R+) such that

|∇F (t, x)| ≤ b(t)a(|x|)

and there are δ > 0, (δ ∈ (0, π
2

4 ) if p = 2), and β, γ ≥ 0 such that

−β ≤ F (t, x) ≤ δ

2
|x|2 + γ.

Then (1.1) has at least one solution.

Theorem 1.2. Under the assumptions of Theorem 1.1, system (1.2) has at least
one solution.
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2. Preliminaries

To prove our main theorems, we use the following propositions.

Proposition 2.1. Assume F : [0, 1] × Rn → R and F (t, x) is strictly convex in x
for all t ∈ [0, 1] and there are α > 0, β(t), γ(t) ≥ 0 such that

−β(t) ≤ F (t, x) ≤ α

2
|x|2 + γ(t).

Then for v = ∇F (t, x) it holds that

|v| ≤ 2α(|x|+ β(t) + γ(t)) + 1, ∀t ∈ [0, 1].

Proof. On the one hand, by v = ∇F (t, x)⇔ F ∗(t, v) = (v, x)− F (t, x), we have

F ∗(t, v) ≤ (v, x) + β(t), ∀t ∈ [0, 1]. (2.1)

On the other hand,
F ∗(t, v) = sup

x∈RN

[(v, x)− F (t, x)]

≥ sup
x∈RN

[(v, x)− α

2
|x|2 − γ(t)] =

1
2α
|v|2 − γ(t), ∀t ∈ [0, 1].

(2.2)

By (2.1) and (2.2),

|v|2 ≤ 2α[(v, x) + β(t) + γ(t)], ∀t ∈ [0, 1]. (2.3)

If |v| ≤ 1, the result is obvious. If |v| > 1, by (2.3), |v|2 ≤ 2α[|v||x|+β(t)|v|+γ(t)|v|].
The result also follows. �

Proposition 2.2. If u ∈ X = {x ∈ H1([0, 1],R2n) : x1(0) = x2(1) = 0}, then

|u|22 ≤
4
π2
|u̇|22. (2.4)

Proof. Let u = (u1, u2), u1, u2 ∈ Rn. From

u̇(t) = λJu(t),

u1(0) = u2(1) = 0,
(2.5)

and the expression eλJt = cos(λt)I + sin(λt)J , we have the set of eigenvalues λk of
(2.5)

λk =
(2k + 1)π

2
, k = 0,±1,±2, . . . .

Then for each λk, k = 0, 1, 2, 3, . . . , (2.5) possesses 2n-dimensional vector space

uk(t) =
(

sin(λkt)C1,k

cos(λkt)C2,k

)
,

where C1,k, C2,k ∈ Rn are arbitrary vectors. Then u ∈ X can be expressed as

u(t) =
(∑∞

k=0 sin(λkt)C1,k∑∞
k=0 cos(λkt)C2,k

)
, C1,k, C2,k ∈ Rn.

Then

|u|22 =
∞∑
k=0

[ ∫ 1

0

sin2 λktdt · |C1,k|2 +
∫ 1

0

cos2 λktdt · |C2,k|2
]

=
1
2

∞∑
k=0

[|C1,k|2 + |C2,k|2],
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|u̇|22 =
1
2

∞∑
k=0

λ2
k(|C1,k|2 + |C2,k|2) ≥ 1

2

∞∑
k=0

π2

4
(|C1,k|2 + |C2,k|2),

and hence (2.4) holds. �

Proposition 2.3. If u ∈ X, then∫ 1

0

(Ju̇, u)dt ≥ − 2
π
|u̇|22.

Proof. The result follows directly from the calculation∫ 1

0

(Ju̇, u)dt ≥ −
∫ 1

0

|Ju̇| · |u|dt

≥ −
[ ∫ 1

0

|Ju̇|2dt ·
∫ 1

0

|u|2dt
]1/2

= −
[ ∫ 1

0

|u̇|2dt · 4
π2

∫ 1

0

|u̇|2dt
]1/2

= − 2
π
|u̇|22.

