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COMPOSITION OF Sp-WEIGHTED PSEUDO ALMOST
AUTOMORPHIC FUNCTIONS AND APPLICATIONS

CHUAN-HUA CHEN, HONG-XU LI

Abstract. Since the background space of Sp-weighted pseudo almost auto-

morphic functions (abbr. Sp-wpaa functions) is endowed with a norm coming
from Lp norm, it is natural to consider the composition of Sp-wpaa func-

tions under conditions of Lp norm. However, the known resutls for compo-

sition of Sp-wpaa functions were always given under conditions of supremum
norm. Motivated by this, we establish some new results for the composition

of Sp-almost automorphic functions and Sp-wpaa functions under a “uniform
continuity condition” with respect to Lp norm. As an application, we prove

the existence of mild weighted pseudo almost automorphic solutions for some

semilinear differential equations with an Sp-wpaa force term. An example of
the heat equation illustrates our results.

1. Introduction

The concept of almost automorphy, which was first introduced by Bochner [2]
in the earlier sixties, is a natural generalization of almost periodicity. Afterwards,
this kind of property was extended to many interesting cases such as pseudo al-
most automorphy, weighted pseudo almost automorphy, Sp-almost automorphy,
Sp-pseudo almost automorphy, etc. (see e.g., [1, 4, 17, 19, 20, 22, 24]). Meanwhile,
applications to differential equations, partial differential equations and functional
differential equations of these properties have been widely investigated (see e.g.,
[6, 8, 9, 10, 11, 13, 25] and the references therein).

Recently, a new class of property called Sp-weighted pseudo almost automor-
phy was introduced by Zhang et al. [25] and Xia and Fan [22], which is a natural
generalization of both weighted pseudo almost automorphy (introduced by Blot et
al. [1]) and Sp-pseudo almost automorphy (introduced by Diagana [4]), and the
properties of this new class of functions were discussed, including the key prop-
erty composition theorem. Meanwhile, as applications, some existence theorems of
weighted pseudo almost automorphic solutions to some differential equations with
Sp-weighted pseudo almost automorphic coefficients were obtained.

The main purpose of this work is to make a further study on the composi-
tion for Sp-almost automorphic functions and Sp-weighted pseudo almost auto-
morphic functions. We notice that some more results were given in this line (see
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[6, 7, 8, 10, 11, 22, 23, 25]). In these works, a “Lipschitz condition” or a “uniform
continuity condition” with respect to sup norm was needed in the these theorems
(see Remark 3.5 and 3.9 for details). It is natural to consider the same problem
under the “uniform continuity condition” with respect to Lp norm instead of the
“Lipschitz condition” or “uniform continuity condition” with respect to sup norm.
This is reasonable and necessary since the spaces of Sp-almost automorphic func-
tions and Sp-weighted pseudo almost automorphic functions are endowed with an
integral norm coming from Lp norm. Moreover, the “uniform continuity condition”
is the main condition needed for the known theorems for composition of almost au-
tomorphic functions [18], pseudo almost automorphic functions [15] and weighted
pseudo almost automorphic functions [1].

For this purpose, we present some new results on the composition of Sp-almost
automorphic functions and Sp-weighted pseudo almost automorphic functions un-
der the “uniform continuity condition” with respect to the Lp norm (see Theorems
3.3 and 3.7). As an application, we give an existence of mild weighted pseudo
almost automorphic solutions to the semilinear differential equation

u′(t) = Au(t) + f(t, u(t)), t ∈ R,

where f is an Sp-weighted pseudo almost automorphic function (see Theorem 4.3).
Moreover, a concrete example of heat equation is given to illustrate our abstract
theorems at the end of this paper, where the “uniform continuity condition” with
respect to the Lp norm is satisfied while the “Lipschitz condition” is not.

2. Preliminaries

We first introduce some classical notation. Let (X, ‖ · ‖), (Y, ‖ · ‖) be two Banach
spaces, and BC(R,X) (resp. BC(R× Y,X)) be the space of bounded continuous
functions u : R→ X (resp. u : R× Y→ X). Then endowed with the sup norm
‖u‖ = supt∈R ‖u(t)‖, BC(R,X) is a Banach space. C(R,X) (resp. C(R× Y,X))
stands for the space of continuous functions from R to X (resp. from R× Y to X).
We note that even though the notation ‖ · ‖ is used for norms in different spaces,
no confusion should arise.

2.1. Weighted pseudo almost automorphic functions.

Definition 2.1 ([2]). (i) f ∈ C(R,X) is said to be almost automorphic if for
every sequence of real numbers {s′n}, there exists a subsequence {sn} such that
g(t) = limn→∞ f(t+ sn) is well-defined for t ∈ R, and limn→∞ g(t− sn) = f(t) for
t ∈ R. Denote by AA(X) the set of all such functions.

(ii) f ∈ C(R× Y,X) is said to be almost automorphic if f(t, u) is almost auto-
morphic in t ∈ R uniformly for all u ∈ K, where K is any bounded subset of Y.
Denote by AA(R× Y,X) the set of all such functions.

Denote by AAu(X) the closed subspace of all functions f ∈ AA(X) with g ∈
C(R,X). We note that f ∈ AAu(X) if and only if f ∈ AA(X) and all convergences
in Definition 2.1 are uniform on compact intervals (i.e. in the Fréchet space), and
f is uniformly continuous if g ∈ C(R,X). Moreover, the range f(R) of f ∈ AA(X)
is precompact, and AA(X) is a closed subspace of BC(R,X) (cf. [17, 19, 20]).
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Let U be the set of all functions ρ : R→ (0,∞) which are locally integrable over
R. For T > 0 and ρ ∈ U , set

µ(T, ρ) =
∫ T

−T
ρ(t)dt.

