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REMARKS ON REGULARITY CRITERIA FOR THE 3D
NAVIER-STOKES EQUATIONS

RUIYING WEI, YIN LI

ABSTRACT. In this article, we study the regularity criteria for the 3D Navier-
Stokes equations involving derivatives of the partial components of the velocity.
It is proved that if Vj,u belongs to Triebel-Lizorkin space, Vug or us belongs
to Morrey-Campanato space, then the solution remains smooth on [0, T7.

1. INTRODUCTION

This article is devoted to the Cauchy problem for the following incompressible
3D Navier-Stokes equation:

ug+ (u-V)u+Vp=~Au, 2R} t>0
divu=0, ze€R? t>0

(1.1)

with initial data
u(z,0) = ug, x€R3 (1.2)

where v = (uy(z,t),uz(z,t),us(z,t)) and p = p(x,t) denote the unknown veloc-
ity vector and the unknown scalar pressure, respectively. In the last century,
Leray [1I] and Hopf [8] proved the global existence of a weak solution u(z,t) €
L>°(0,00; L2(R?)) N L*(0, 00; H'(R?)) to (L.I)-(L.3) for any given initial datum
up(x) € L?(R3). However, whether or not such a weak solution is regular and
unique is still a challenging open problem. From that time on, different criteria for
regularity of the weak solutions has been proposed.
The classical Prodi-Serrin conditions (see [16} I8, [19]) say that if

2
u € LY(0,T; L (R?)), n + 3 =1, 3<s< oo,
s
then the solution is smooth. Similar results is showed by Beirdao da Veiga [I]

involving the velocity gradient growth condition:
2 3 3
Vu e LY0,T; L*(R%)), TH+-=2 S <s<oo
S
Actually, whether the weak solution is smooth when a part of the velocity com-
ponents is involved. As for this direction, later on, criteria just for one velocity
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component appeared. The first result in this direction is due to Neustupa et al [15]
(see also Zhou [21]), where the authors showed that if

2 3 1
us € L'(0,T; L*(R?)), T+s=5 se(60d
S
then the solution is smooth. A similar result, for the gradient of one velocity
component, is independently due to Zhou [22] and Pokorny [17]. In [22], Zhou
proved that if

. 2 3 3
Vus € L0, T; L*(R?)), THo=5 3< s < 0.
s
then the solution is smooth on [0, T]. This result is extended by Zhou and Pokorny
[26]; that is,
2 3 23
L'0,T; L (R? S+S=", 2<s<3.
VUBE (Oa ) ( ))a t+8 12’ _8_3
Further criteria, including several components of the velocity gradient, pressure
or other quantities, can be found, here we just list some. Zhou and Pokorny [25]

proved the regularity condition

2 3 3 1 10
LY0,T; L*(R%), —+=-==+— -
uz € (Oa ) ( ))7 t+8 4+287 s8> 3
And in [10], Jia and Zhou proved that if a weak solution u satisfies one of the

following two conditions:
us € L(0,T; L% (R®));  Vuz € L=(0,T; L3/ *(R?)),

then u is regular on [0,7]. Dong and Zhang [5] proved that if the horizontal
derivatives of the two velocity components

T
| 1906}, _ds <.
i .

then the solution keeps smoothness up to time 7', where @ = (u1,u9,0), and Va4 =
(01, 021, 0). For other kinds of regularity criteria, see |2} [6l [7 @}, 23] 24 28] 29| [30]
and the references cited therein.

Throughout this paper C will denote a generic positive constant which can vary
from line to line. For simplicity, we shall use [ f(z)dz to denote |, ps f(7)dr, use
| - ||, to denote || - || ».

The purpose of this article is to improve and extend above known regularity
criterion of weak solution for the equations , to the Triebel-Lizorkin space
and Morrey-Campanato spaces. The main results of this paper read:

Theorem 1.1. Assume that ug € HY(R?) with divug = 0. wu(z,t) is the corre-
sponding weak solution to (L.1) and (1.2) on [0,T). If additionally

/T||v a(- )%, dt< 'thg+§—2 §< < (1.3)
0 AU, F02 0, wi p qi 72 q=> o0, .