�

Proposition 2.4. Under the conditions in Theorem 1.1, we can choose a suitable
α > 0 so that after the transform u = (u1, u2) = (x,−ϕp(αẋ)), the function G(t, u)
in BVP (1.3) satisfies

− ξ ≤ G(t, u) ≤ l

2
|u|2 + η, (2.6)

where ξ, η ≥ 0, l ∈ (0, π2 ) are appropriate real numbers.

Proof. If p = 2, then δ ∈ (0, π2/4). Choose α = 1/
√
δ. One get G(t, u) =

√
δ

2 |u2|2 +
1√
δ
F (t, u1) and

− β√
δ
≤ G(t, u) ≤

√
δ

2
(|u1|2 + |u2|2) +

γ√
δ
.

Let ξ = β/
√
δ, η = γ/

√
δ, l =

√
δ. Obviously ξ, η > 0, l ∈ (0, π2 ).

If p > 2, then q ∈ (1, 2). Without loss of generality, assume that δ > π2/4. Let
α = (π/4δ)q−1, then

−ϕp(α)β ≤ G(t, u) ≤ n

αq
|u2|q + ϕp(α)F (t, u1)

≤ n

αq
|u2|q +

δϕp(α)
2
|u1|2 + ϕp(α)γ

=
n

αq
|u2|q +

π

8
|u1|2 + ϕp(α)γ.

It follows from q ∈ (1, 2) that there is M > 0 such that
n

αq
|u2|q ≤M +

π

8
|u2|2.

Let ξ = ϕp(α)β, η = M + ϕp(α)γ, l = π
4 . Then it holds

−ξ ≤ G(t, u) ≤ l

2
|u|2 + η.

�
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For the rest of this article, we assume G(t, u) satisfies (2.6). Similarly we can
prove he following result.

Proposition 2.5. Under the conditions in Theorem 1.2, there is an α > 0 such that
after the transform u = (u1, u2) = (x,−ψp(αẋ)), the function H in (1.4) satisfies

− ξ ≤ H(t, u) ≤ l

2
|u|2 + η, (2.7)

where ξ, η ≥ 0, l ∈ (0, π2 ) are some real numbers.

In the Clarke transform G∗(t, v̇) = supu∈R2n [(v̇, u)−G(t, u)], G∗(t, u) is convex
in u. On the other hand, if

Gε(t, u) =
ε

2
(u, u) +G(t, u),

G∗ε(t, v̇) = sup
u∈R2n

[(v̇, u)−Gε(t, u)],

then Gε(t, u) is strictly convex in u and satisfies lim|u|→∞
Gε(t,u)
|u| = ∞. Hence

G∗ε(t, v̇) is differentiable in v̇; i.e., ∇G∗ε(t, y) is continuous in y. This time we have

− ξ +
ε

2
|u|2 ≤ Gε(t, u) ≤ l + ε

2
|u|2 + η (2.8)

and

G∗ε(t, v̇) = sup
u∈R2n

[(v̇, u)−Gε(t, u)] ≥ sup
u∈R2n

[(v̇, u)− l + ε

2
|u|2 − η] =

1
2(l + ε)

|v̇|2 − η.

G∗ε(t, v̇) ≤ 1
2ε
|v̇|2 + ξ. (2.9)

Let v̇ ∈ ∂Gε(t, u). One has

G∗ε(t, v̇) = (v̇, u)−Gε(t, u) ≤ (v̇, u)− ε

2
|u|2 + ξ

and
1

2(l + ε)
|v̇|2 − η ≤ |v̇||u|+ ξ,

which implies
|v̇| ≤ 1 + 2(l + ε)(|u|+ ξ + η). (2.10)

Similarly for u ∈ ∂G∗ε(t, v̇), we have

|u| ≤ 1 +
2
ε

(|v̇|+ ξ + η). (2.11)

Let ε > 0 be such that l+ ε ∈ (0, π2 ). Take in account the boundary-value problem

Ju̇+∇Gε(t, u) = 0

u1(0) = u2(1) = 0,
(2.12)

whose functional is

Ψε(u) =
∫ 1

0

[
1
2

(Ju̇, u) +Gε(t, u)]dt.