Define
U∞ = {ρ ∈ U : lim

T→∞
µ(T, ρ) =∞}.

For ρ ∈ U∞, T > 0 and f ∈ BC(R,X), denote

W(T, f, ρ) =
1

µ(T, ρ)

∫ T

−T
‖f(t)‖ρ(t)dt.

Then the weighted ergodic spaces PAA0(R,X, ρ) and PAA0(R× Y,X, ρ) are de-
fined by

PAA0(X, ρ) = {f ∈ BC(R,X) : lim
T→∞

W(T, f, ρ) = 0},

PAA0(R× Y,X, ρ) =
{
f ∈ BC(R× Y,X) : lim

T→∞
W(T, f(·, u), ρ) = 0

uniformly in u ∈ Y
}
.

For ρ ∈ U∞, the spaces WPAA(X, ρ) and WPAA(R× Y,X, ρ) of weighted pseudo
almost automorphic functions were introduced in [1]:

WPAA(X, ρ) = {f = g + φ ∈ BC(R,X) : g ∈ AA(X), φ ∈ PAA0(X, ρ)},
WPAA(R× Y,X, ρ)

= {f = g + φ ∈ BC(R× Y,X) : g ∈ AA(R× Y,X), φ ∈ PAA0(R× Y,X, ρ)}.

Lemma 2.2 ([3, 14, 16]). If PAA0(X, ρ) is translation invariant, then the space
WPAA(X, ρ) endowed with the supremum norm is a Banach space and the decom-
position of the functions in WPAA(X, ρ) is unique.

2.2. Sp-weighted pseudo almost automorphic functions. In this subsection,
the definitions and basic results on Sp-weighted pseudo almost automorphic func-
tions can be found (or simply deduced from the results) in [3, 5, 12, 14, 20, 21, 22,
26, 25]. We always denote by ‖ · ‖p the norm of space Lp(0, 1; X) for p ∈ [1,∞).

Definition 2.3. (i) The Bochner transform f b(t, s), (t, s) ∈ R× [0, 1], of a function
f : R→ X is defined by f b(t, s) = f(t+ s).

(ii) The Bochner transform f b(t, s, u), (t, s, u) ∈ R × [0, 1] × Y, of a function
f : R× Y→ X is defined by f b(t, s, u) = f(t+ s, u).

Obviously, if f = g + φ, then f b = gb + φb, and (λf)b = λf b for each scalar λ.

Definition 2.4. (i) The space BSp(X) of all Stepanov bounded functions, with
the exponent p, consists of all measurable functions f : R→ X such that f b ∈
L∞(R, Lp(0, 1; X)). It is a Banach space with the norm

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

(∫ t+1

t

‖f(τ)‖pdτ
)1/p

= sup
t∈R
‖f(t+ ·)‖p.

(ii) The space BSp(R× Y,X) of all Stepanov bounded functions consists of all
measurable functions f : R× Y→ X such that

f b(·, ·, y) ∈ L∞(R, Lp(0, 1; X)), t 7→ f b(t, ·, y) ∈ Lp(0, 1; X), t ∈ R
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(abbr.

f b(·, y) ∈ L∞(R, Lp(0, 1; X)), t 7→ f b(t, y) ∈ Lp(0, 1; X), t ∈ R)

for each y ∈ Y.

Definition 2.5. (i) The space ASp(X) of Stepanov-like almost automorphic func-
tions (abbr. Sp-almost automorphic functions) consists of all f ∈ BSp(X) such that
f b ∈ AA(Lp(0, 1; X)). That is, a function f ∈ Lploc(R,X) is said to be Sp-almost
automorphic if its Bochner transform f b : R → Lp(0, 1; X) is almost automorphic
in the sense that for every sequence of real numbers {s′n}, there exist a subsequence
{sn} and a function g ∈ LpLoc(R,X) such that

lim
n→∞

‖f(t+ sn + ·)− g(t+ ·)‖p = lim
n→∞

‖g(t− sn + ·)− f(t+ ·)‖p = 0

pointwisely for t ∈ R.
(ii) A function f ∈ BSp(R× Y,X) is said to be Sp-almost automorphic in t ∈ R

for u ∈ Y, if f(·, u) ∈ ASp(X) for u ∈ Y. Denote by ASp(R× Y,X) the set of all
such functions.

Lemma 2.6 ([20]). (i) (ASp(X), ‖ · ‖Sp) is a Banach space.
(ii) f ∈ ASp(X) if and only if f b ∈ AAu(Lp(0, 1; X)).
(iii) AA(X) is continuously embedded in ASp(X).

For ρ ∈ U∞, the spaces SpWPAA(X, ρ) and SpWPAA(R× Y,X, ρ) of Stepanov-
like weighted pseudo almost automorphic functions (abbr. Sp-weighted pseudo
almost automorphic functions) are defined by:

SpWPAA(X, ρ) = {f = g + φ ∈ BSp(X) : g ∈ ASp(X), φb ∈ PAA0(Lp(0, 1; X), ρ)},

SpWPAA(R× Y,X, ρ) =
{
f = g + φ ∈ BSp(R× Y,X) : g ∈ ASp(R× Y,X),

φb ∈ PAA0(R× Y, Lp(0, 1; X), ρ)
}
.

Lemma 2.7. (i) Assume that PAA0(Lp(0, 1; X), ρ) is translation invariant.
Then the decomposition of an Sp-weighted pseudo almost automorphic func-
tion is unique.

