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PATTERNS ON SURFACES OF REVOLUTION IN A DIFFUSION
PROBLEM WITH VARIABLE DIFFUSIVITY

ARNALDO SIMAL DO NASCIMENTO, MAICON SÔNEGO

Abstract. In this article we study the existence of non-constant stable sta-

tionary solutions to the the diffusion equation ut = div(a∇u) + f(u) on a

surface of revolution whose border is supplied with zero Neumann boundary
condition. Sufficient conditions on the geometry of the surface and on the dif-

fusivity function a are given for the existence of a function f such the problem

possesses such solutions.

1. Introduction

The main goal in this article is to find sufficient conditions for the existence of
nonconstant stable stationary solutions (herein referred to as patterns, for short) to
the diffusion problem

∂u

∂t
= divg[a(x)∇gu] + f(u), (t, x) ∈ R+ ×D

∂u

∂ν
= 0, x ∈ ∂D

(1.1)

where a ∈ C2(D) is positive in D, D ⊂ R3 is a surface of revolution with border ∂D,
metric g and ν the outer co-normal vector to ∂D. This work should be seen as an
attempt to understand the role played by the diffusivity function a, the geometry
of the surface D and the reaction term f (a source or sink, depending on its sign)
in existence of patterns to (1.1).

Typically this kind of problem appears as a mathematical model in many distinct
areas and, roughly speaking, a solution models the time evolution of the concentra-
tion of a diffusing substance in a heterogeneous medium whose diffusivity is given
by a positive function a, under the effect of the term f . Usually the diffusivity is a
property of the material of the surface.

The question of existence and nonexistence of patterns for scalar diffusion equa-
tions of the type considered here seems to have been first addressed in [7, 3] in
bounded domains of Rn when diffusivity is constant; indeed it is proved that no
pattern exists if the domain is convex regardless of the function f and in [7] a
non-convex domain and a source term f for which there exists a nonconstant stable
stationary solution are provided.
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In the case when a is a constant function, non-existence of patterns to the diffu-
sion equation appearing in (1.1) on a Riemannian manifold without boundary with
non-negative Ricci curvature was proved in [10], thus generalizing a similar result
for surface of revolution found in [14].

For bounded domains in RN the question of how the diffusivity function can give
rise to patterns, or not, has been considered by some authors.

For the diffusion equation considered in one-dimensional domains, i.e. when M
is an interval, subjected to zero Neumann boundary condition, a sufficient condition
for nonexistence of patterns was found to be a′′ < 0 in [4] and (

√
a)′′ < 0 in [16].

Such result in domains with dimension N ≥ 2 still remains an open problem.
When the domain is an interval, existence of a diffusivity function a which gives

rise to patterns to (1.1) was addressed in [5, 6]. These results were generalized
to two-dimensional domains in [11], using a Γ−convergence approach, and for any
dimension in [9], employing a variational approach to dynamical systems.

Let us now state our main result. To this end consider a smooth curve C in R3

parametrized by (ψ(s), 0, χ(s)), s ∈ [l1, l2] and the borderless surface of revolution
M generated by C. We consider D ⊂ M a surface of revolution with boundary.
Moreover, we suppose that the diffusivity function does not depend on the angular
variable θ, so that, abusing notation, we set a(x(s, θ)) = a(s), s ∈ [l1, l2]. We prove
that if a ∈ C2([l1, l2]), a > 0 in [l1, l2] and( (aψ)′

ψ

)′
(s0) > 0 (1.2)

for some s0 ∈ (0, l) ⊂ [l1, l2] and if a(·) satisfies

a′(s) ≥ 0 in (0, s0), a′(s) ≤ 0 in (s0, l), (1.3)

then there exists f ∈ C1(R) such that problem (1.1) admits a nonconstant stable
stationary solution.

Our proof stems from [1] which by its turn was inspired in [16]. In [16] the
problem is considered in a interval and it is proved that if a′′(s0) ≥ 0 for some
s0 in this interval then there exists f such that the corresponding problem pos-
sesses patterns. In [1] problem (1.1) is considered with constant diffusivity and the
sufficient condition found for existence of a function f such that (1.1) possesses
patterns is (ψ′/ψ)′(s0) > 0 for some s0 ∈ (0, l). Note that our result generalizes
[16] and [1] and although the mathematical procedure used in the proof is basically
the same, the problem of diffusion on surfaces made of inhomogeneous material -
and therefore with variable diffusivity - is a basic one in Mathematical Physics and
therefore worthy been studied.