Let v = −Ju. Then

Ψε(u) = −1
2

∫ 1

0

(Ju̇, u)dt+
∫ 1

0

[(Ju̇, u) +Gε(t, u)]dt
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= −1
2

∫ 1

0

(Ju̇, u)dt−
∫ 1

0

[(v̇, u)−Gε(t, u)]dt

= −
∫ 1

0

[
1
2

(Jv̇, v) +G∗ε(t, v̇)]dt =: −Kε(v).

Proposition 2.6. Under the conditions in Theorem 1.1, Kε has one critical point
vε ∈ Y = {y ∈ H1([0, 1],R2n) : y1(1) = 0, y2(0) = 0}, which minimize the value of
Kε and is uniformly bounded below for all ε ∈ (0, π2 − l). Furthermore uε = Jvε is
a solution of BVP (2.12).

Proof. It follows from

Gε(t, u) ≤ l + ε

2
|u|2 + η =: G(u)

that
G∗ε(t, v) ≥ G∗(v̇) = sup

u∈R2n

[(v̇, u)−G(u)] =
1

2(l + ε)
|v̇|2 − η

and then

Kε(v) ≥ 1
2
( 1
l + ε

− 2
π

) ∫ 1

0

|v̇(t)|2dt−
∫ 1

0

η(t)dt ≥ α0‖v̇‖22 − η0,

where η0 =
∫ 1

0
η(t)dt, α0 = 1

2

(
1
l+ε −

2
π

)
> 0. Obviously Kε(v)→ +∞ as ‖v̇‖2 →∞

and uniformly bounded below. Let

Kε1(v) =
1
2

∫ 1

0

(Jv̇, v)dt, Kε2(v) =
∫ 1

0

G∗ε(t, v̇)dt.

Both Kε1 and Kε2 are weakly lower semi-continuous (w.l.s.c.) imply Kε is w.l.s.c.
and then Kε possesses one minimum at some point vε ∈ Y .

At the same time, by L(t, x, y) = 1
2 (Jy, x) + G∗ε(t, y), we have from (2.8) (2.9)

and (2.11) that

|L(t, x, y)| ≤ 1
2
|x||y|+ 1

2ε
|y|2 + ξ,

|∇xL(t, x, y)| = 1
2
|y|,

|∇yL(t, x, y)| ≤ 1
2
|x|+ |∇yG∗(t, ẏ)| ≤ 1

2
|x|+ 1 +

2
ε

(|ẏ|+ ξ + η),

and then Kε is continuously differentiable on Y . As for all w ∈ Y ,

〈K′ε(v), w〉 =
∫ 1

0

[
1
2

(Jv̇ε, w)− 1
2

(Jvε, ẇ) + (∇G∗ε(t, v̇ε), ẇ)
]
dt

=
∫ 1

0

(−Jvε +∇G∗ε(t, v̇ε), ẇ)dt = 0.

One gets Jvε = ∇G∗ε(t, v̇ε), i.e., uε = ∇G∗ε(t, v̇ε). From the duality principle, it
holds

v̇ε = ∇Gε(t, u)
and hence

−Ju̇ε = ∇Gε(t, u);
i.e.,

Ju̇ε +∇Gε(t, u) = 0.
Clearly vε ∈ Y implies uε ∈ X. �
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Let ε ∈ (0, π2 − l) and Hε(t, u) = H(t, u) + ε
2 |u|

2. Consider the system

Ju̇+∇Hε(t, u) = 0,

u1(0) = u2(0) = 0.
(2.13)

From v = −Ju one has

Kε(u) =
∫ 1

0

[
1
2

(Ju̇, u) +Hε(t, u)]dt

= −
∫ 1

0

[
1
2

(Jv̇, v) +H∗ε (t, v̇)]dt =: −Πε(v),

where H∗ε (t, v̇) = supu∈R2n [(v̇, u)−Hε(t, u)].
The following proposition can be proved in a similar way as Proposition 2.5.