(ii) The space SpWPAA(X, ρ) equipped with ‖ · ‖Sp is a Banach space.
(iii) WPAA(X) is continuously embedded in SpWPAA(X, ρ).

Remark 2.8. Note that Lemma 2.7 (i) can be proved by the same argument as
that in [14, Theorem 3.3], and Lemma 2.7 (i) does not hold in general without the
assumption “PAA0(Lp(0, 1; X), ρ) is translation-invariant”(see [14, Remark 3.3]).
Similar result can be found also in [16, Theorem 2.10, Remark 2.11]. Lemma 2.7
(ii) comes from [22, Theorem 3.3], and Lemma 2.7(iii) comes from [22, Theorem
3.1].

In the sequel, we write u = x + y ∈ SpWPAA(X, ρ) implies that x ∈ ASp(X)
and yb ∈ PAA0(Lp(0, 1; X), ρ), and similarly f = g + φ ∈ SpWPAA(R× Y,X, ρ)
implies that g ∈ ASp(R× Y,X) and φb ∈ PAA0(R× Y, Lp(0, 1; X), ρ).

3. Results on compositions of functions

For any bounded set K ⊂ X, denote by ASpK(R× X,X) ⊂ ASp(R× X,X), the
set of all functions such that the convergence in Definition 2.5 (ii) are uniform for
u ∈ K. In addition, we always assume that p ∈ (1,∞).



EJDE-2014/236 Sp-WEIGHTED PSEUDO ALMOST AUTOMORPHIC FUNCTIONS 5

We introduce the following “uniform continuity condition” with respect to the
Lp norm for a function h : R× X→ X with h(·, u) ∈ Lploc(R,X) for each u ∈ X:

(A1) For ε > 0, there exists σ > 0 such that x, y ∈ Lp(0, 1; X) and ‖x− y‖p < σ
imply that

‖h(t+ ·, x(·))− h(t+ ·, y(·))‖p < ε for t ∈ R.

In the sequel, we say that a function ψ satisfies (A1) means that (A1) holds for ψ
in the place of h.

Let f ∈ ASp(R×X,X). Then for a sequence {sn} ⊂ R, there exist a subsequence
{τn} and a function g : R × X → X with g(·, x) ∈ Lploc(R,X), x ∈ X such that for
each t ∈ R,

lim
n→∞

‖f(t+τn+ ·, x)−g(t+ ·, x)‖p = lim
n→∞

‖g(t−τn+ ·, x)−f(t+ ·, x)‖p = 0. (3.1)

We will use the following “uniform continuity condition” with respect to the Lp

norm:
(A2) f ∈ ASp(R×X,X) satisfies (A1), and for a sequence {sn} ⊂ R, there exist

a subsequence {τn} and a function g given above such that g satisfies (A1).

Remark 3.1. (i) It is clear that assumption (A2) implies that f(t, ·) : X→ ASp(X)
is uniformly continuous and gb(t, ·) : X → Lp(0, 1; X) is uniformly continuous uni-
formly in t ∈ R. As a result, we can check easily that (3.1) holds uniformly on each
compact K ⊂ X, that is f ∈ ASpK(R× X,X).

(ii) If f satisfies (A1), for a sequence {sn} ⊂ R, it is not necessary that each
function g associated with some subsequence {τn} of {sn} satisfies (A1) even in the
periodic case. For example, let f(t, x) = sin 2πt, (t, x) ∈ R2. For sequence {1/n},
g(t, x) can be chosen as

g(t, x) =

{
2, t = n+ x, n ∈ Z, x ∈ (0, 1),
sin 2πt, otherwise.

It is clear that f satisfies (A1), while g does not. In fact, for σ ∈ (0, 1), let
x(s) = s, y(s) = s + σ/2, s ∈ [0, 1]. Then x, y ∈ Lp(0, 1; X), ‖x − y‖p < σ, and for
t = 0,

‖g(t+ ·, x(·))− g(t+ ·, y(·))‖p =
(∫ 1

0

‖g(s, s)− g(s, s+ σ/2)‖pds
)1/p

=
(∫ 1

0

‖2− sin 2πs‖pds
)1/p

> 1.

However, if we choose g = f , g satisfies (A1).

Lemma 3.2. Let h be the function in (A1), and x : R→ X with x(R) compact.
For ε > 0, there exists a finite set {xk}mk=1 ⊂ x(R) such that

‖h(t+ ·, x(t+ ·))‖p < ε+m sup
1≤k≤m

‖h(t+ ·, xk)‖p, t ∈ R.

Proof. For ε > 0, let σ > 0 be given by (A1). Since x(R) is compact, we can find
finite open balls Ok(k = 1, 2, . . . ,m) with center xk ∈ x(R) and radius σ such that
x(R) ⊂ ∪mk=1Ok. Set Bk = {s ∈ R : x(s) ∈ Ok}. Then R = ∪mk=1Bk. Let E1 = B1,
Ek = Bk \ (∪k−1

j=1Bj)(2 ≤ k ≤ m), then Ei ∩ Ej = ∅ for i 6= j and R = ∪mk=1Ek.
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Define a step function x̂ : R→ X by x̂(s) = xk, s ∈ Ek, k = 1, 2, . . . ,m. It is clear
that ‖x(s)− x̂(s)‖ < σ for s ∈ R. So ‖x(s+ ·)− x̂(s+ ·)‖p < σ, s ∈ R. By (A1),

‖h(t+ ·, x(s+ ·))− h(t+ ·, x̂(s+ ·))‖p < ε, t, s ∈ R.