.34
then the solution remains smooth on [0,T].
Theorem 1.2. Assume that ug € H'(R3) with divug = 0. u(z,t) is the corre-
sponding weak solution to (1.1) and (1.2) on [0,T). If additionally

T s
/ ||Vu3(-,t)||;,;_£) dt < oo, with 0<r<1, 2<p<-—, (1.4)
0 o

S lw
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then the solution remains smooth on [0,T].

Theorem 1.3. Assume that ug € H'(R?) with divug = 0. wu(z,t) is the corre-
sponding weak solution to (1.1) and (1.2) on [0,T). If additionally

! = . 3 3
; ||U3(~,t)||Mp,%dt <oo, with0<r< T 2<p< o (1.5)
then the solution remains smooth on [0,T].
0

Remark 1.4. Noticing that the classical Riesz transformation is bounded in Boo,oo,
if we take ¢ = oo in Theorem then the classical Beal-Kato-Majda criterion for
the Navier-Stokes equations is obtained; that is, if

T
|19l gy, e <0
o 26,00
then the solution remains smooth on [0, 7.
Remark 1.5. Since (it is proved in [12, 13])
LI(RY) = N#9(RY) C NPI(R®), 1<p<q<oo
3

o . . 3
L7 (R ¢ MP*(R?) C X, (R¥) c M>*(R?), 2<p<>,0<r< 5
T

the result of Theorem is an improved version of [27, Theorem 2]. Also we obtain,
if
T =1 ; 3
/0 ||U3(,t)||X_T "dt < oo, with 0<r< T

then the solution remains smooth on [0, T.

2. PRELIMINARIES

In this section, we shall introduce the Littlewood-Paley decomposition theory,
and then give some definitions of the homogeneous Besov space, homogeneous
Triebel-Lizorkin space, Morrey-Campanato space and multiplier space as well as
some relate spaces used throughout this paper. Before this, let us first recall the

weak solutions of (1.1)-(1.3):

Let ug € L?(R3) with V - ug = 0, a measurable R3-valued vector u is said to be
a weak solution of (1.1])-(1.3) if the following conditions hold:

(1) u(x,t) € L>(0,00; L2(R3)) N L2(0, 00; H(R?));
(2) u solves (1.1)-(1.2) in the sense of distributions;
(3) the energy inequality holds; i.e,

t
|Wﬁ+2/ﬂﬂwwﬂ%mgﬂwﬁ,0§tsf
0

Let us choose a nonnegative radial function ¢ € C*°(R?®) be supported in the
annulus {¢ € R : 2 < [¢] < 8}, such that >0 @(27€) = 1,V€ # 0. For
f € S'(R3), the frequency projection operators /\; is defined as

Nif =F Hp279)) * f,

where .7 ~1(g) is the inverse Fourier transform of g. The formal decomposition

f=Y Af. (2.1)

l=—o00
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is called the homogeneous Littlewood-Paley decomposition. Noticing
141

Mf= ) Bj(Af)

j=1—-1
and using the Young inequality, we have the following class Bernstein inequality:

Lemma 2.1 ([3]). Let o € N, then for all 1 < p < q < 00, sup|q—y, [|0°Lifllg <
1 1

C’2lk+3l(5_5)||Alf||p, and C is a constant independent of f,1.

For s € R and (p,q) € [1,00] X [1,00], the homogeneous Besov space B;q is
defined by
Si0=1F € 2R : |fls, < oo},
where
. 1/q
Ul = 3 (Siee 2 8550)) 7 1< <o,
T supses 200145 £ ()b q = oo.
and Z'(R?) denote the dual space of
Z'(R®) = {f € S(R®) : D*f(0) = 0. Ya € N3}.

On the other hand, for s € R, (p,q) € [1,00) x [1,00], and for s € R,p = g = o0,
the homogenous Triebel-Lizorkin space is defined as

By, ={f € Z'(R®):||fllp, < oo},
Ulle = dNC5ee 28O, 1< g < oo,
o supse @185 Ol 0= oc.

Notice that by Minkowski inequality, we have the following two imbedding relations:
Bpg CFpg a=p;
FoaC By P4
and the following two inclusions:
H*=Bs,=F5, L*CEF.  =B%..