Proposition 2.7. Under the conditions given in Theorem 1.2, Πε has one critical
point vε ∈ Y = {y ∈ H1([0, 1],R2n) : y1(1) = 0, y2(0) = 0}, which minimize the
value of Kε and is uniformly bounded below for all ε ∈ (0, π2 − l). Furthermore
uε = Jvε is a solution of (2.13).

3. Proof of main theorems

Proof of Theorem 1.1. In Proposition 2.5 we have proven that for each ε ∈ (0, π2−l),
BVP (2.12) has a solution uε = Jvε, and Kε(vε) is the minimum of Kε on Y with
Kε(vε) ≥ −η0 + α0‖v̇ε‖22. Furthermore,

G(t, u) ≤ Gε(t, u)

implies
G∗ε(t, v̇) ≤ G∗(t, v̇).

So

α0‖v̇ε‖22 − η0 ≤ Kε(vε) ≤ Kε(0) =
∫ 1

0

G∗(t, 0)dt = c <∞

and then there is a c1 > 0 such that

‖v̇ε‖22 < c21,

which in turn implies
‖u̇ε‖2 = ‖Jv̇ε‖2 < c1

and there is c2 > 0 such that ‖uε‖2 < c2. Therefore, there is a c3 > 0 such that

‖uε‖X < c3.

Since X is reflexive, there is a sequence {uεn
} ⊂ {uε : 0 < ε < π

2 − l} such that
uεn

⇀ u0 ∈ X ⊂ H1 as εn → 0 when n→∞. Hence

uεn → u0 uniformly in C([0, 1],R2n).

It follows from Ju̇εn(t) +∇Gε(t, uεn(t)) = 0 that

J(uεn(t)− uεn(0)) +
∫ t

0

[εnuε(s) +∇G(s, uεn(s))] ds = 0

and then

J(u0(t)− u0(0)) +
∫ t

0

∇G(s, u0(s))ds = 0.

Consequently,
Ju̇0(t) +∇G(t, u0(t)) = 0
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and u0 ∈ X implies u0,1(0) = u0,2(1) = 0. That is to say, u0(t) is a solution to
(1.3). Then x(t) = u0,1(t) is a solution to (1.1). Theorem 1.1 is now proved. �

Theorem 1.2 is proved in a similar way as Theorem 1.1.

Acknowledgments. This research was supported by Project 11071014 from the
National Science Foundation of China, by Project 11001028 from the National
Science Foundation for Young Scholars, by Project YETP0458. from the Beijing
Higher Education Young Elite Teacher.

References

[1] D. Averna, G. Bonanno; Three solutions for a quasilinear two point boundary value problem
involving the one-dimensional p-Laplacian, Proc. Edinburgh Math. Soc. 47 (2004), 257-270.

[2] R. I. Avery; Existence of multiple positive solutions to a conjugate boundary value problem,

MRS hot-line 2 (1998), 1-6.
[3] L. H. Erbe, H. Wang; On the existence of positive solutions of ordinary differential equations,

Proc. Amer. math. Soc. 120 (1994), 743-748.
[4] W. Ge, J. Ren; New existence theorems of positive solutions for Sturm-Liouville boundary

value problems, Appl. Math. Comput. 148(2004), 631-644.

[5] J. Mawhin, M. Willem; Critical Point Theory and Hamiltonian Systems, Springers Verlag,
New York, 1989.

[6] Y. Tian, W. Ge; Second-order Sturm-Liouville boundary value problem involving the one-

dimensional p-Laplacian, Rocky Mountain J. Math., 38:1(2008), 309-325.
[7] Y. Tian, W. Ge; Multiple positive solutions for a second-order Strum-Liouville boundary value

problem with a p-Laplacian via variational methods, Rocky Mountain J. Math., 39:1 (2009),

325-342.

Weigao Ge
Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081,

China
E-mail address: gew@bit.edu.cn, Phone 86-010-68911627

Yu Tian

School of Science, Beijing University of Posts and Telecommunications, Beijing 100876,
China

E-mail address: tianyu2992@163.com


	1. Introduction
	2. Preliminaries
	3. Proof of main theorems
	Acknowledgments

	References