Thus for t ∈ R,

‖h(t+ ·, x(t+ ·))‖p ≤ ‖h(t+ ·, x(t+ ·))− h(t+ ·, x̂(t+ ·))‖p + ‖h(t+ ·, x̂(t+ ·))‖p

< ε+
(∫ t+1

t

‖h(s, x̂(s))‖pds
)1/p

= ε+
( m∑
k=1

∫
Ek∩[t,t+1]

‖h(s, xk)‖pds
)1/p

≤ ε+
( m∑
k=1

∫ t+1

t

‖h(s, xk)‖pds
)1/p

≤ ε+m sup
1≤k≤m

‖h(t+ ·, xk)‖p.

This completes the proof. �

Theorem 3.3. Assume that f satisfies (A2), and x ∈ ASp(X) with x(R) compact.
Then f(·, x(·)) ∈ ASp(X).

Proof. Let K = x(R). Since f(·, x) ∈ Lploc(R,X) for each x ∈ X and K is compact,
by (A2) and a standard method, it is easy to verify that f(·, x(·)) ∈ Lploc(R,X).

Since x ∈ ASp(X) and f ∈ ASpK(R×X,X) by Remark 3.1 (i), for every sequence
{sn} ⊂ R, there exist a subsequence {τn} and functions y : R→ X and g : R×X→
X with y, g(·, z) ∈ Lploc(R,X), z ∈ X such that for each t ∈ R,

lim
n→∞

‖x(t+ τn + ·)− y(t+ ·)‖p = lim
n→∞

‖y(t− τn + ·)− x(t+ ·)‖p = 0, (3.2)

lim
n→∞

sup
z∈K
‖f(t+ τn + ·, z)− g(t+ ·, z)‖p

= lim
n→∞

sup
z∈K
‖g(t− τn + ·, z)− f(t+ ·, z)‖p = 0.

(3.3)

Clearly, (3.2) implies that y(t) ∈ K for a.e. t ∈ R. Let R0 = {t ∈ R : y(t) ∈ K}.
Then the measure m(R \ R0) = 0. Fix y0 ∈ K, define ȳ(t) = y(t) if t ∈ R0 and
ȳ(t) = y0 if t ∈ R \ R0. Then ȳ(R) ⊂ K. Notice that f(τn + ·, ·)− g satisfies (A1)
for all n (for the same σ). Then by Lemma 3.2, for ε > 0, there exists a finite set
{yk}mk=1 ⊂ K such that for t ∈ R,

‖f(t+τn+·, ȳ(t+·))−g(t+·, ȳ(t+·))‖p < ε+m sup
1≤k≤m

‖f(t+τn+·, yk))−g(t+·, yk)‖p.

Fix t ∈ R, by (3.3), there exists N1 > 0 such that for n > N1,

sup
z∈K
‖f(t+ τn + ·, z)− g(t+ ·, z)‖p <

ε

m
.

Thus for n > N1,

‖f(t+ τn + ·, y(t+ ·))− g(t+ ·, y(t+ ·))‖p

= ‖f(t+ τn + ·, ȳ(t+ ·))− g(t+ ·, ȳ(t+ ·))‖p < ε+m
ε

m
= 2ε.

(3.4)
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By (3.2), there is N2 > 0 such that for n > N2, ‖x(t + τn + ·) − y(t + ·)‖p < σ,
where σ is given by (A1) with f in the place of h. Then for n > N2,

‖f(t+ τn + ·, x(t+ τn + ·))− f(t+ τn + ·, y(t+ ·))‖p
≤ sup

r∈R
‖f(r + ·, x(t+ τn + ·))− f(r + ·, y(t+ ·))‖p ≤ ε. (3.5)

Now, by (3.4) and (3.5), for n > max{N1, N2},

‖f(t+ τn + ·, x(t+ τn + ·))− g(t+ ·, y(t+ ·))‖p
≤ ‖f(t+ τn + ·, x(t+ τn + ·))− f(t+ τn + ·, y(t+ ·))‖p

+ ‖f(t+ τn + ·, y(t+ ·))− g(t+ ·, y(t+ ·))‖p < 3ε.

This implies that for t ∈ R,

lim
n→∞

‖f(t+ τn + ·, x(t+ τn + ·))− g(t+ ·, y(t+ ·))‖p = 0.

Similarly, we can prove that for t ∈ R,

lim
n→∞

‖g(t− τn + ·, y(t− τn + ·))− f(t+ ·, x(t+ ·))‖p = 0.

Therefore, f(·, x(·)) ∈ ASp(X). The proof is complete. �

If x ∈ AA(X), x ∈ ASp(X) and x(R) is compact. Then we obtain the following
result by Theorem 3.3.

Corollary 3.4. Assume that f satisfies (A2) and x ∈ AA(X). Then f(·, x(·)) ∈
ASp(X).

Remark 3.5. There are lots of works devoted to the composition of Sp-almost
automorphic functions, in which the function f is assumed to satisfy a “Lipschitz
condition” of the form

‖f(t, u)− f(t, v)‖ ≤ L(t)‖u− v‖, u, v ∈ X, (3.6)

where L(t) is a positive constant in [6, 8], L ∈ ASr(R) with r ≥ max{p, p
p−1} in

[7], and L ∈ BSr(R) with r ≥ p in [10]; or in the form of Lp norm in [11]:

‖f(t+ ·, x(·))− f(t+ ·, y(·))‖p ≤ L‖x− y‖p, t ∈ R.

where L > 0 and x, y ∈ Lploc(R,X). In addition, f(t, x) is also assumed to be
uniformly continuous on each bounded subset K ′ ⊂ X uniformly for t ∈ R in [25];
i.e., f satisfies the “uniform continuity condition” with respect to the sup norm.