We refer to [20] for more properties.
For 1 < ¢ < p < 00, the homogeneous Morrey-Campanato space in R? is

. 3_3
MP1 = {f € L?OC(RS); ”f”Mzwz = Sup SupRP a Hf”q(B(LR)) < OO},
z€R3 R>0
For 1 <p’ < ¢’ < oo, we define the homogeneous space

NP = {f € Lq/|f = Z gk, where g € Lg;mp(R?’) and
keEN

(L2 .
Z dk(p a )Hngq/ < 0o, where dj, = diam(supp gx) < oo}.
keN

For 0 < a < 3/2, we say that a function belongs to the multiplier spaces M (H®, L?)
if it maps, by pointwise multiplication, H* to L?:

Xo=M(H*L?) :={f € 5 ||f - gll2 < Cligll sy, ¥g € H}.
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Here, H® is the homogeneous Sobolev space of order a,

: R 1/2
H® ={f € Lige; | fll2 = (/m |§\2a|u(g)|2) < oo}
where LP(1 < p < c0) is the Lebsgue space endowed with norm || - ||,.

Lemma 2.2 ([4,12]). Let1 < p' < ¢’ < oo, and p, q such that %—1—% =1, %4—% =1.
Then MP+1 is the dual space of NP
Lemma 2.3 ([4 [7 12]). Let 1 < p' < ¢ < 2,m > 2, and % + i = 1. Denote
a=-3+7 % € (0,1] Then there exists a constant C' > 0, such that for any
u € L™(R™),v € H*(R"),
[ vl jorar < Cllullm ||v]] gra-

Lemma 2.4 ([13]). For 0 < r < 3, let the space M(By' — L2) be the space of
functions which are locally square integrable on R? and such that pointwise multi-
plication with these functions maps boundedly the Besov space Bg’l(R3) to L?(R?).
The norm in ///(B;’l — L?) is given by the operator norm of pointwise multiplica-
tion:

11y = supdllfale : gl < 13-

Then, f belongs to ///(Bgl — L?) if and only if f belongs to M2 (with equivalence
of morms).

3. THE PROOF OF MAIN RESULTS
Proof of Theorem[I-1. Multiplying (1.1)); by —Aw, integrating by parts, noting
that V - u = 0, we have

1d

> / |Vul|? dz + / |Aul? de = /[(u V)] - Audx =: I (3.1)
Next we estimate the right-hand side of (3.1]), with the help of integration by parts
and —0susg = O1u; + Oxus, one shows that

3
I =— Z /6ku161u36kuj dx

i,5,k=1
2 3 2
= — Z Z/@kuzﬁzuﬁku] dr — Z /8kuiaiU3akU3 dr
i,j=1k=1 i,k=1
2 3
— Z /8ku363uj8kuj dx — Z/&ku;),agu?,aku?, dx
j,k=1 k=1

2 2
— Z/@guﬁiug@gug dr — Z / 83U363u]'83uj‘ dx
i=1 j=1

< c/\vha||vu|2dx.

Thus, the above inequality implies
1d

§%||Vu||§ + || Aul|? < C/ |Vt |[Vu|? da. (3.2)
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Using the Littlewood-Paley decomposition (2.1)), V@ can be written as

N
Viti= Y Aj(Va)+ Y Aj(Va) + D A(Vai).
J<—N j=—N Jj>N
where N is a positive integer to be chosen later. Substituting this into (3.2]), one

obtains

S IVl + Aul3

<C > /|A (Vpa)||Vul? dz + C Z /|A (Vp)||Vu|? da

Jj<—N j=—N (33)

+CZ/|A Vith)||Vul? dz
j>N
= K1 —|—K2 —|—K3

For K; (i = 1,2,3), we now give the estimates one by one. For K7, using the Holder
inequality, the Young inequality and Lemma [2.1] it follows that

Ky <C Y 185(Vad)llo | Vull3

j<—N
<C Y 29205 (Vaw) ol Vull3
j<—N -
N1/2 N 12
SC( Z 231) ( Z ||Aj(vhu)||§) | V|2
J<=N j<-N

< 027N 3.