The following lemma will be useful later.

Lemma 3.6 ([25]). Let ρ ∈ U∞ and f ∈ BSp(X). Then f b ∈ PAA0(Lp(0, 1; X), ρ)
if and only if for any ε > 0,

lim
T→∞

µ(MT,ε(f), ρ)
µ(T, ρ)

= 0,

where

MT,ε(f) = {t ∈ [−T, T ] : ‖f(t+ ·)‖p ≥ ε}, µ(MT,ε(f), ρ) =
∫
MT,ε(f)

ρ(t)dt .

Next, we give a result in the composition of Sp-weighted pseudo almost auto-
morphic functions.
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Theorem 3.7. Let f = g + φ belong to SpWPAA(R× X,X, ρ) and let u = x+ y

belong to SpWPAA(X, ρ) with x(R) compact. Assume that g satisfies (A2), φ
satisfies (A1) and {f(·, z) : z ∈ J} is bounded in SpWPAA(X, ρ) for any bounded
J ⊂ X. Then f(·, u(·)) ∈ SpWPAA(X, ρ).

Proof. Let I1(t) = g(t, x(t)), I2(t) = f(t, u(t))−f(t, x(t)) and I3(t) = φ(t, x(t)), t ∈
R. Then

f(t, u(t)) = I1(t) + I2(t) + I3(t), t ∈ R.
We have I1 ∈ ASp(X) by Theorem 3.3. So we need only to prove that Ib2, I

b
3 ∈

PAA0(Lp(0, 1; X), ρ).
It is easy to see that I2 ∈ BSp(X) since u and x are bounded and {f(·, z) : z ∈ J}

is bounded in SpWPAA(X, ρ) for any bounded J ⊂ X. Noticing that f satisfies
(A1) since g and φ satisfy (A1), for ε > 0, let σ > 0 be given by (A1) with f in the
place of h. Then

‖I2(t+ ·)‖p = ‖f(t+ ·, u(t+ ·))− f(t+ ·, x(t+ ·))‖p < ε

for ‖y(t+ ·)‖p < σ, t ∈ R. This implies that MT,ε(I2) ⊂ MT,σ(y). Here we use the
notation in Lemma 3.6. Meanwhile, since yb ∈ PAA0(Lp(0, 1; X), ρ), by Lemma
3.6,

lim
T→∞

µ(MT,σ(y), ρ)
µ(T, ρ)

= 0.

Thus

lim
T→∞

µ(MT,ε(I2), ρ)
µ(T, ρ)

= 0,

which shows that Ib2 ∈ PAA0(Lp(0, 1; X), ρ).
For ε > 0, let σ be given by (A1) with φ in the place of h. By Lemma 3.2, there

is a finite set {xk}mk=1 ⊂ x(R) such that for t ∈ R,

‖φ(t+ ·, x(t+ ·))‖p < ε+m sup
1≤k≤m

‖φ(t+ ·, xk)‖p.

Since φb(·, x) ∈ PAA0(Lp(0, 1; X), ρ) for each x ∈ X, there is T0 > 0 such that for
T > T0, 1 ≤ k ≤ m,

W(T, φb(·, xk), ρ) =
1

µ(T, ρ)

∫ T

−T
ρ(t)‖φ(t+ ·, xk)‖pdt <

ε

m
.

Then for T > T0,

W(T, Ib3, ρ) =W(T, φb(·, x(·)), ρ)

=
1

µ(T, ρ)

∫ T

−T
ρ(t)‖φ(t+ ·, x(t+ ·))‖pdt

< ε+m sup
1≤k≤m

1
µ(T, ρ)

∫ T

−T
ρ(t)‖φ(t+ ·, xk))‖pdt

= ε+m sup
1≤k≤m

W(T, φb(·, xk), ρ)

< ε+m
ε

m
= 2ε.

This yields that limT→∞W(T, Ib3, ρ) = 0. That is Ib3 ∈ PAA0(Lp(0, 1; X), ρ). The
proof is complete. �
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By Lemma 2.7 (iii) and Theorem 3.7, we have the following corollary.

Corollary 3.8. Let f = g + φ ∈ SpWPAA(R × X,X, ρ) and u ∈ WPAA(X, ρ).
Assume that g satisfies (A2), φ satisfies (A1) and {f(·, z) : z ∈ J} is bounded in
SpWPAA(X, ρ) for any bounded J ⊂ X. Then f(·, u(·)) ∈ SpWPAA(X, ρ).

Remark 3.9. The composition of Sp-weighted pseudo almost automorphic func-
tions was also studied in some recent papers, where the functions f = g + φ ∈
SpWPAA(R×X,X, ρ) are assumed to satisfy a “Lipschitz condition”: Xia an Fan
[22] investigated the case when f and g satisfies (3.6) with constant L > 0 or
L ∈ ASr(R) with r ≥ max{p, p

p−1}; Zhang et al. [25] studied the case when f

satisfies

‖f(t, u)− f(t, v)‖Sp ≤ L(t)‖u− v‖,

where L ∈ BSp(R) and u, v ∈ Lploc(R,X), and g satisfies the “uniform continuity
condition” with respect to the sup norm. Moreover, the case when f and g satisfy
the “uniform continuity condition” with respect to the sup norm is also studied.

4. Mild weighted pseudo almost automorphic solutions

Applying the theorems obtained in the last section, we study the existence of
mild weighted pseudo almost automorphic solutions of the semilinear differential
equation

u′(t) = Au(t) + f(t, u(t)), t ∈ R, (4.1)

where A is the infintesimal generator of a C0-semigroup (T (t))t≥0 and f = g+ φ ∈
SpWPAA(R × X,X, ρ) satisfies the conditions of Corollary 3.8. We recall that
u is said to be a mild weighted pseudo almost automorphic solution of (4.1) if
u ∈WPAA(X, ρ) and

u(t) =
∫ t

−∞
T (t− s)f(s, u(s))ds.

In the sequel, we assume that PAA0(Lp([0, 1],X), ρ) is translation invariant. Then
WPAA(X, ρ) and SpWPAA(X, ρ) are Banach spaces by Lemma 2.2 and 2.7. More-
over, we will use the following assumption:

(A3) T (t) is compact for t > 0 and there exist constants M, c > 0 such that
‖T (t)‖ ≤Me−ct for t ≥ 0.

Let q > 1 such that 1/p+ 1/q = 1. Denote

α0 = M
(eqc − 1

qc

)1/q

, α = α0

∞∑
k=1

e−ck.

For u ∈ WPAA(X, ρ), by Corollary 3.8, we have f(·, u(·)) ∈ SpWPAA(X, ρ). So
we can give the following assumptions which will be used later:

(A4) There exists r > 0 such that ‖f(·, u(·))‖Sp ≤ r/α for u ∈ WPAA(X, ρ)
with ‖u‖ ≤ r.

(A5) Let {un} be a bounded sequence in WPAA(X, ρ) and uniformly convergent
in each compact subset of R. Then {f(·, un(·))} is relatively compact in
SpWPAA(X, ρ).
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For u ∈WPAA(X, ρ), define

V u =
∫ t

−∞
T (t− s)f(s, u(s))ds =

∫ ∞
0

T (s)f(t− s, u(t− s))ds.

Then we have the following lemma.

Lemma 4.1. Assume that (A3) holds. Then V : WPAA(X, ρ)→WPAA(X, ρ) is
continuous.

Proof. For any χ ∈ BSp(X), by (A3), for t ∈ R,∥∥∫ ∞
0

T (τ)χ(t− τ)dτ
∥∥ ≤M ∞∑

k=1

∫ k

k−1

e−cτ‖χ(t− τ)‖dτ

≤M
∞∑
k=1

(∫ k

k−1

e−cqτdτ
)1/q(∫ k

k−1

‖χ(t− τ)‖pdτ
)1/p

= α0

∞∑
k=1

e−ck‖χ(t+ k − 2 + ·)‖p ≤ α‖χ‖Sp .

(4.2)
Let u ∈ WPAA(X, ρ), and denote ψ(t) = f(t, u(t)). Then ψ ∈ SpWPAA(X, ρ) by
Corollary 3.8. Let ψ = ψ1 +ψ2 with ψ1 ∈ ASp(X) and ψb2 ∈ PAA0(Lp([0, 1],X), ρ).
Denote

Ψi(t) =
∫ ∞

0

T (τ)ψi(t− τ)dτ, t ∈ R, i = 1, 2.

Then by (4.2), for t, s ∈ R, i = 1, 2,

‖Ψi(t)‖ ≤ α‖ψi‖Sp ,

‖Ψi(t)−Ψi(s)‖ ≤ α0

∞∑
k=1

e−ck‖ψi(t+ k − 2 + ·)− ψi(s+ k − 2 + ·)‖p.

Notice that
∑∞
k=1 e

−ck‖ψi(t+k−2+ ·)−ψi(s+k−2+ ·)‖p is convergent uniformly
in t, s ∈ R. Therefore Ψi ∈ BC(R,X), i = 1, 2. Now the proof is completed by the
following 3 steps.
Step 1. We prove that Ψ1 ∈ AA(X). For a sequence {s′n} ⊂ R, since ψb1 ∈
AA(Lp(0, 1; X)), there exist a subsequence {sn} and a function ψ̂1 ∈ Lploc(R,X)
such that, for t ∈ R,

lim
n→∞

‖ψ1(t+ sn + ·)− ψ̂1(t+ ·)‖p = lim
n→∞

‖ψ̂1(t− sn + ·)− ψ1(t+ ·)‖p = 0. (4.3)

Let

Ψ̂1(t) =
∫ ∞

0

T (τ)ψ̂1(t− τ)dτ, t ∈ R.

It is easy to see that
∞∑
k=1

e−ck‖ψ1(t+ sn + k − 2 + ·)− ψ̂1(t+ k − 2 + ·)‖p

is convergent uniformly in t ∈ R. Then by (4.2) and (4.3), for t ∈ R,

‖Ψ1(t+ sn)− Ψ̂1(t)‖ =
∥∥∫ ∞

0

T (τ)(ψ1(t+ sn − τ)− ψ1(t− τ))dτ
∥∥
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≤ α0

∞∑
k=1

e−ck‖ψ1(t+ sn + k − 2 + ·)− ψ̂1(t+ k − 2 + ·)‖p

→ 0 as n→∞.
Similarly, we can prove that

lim
n→∞

‖Ψ̂1(t− sn)−Ψ1(t)‖ = 0 for t ∈ R.