Where in the last inequality, we use the fact that for all s € R, H® = 3572.
For K5, by the Holder inequality and the Young inequality, one has

N
K> :c/ S 185(Vad)|Vul? do
j=—N

23 N 23\ D
< ON% ( Z 185 (Va@) 2272) " Vul? de
< ON5 ||vhu\|Fo ||Vu||22q
<CN% ||vhuuFo IVully ™ [ Au)d/s

3

*IIAUI|2+CNIIVWHQQ ’ HVUHQ

N —

where we used the interpolation inequality

_1. 3.3
> 2|| H2 °
5 ul| 5y 7

[ulls

for 2 < s <6.
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Finally, using Holder inequality and Lemma [2.1] K3 can be estimated as
Ky=CY /\Aj(vha)nvuﬁdx
J>N

<O Y 145(Vha)lls] Vull3

i>N
<O 281 0,(V4) 2|Vl (3.6)
j>N
<O 27 (Y 22|05V |3) 2 Vulla] Al
Jj>N >N

< 27N Vulla|| Aul3.
Substituting (3.4)), (3.5) and (3.6]) in (3.3]), we obtain
d
£||VUH§ + [ A3

_2 e -
< C272 || Vull§ + ON|IVAT|IZ5 T Va3 + 0272 Vullz | Aul3.

02

Now we choose N such that C27/2||Vul|» < &; that is

In(||Vul|3 +€) + InC n

N >
- In2

2.

Thus (3.7) implies
d ~
@IIVUI@ < O+ C|[Vpall, N In(|[Vull3 + e)[|Vul3.

a, 5

Taking the Gronwall inequality into consideration, we obtain

T Jo NVnillgo | ()dr
In(|Vul} +¢) < C|1 +/ IVl (r)dr-e .
0 0.2

The proof of Theorem is complete under the condition (1.3)). O

Proof of Theorem[I-3 Multiplying (1.1); by —Apu, integrating by parts, noting
that V - u = 0, we have

1d

% / |V hul? do + / |VVhul* de = /[(u -)u] - Apudz =: J. (3.8)
Next we estimate the right-hand side of (3.8]), with the help of integration by parts
and —0susg = O1u1 + Oxus, one shows that

3 2
J=- 2: E:u/f%uﬁ%uﬂ%Ujdx

i,j=1k=1
2 2
= — 2: j/@kuﬂ%uﬂ%Ujdt— 2:‘/}%uﬂ%uy%u3dx
1,5,k=1 ik=1 (3~9)
3 2
__E::E:U/Q%USQﬂ”akujdx
j=1k=1

= Ji+ Jo+ Js.
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For J; and J3, we obtain
o + T3 < C/|Vu3||th||Vu|dx. (3.10)

J1 is a sum of eight terms, using the fact —03us = 01u1 + Jaug, we can estimate it
as

J=— /(81u1 + 82u2)[(81u1)2 — O1u102usg + (82u2)2] dzx
— /(61U1 + Oous)[(O2u1)? + Orusdous + (D1uz)?] d
= /83U3[(81u1)2 — O1u102us + (6211,2)2 + (82U1)2 + O1u20ruq + (81U2)2] dx

SC/\VU;),HV;LUHVUMI.

(3.11)
Substituting the estimates (3.9)-(3.11]) in (3.8)), we obtain
1d
5 IVl + 199ul3 < C [ 190l Voal|Vuldo = 2. (3.12)

when 2 < p < 2, using Lemmas [2.2| and and the Young inequality, we obtain
L < ClVusll s IVul - [Viulll g, s
< ClIVus|l o3 Vaull g [[Vull2

< OlIVusll s [ Vull 2 | Vaally ™ [V Vhully (3:13)

1 P
< SIVhul + 1 Vusl %7 [ Vul.

MZL

where we used the inequality

£l iz = 1€ Fll2 = (/ €2 F12 1 1220 de) 2 < | 113V £II5,

with 0 <7 < 1.
In the case p = 2, using Holders inequality, Lemma[2.4] and the Young inequality,
we can estimate L as

L < O||Vus| - [Vyulll2]|Vull2
< C||Vus| 0.2 | Vntl g |Vl
< Ol Vus| o s IVaully ™" [V Va5 Vuls (3.14)

1 =
< SIVVaullz + ClIVusl 274 [ Vull3,

where we used the following interpolation inequality [I4]: for 0 < r <1, || f|| gt <

I£1I27" 1V £5-
Now, gathering (3.13) and (3.14)) together and substituting into (3.12)), we obtain

d =
Vel + 1V Vaull3 < ClIVusl| 7o [ Vull3. (3.15)
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Multiplying (1.1); by —Aw, integrating by parts, noting that V - u = 0, we have
(see [25])

2 IVl + 1280l = [ 9] Sudo

§C’/\th|\Vu|2dx
< C||Vpull2 ]| Vul?