That is, Ψ1 ∈ AA(X).
Step 2. We prove that Ψ2 ∈ PAA0(X, ρ). Noticing that PAA0(Lp([0, 1],X), ρ) is
translation invariant, we have

lim
T→∞

W(T, ψb2(·+ k − 2), ρ) = lim
T→∞

1
µ(T, ρ)

∫ T

−T
ρ(t)‖ψ2(t+ k − 2 + ·)‖pdt = 0,

k = 1, 2, . . . . It is clear that
∑∞
k=1 e

−ck‖ψ2(t+ k− 2 + ·)‖p is convergent uniformly
in t ∈ R and

∑∞
k=1 e

−ckW(T, ψb2(·+k−2), ρ) is convergent uniformly in T ∈ (0,∞).
Then by (4.2),

W(T,Ψ2, ρ) =
1

µ(T, ρ)

∫ T

−T
ρ(t)

∥∥∫ ∞
0

T (τ)ψ2(t− τ)dτ
∥∥dt

≤ 1
µ(T, ρ)

∫ T

−T
ρ(t)

[
α0

∞∑
k=1

e−ck‖ψ2(t+ k − 2 + ·)‖p
]
dt

= α0

∞∑
k=1

e−ckW(T, ψb2(·+ k − 2), ρ)→ 0 as T →∞.

This means that Ψ2 ∈ PAA0(X, ρ).
Step 3. We prove the continuity of V . For ε > 0, let σ > 0 be given by (A1)
with f in the place of h, and u, v ∈ WPAA(X, ρ) such that ‖u − v‖ < σ. Then
‖u(t+ ·)− v(t+ ·)‖p < σ for t ∈ R. Denote ω(t) = f(t, u(t))− f(t, v(t)), t ∈ R. We
have ‖ω(t+ ·)‖p < ε for t ∈ R by (A1), which yields that ‖ω‖Sp ≤ ε. Thus by (4.2),

‖V u− V v‖ = sup
t∈R

∥∥∫ ∞
0

T (τ)ω(t− τ)ds
∥∥ ≤ α‖ω‖Sp ≤ αε.

This implies that V : WPAA(X, ρ) → WPAA(X, ρ) is uniformly continuous. The
proof is complete. �

Assume that (A4) holds, and let

B = {u ∈WPAA(X, ρ) : ‖u‖ ≤ r},
where r is given by (A4). Then B is a bounded closed convex subset ofWPAA(X, ρ),
and we have the following result.

Lemma 4.2. Assume that (A3)-(A5) hold. Then V : B → B is continuous and
V (B) satisfies the following conditions:

(a) V (B)(t) = {V u(t) : u ∈ B} ⊂ X is relatively compact for each t ∈ R;
(b) As a set of functions from R to X, V (B) is equicontinuous.

Proof. For u ∈ B, by (A4) and (4.2),

‖V u‖ = sup
t∈R

∥∥∫ ∞
0

T (τ)f(t− τ, u(t− τ))dτ
∥∥ ≤ α‖f(·, u(·))‖Sp ≤ r.
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Then V : B → B is continuous by Lemma 4.1.
For t ∈ R, 0 < ε < 1, u ∈ B, let

Vεu(t) =
∫ t−ε

−∞
T (t− s)f(s, u(s))ds

= T (ε)
∫ t−ε

−∞
T (t− ε− s)f(s, u(s))ds = T (ε)V u(t− ε).

This implies that {Vεu(t) : u ∈ B} is relatively compact in X since T (ε) is compact.
By (A3) and (A4),

‖V u(t)− Vεu(t)‖ ≤
∫ t

t−ε
‖T (t− τ)f(τ, u(τ))‖dτ

≤M
∫ t

t−ε
e−c(t−τ)‖f(τ, u(τ))‖dτ

≤M
(∫ t

t−ε
e−cq(t−τ)dτ

)1/q(∫ t

t−ε
‖f(τ, u(τ))‖pdτ

)1/p

≤Mε1/q‖f(·, u(·))‖Sp ≤ Mr

α
ε1/q.

This implies that {V u(t) : u ∈ B} is relatively compact in X for each t ∈ R, and
(a) holds.

Let u ∈ B, t1, t2 ∈ R with t1 < t2 and 0 < ε < 1 such that η = (αε/(6Mr))q ≤ 1.
We can decompose V u(t2)− V u(t1) = J1 + J2 + J3, where

J1 =
∫ t1−η

−∞
(T (t2 − τ)− T (t1 − τ))f(τ, u(τ))dτ,

J2 =
∫ t1

t1−η
(T (t2 − τ)− T (t1 − τ))f(τ, u(τ))dτ,

J3 =
∫ t2

t1

T (t2 − τ)f(τ, u(τ))dτ.

Since (T (t))t≥0 is a C0-semigroup and T (t) is compact for t > 0, there exists
δ ∈ (0, η) such that ‖T (t2− t1 + η)−T (η)‖ ≤ ε/(3r) for t2− t1 < δ. Then by (A3),
(A4) and (4.2),

‖J1‖ =
∥∥∫ t1−η

−∞
(T (t2 − τ)− T (t1 − τ))f(τ, u(τ))dτ

∥∥
=
∥∥(T (t2 − t1 + η)− T (η))

∫ t1−η

−∞
T (t1 − η − τ)f(τ, u(τ))dτ

∥∥
≤ ε

3r

∥∥ ∫ ∞
0

T (τ)f(t1 − η − τ, u(t1 − η − τ))dτ
∥∥

≤ ε

3r
α‖f(·, u(·))‖Sp

≤ ε

3r
r =

ε

3
,

(4.4)
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‖J2‖ ≤
∫ t1

t1−η
(Me−c(t2−τ) +Me−c(t1−τ))‖f(τ, u(τ))‖dτ

≤M
(∫ t1

t1−η

(
e−c(t2−τ) + e−c(t1−τ)

)q
dτ
)1/q(∫ t1

t1−η
‖f(τ, u(τ))‖pdτ

)1/p

≤ 2Mη1/q‖f(·, u(·))‖Sp

≤ 2Mη1/q r

α
=
ε

3
(4.5)

and

‖J3‖ ≤
∫ t2

t1

Me−c(t2−τ)‖f(τ, u(τ))‖dτ

≤M
(∫ t2

t1

e−cq(t2−τ)dτ
)1/q(∫ t2

t1

‖f(τ, u(τ))‖pdτ
)1/p

≤Mδ1/q‖f(·, u(·))‖Sp

≤Mη1/q r

α
=
ε

6
.