1/2 3
< C|IVnull2 | Vully* [Vl g
< C|IVnull2 | Vully [V Vhulla) Aully .

Integrating, with respect to t, yields

1 t
SIu(t)3 + / | Au(r)|2dr

1 t
*HVUOII2+C S HVh )||2(/ IVu(r)|3dr)t/* (3.16)

[\)

< ([ 1vwian) ([ jauizar)’

Substituting (3.15) in (3.16)), using Holders inequality and the Young inequality,
we obtain

1 t
FIVulE + [ Iaurlar

1 1/4
< 31Vl + €+ [ 1Vl 27, Ivutmian ([ 1autiger)

\}

S 5 4/3
<o+ o [ IVl 7, IvumI vy )
1 t
3 | 1outr)ar (317

<c+c /||w ||3<2 7 Ivu(r)l3ar) ( /||Vu szT)

! / ||Au<r>\|§d7
3(2 T) 2 ]' K 2
<c+cC HVus.H 7Ivurar + 5 [ lou) e

Absorbing the last term into the left hand side, applying the Gronwall inequality
and combining with the standard continuation argument, we conclude that the solu-

tions u can be extended beyond ¢ = T provided that Vug € L3E (0, T; NP7 (R3)).
This completes the proof of Theorem ([l

Proof of Theorem[I.3. We start from (3.9)), we can estimate J and J3 as

|2 + J3| < C/ lus||Vu||VViu| dz. (3.18)
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From (3.11)), we find that

J1 S C/ |u3||Vu\|Vth|da: (3.19)
Combining (3.9),([3.17), (3.18) with (3.8), we obtain
2ﬁHthM—%HVthM<<C1/MQHVUHVVthx—-Vl (3.20)

When 2 < p < 5 , similarly as in the proof of L in , we obtain
V < Cllusll .2 IVl - [V Vaull]
< Cllusll s ||vu||Hr||vvhU”2

r 21
<cnuguw,||vvhu||p||w||é loul; (3:21)

p, 2

2(1—r r
< SIVVhull3 + Cllusl?,,. ¢ [Vl Al

When p = 2, similarly as in the proof of L in , we have
V < Ol|us] - |VUH|2||VVW||2
< Cllusll s IV ull gy IV Yl
< cnusan Nl VA va R (3.22)

—||vvhu||2 + Cllus|l? .3 [Vull3" "l Aull3"

Substituting (3.21)) and (3.22)) in (3.20)), we find that

d 2(1—r r
ZVnull3 + 19V aull3 < Cllusl? ., o [Vul3" " | Aul3. (3.23)
Substituting (3.23) in (3.16[), we obtain

1 t
SIvu(t) + / | Au(r)|2dr

1 . )
< IVuol3+ (c+c / lusl?,, IV | Su(r)]dr

/ ||Au<7>||§df

2 2(1-r) 2r 4/3
<C+ IIAu ||2dT+C IIU:aII ez V@l Au(m)]z dT)

r/3
<C+; /||Au )l3ar + ¢ / 1 2vu( )||2dT)

14(1—7)
3

([ sl 1utier)

4(1 7)

L[ || P = =
<Ct g [ NuBar+ [ fuall 7 IVaIF 7 [9un)l T Tar)
0 0 "

1 [t ¢ s ¢ .
<t [ NoumiBdr+o( [ % 19uw ) ([ 19u)r)

<oyl /nAu ||§dr+0/ Jusll 2%, [ Vu(r) [3dr-
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By a similar argument as in the proof of Theorem [1.2] provided that uz €
s .
L% (0,T; MP:? (R?)), we complete the proof of Theorem [1.3 O
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