(4.6)

Combining (4.4)–(4.6), we obtain

‖V u(t2)− V u(t1)‖ < ε.

This implies (b), and completes the proof. �

Now we are in the position to give the main result of this section.

Theorem 4.3. Assume that (A3)–(A5) hold. Then (4.1) has a mild weighted
pseudo almost automorphic solution u such that ‖u‖ ≤ r.

Proof. Denote by coV (B) the closed convex hull of V (B). Since V (B) ⊂ B and B
is closed convex, coV (B) ⊂ B. Thus V (coV (B)) ⊂ V (B) ⊂ coV (B). It is easy to
see that coV (B) also satisfies conditions (a) and (b) in Lemma 4.2 since V (B) does.
By the Arzela-Ascoli theorem, the restriction of coV (B) to every compact subset
I ⊂ R, namely {u(t) : u ∈ coV (B)}t∈I , is relatively compact in C(I,X).

Let {un} ⊂ coV (B). Then {un(t)}t∈I is relatively compact in C(I,X), and there
is a subsequence of {un(t)}t∈I , denoted by {un(t)}t∈I again, which is convergent
in C(I,X). By (A5), {f(·, un(·))} is relatively compact in SpWPAA(X, ρ). Thus
there exists a subsequence of {f(·, un(·))}, denoted again by {f(·, un(·))}, which is
convergent in SpWPAA(X, ρ), that is for ε > 0, there is N > 0 such that

‖f(·, un(·))− f(·, um(·))‖Sp <
ε

α
for m,n > N.

By (4.2), for m,n > N ,

‖V un − V um‖ = sup
t∈R
‖V un(t)− V um(t)‖ ≤ α‖f(·, un(·))− f(·, um(·))‖Sp < ε,

which implies that {V un} is convergent in WPAA(X, ρ). Therefore V : coV (B)→
coV (B) is a compact operator. Now it follows from Schauder’s fixed point theorem
that V has a fixed point u ∈ coV (B). This u is a mild weighted pseudo almost
automorphic solution of (4.1) such that ‖u‖ ≤ r. The proof is complete. �
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5. An example

To close this work, we consider the following heat equation with Dirichlet bound-
ary conditions:

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + sin

1
2 + cos t+ cosπt

+ a(t)h(u(t, x)), t ∈ R, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t ∈ R,
(5.1)

where a(t) = 1
1+t2 and

h(u) =

{
u sin 1

u , u 6= 0,
0, u = 0.

Let X = L2(0, 1), A be defined by Au = u′′ with domain D(A) = {u ∈ X : u′′ ∈
X, u(0) = u(1) = 0}, and f = g + φ with

g(t, u(t)) = sin
1

2 + cos t+ cosπt
, φ(t, u(t)) = a(t)h(u(t)), (t, u(t)) ∈ R× X.

Then (5.1) can be formulated in the abstract equation (4.1) where u(t) = u(t, ·) ∈
X, t ∈ R.

It is well known that A is the infinitesimal generator of a C0-semigroup (T (t))t≥0

satisfying that T (t) is compact for t > 0 and ‖T (t)‖ ≤ e−t for t ≥ 0. So (A3)
holds with M = c = 1. Clearly, g ∈ ASp(X), and it is easy to verify that
PAA0(R× X, Lp(0, 1; X), |t|) is translation invariant and

φb ∈ PAA0(R× X, Lp(0, 1; X), |t|).

Then f ∈ SpWPAA(R× X,X, |t|). Moreover, by a long winded but fundamental
calculation (the details are omitted), we can check that f satisfies all the conditions
of Corollary 3.8 and (A4), (A5), and we can choose r = 2α < 2e. As a result, (5.1)
has a mild weighted pseudo almost automorphic solution u such that ‖u‖ ≤ 2α by
Theorem 4.3. That is the solution u ∈WPAA(X, |t|) satisfies

‖u‖ = sup
t∈R
‖u(t, ·)‖X = sup

t∈R

(∫ 1

0

u2(t, x)dx
)1/2

≤ 2α < 2e.

It is obvious that f does not satisfy any sort of “Lipschitz condition”. Therefore,
the results in the literature under some “Lipschitz condition” are not applicable.
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[13] J. Liang, G .M. N’Guérékata, T. J. Xiao; Some properties of pseudo almost automorphic

functions to abstract differential equations, Nolinear Anal. 70 (2009), 2731-2735.
[14] J. Liang, T. J. Xiao, J. Zhang; Decomposition of weighted pseudo-almost periodic functions,

Nonlinear Anal. 73 (2010), 3456-3461.

[15] J. Liang, J. Zhang, T. J. Xiao; Composition of pseudo almost functions, J. Math. Anal. Appl.
340 (2008), 1493-1499.

[16] G. M. Mophou; Weighted pseudo almost automorphic mild solutions to semilinear fractional

differential equations, Appl. Math. Comput. 217 (2011), 7579-7587.
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