Regarding problem (1.1), it was proved in [8] that if

−
(ψ′
ψ

)′(s) ≥ (a′ψ)′

2(aψ)
(s)

for all s ∈ (0, l), then (1.1) has no pattern. As expected, our conditions (see (1.2)
and (1.3)) for existence of patterns implies that

−
(ψ′
ψ

)′(s0) <
(a′ψ)′

2(aψ)
(s0).
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The expression −
(
ψ′

ψ

)′(s) has a interesting geometrical meaning. Note that the
Gaussian curvature of M is given by

K(s) =
−ψ′′(s)
ψ(s)

(s ∈ (0, l))

whereas

Kg(s) =
±ψ′

ψ
(s ∈ (0, l))

represents the geodesic curvature of the parallel circles s = constant on M. Here
the sign depends on the orientation of the parametrization. Therefore

K(s) + [Kg(s)]2 = −
(ψ′
ψ

)′(s).
2. Preliminaries

We begin with some definitions and known results from Differential Geometry
which will be used in the following sections.

2.1. Surface of revolution. Consider M = (M, g) a n-dimensional Riemannian
manifold with a metric in local coordinates x = (x1, x2, . . . , xn) given by (using
Einstein summation convention)

ds2 = gijdx
idxj , (gij) = (g−1

ij ), |g| = det(gij).

Given a smooth vector field X on M, the divergence operator of X is defined as

divgX =
1√
|g|

∂

∂xi
(
√
|g|Xi)

and the Riemannian gradient, denoted by ∇g, of a sufficiently smooth real function
φ defined on M, as the vector field

(∇gφ)i = gij∂jφ.

We shall see how the operator divg(a(x)∇gu) can be expressed for the particular
case whereM is a surface of revolution. Let C be the curve of R3 parametrized by

x1 = ψ(s)

x2 = 0 (s ∈ I := [l1, l2])

x3 = χ(s)

where ψ, χ ∈ C2(I), ψ > 0 in (l1, l2) and (ψ′)2 + (χ′)2 = 1 in I. Moreover,

ψ(l1) = ψ(l2) = 0, (2.1)

ψ′(l1) = −ψ′(l2) = 1. (2.2)

Let M be the surface of revolution parametrized by

x1 = ψ(s) cos(θ)

x2 = ψ(s) sin(θ) (s, θ) ∈ [l1, l2]× [0, 2π).

x3 = χ(s)
(2.3)

Setting x1 = s, x2 = θ then a surface of revolution in R3 with the above parametriza-
tion is a 2-dimensional Riemannian manifold with metric

g = ds2 + ψ2(s)dθ2.
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By (2.1) and (2.2) M has no boundary and we always assume that M and the
Riemannian metric g on it are smooth (see [2], for instance). The area element on
M is dσ = ψdθds and the gradient of u with respect to the metric g is given by

∇gu =
(
∂su,

1
ψ2

∂θu
)
.

Now, consider D ⊂ M a surface of revolution with boundary, i.e., D is delimited
by two circles C0 and Cl, l1 < 0 < l < l2, parametrized in the local coordinates
(s, θ) as follows:

C0 :

{
s(t) = 0
θ(t) = t,

and Cl :

{
s(t) = l

θ(t) = t,

with t ∈ [0, 2π).
Let ν be the outer normal vector of ∂D = C0 ∪ Cl lying in the tangent space

Tp(M) for any p ∈ ∂D. We shall assume that ∂D is orientable for the outer normal
to be well-defined and continuous.

The derivative of u in the direction of ν at ∂D is given by
∂u

∂ν
= 〈∇gu, ν〉,

where ν = ν1
∂
∂s + ν2

∂
∂θ and { ∂∂s ,

∂
∂θ} is the basis of Tp(M).

Moreover it is assumed that

χ′(s) ≥ 0, s ∈ (0, δ) ∪ (l − δ, l) (2.4)

for some δ > 0. Thus there holds ν = ∂
∂s on Cl and ν = − ∂

∂s on C0.
Although the diffusivity function a may depend on (s, θ) throughout this work

we suppose, for the sake of simplicity, that it depends just on the variable s. Thus
abusing notation, for simplicity sake, we set

a(x(s, θ)) = a(s), for x = (ψ(s) cos(θ), ψ(s) sin(θ), χ(s)) ∈ D (2.5)

and therefore

divg(a(x)∇gu) = auss +
(ψa)s
ψ

us +
a

ψ2
uθθ. (2.6)

Hence throughout the text, problem (1.1) on D reduces to

ut = auss +
(ψa)s
ψ

us +
a

ψ2
uθθ + f(u), (s, θ) ∈ (0, l)× [0, 2π)

u′(0) = u′(l) = 0.
(2.7)

2.2. Stability analysis. By a stationary solution of problem (1.1) we mean a
solution to the problem

divg(a(x)∇gu) + f(u) = 0, x ∈ D
∂u

∂ν
= 0, x ∈ ∂D

(2.8)

or equivalently, in our setting, a solution to (2.7) which does not depend on time.
A stationary solution U of (2.7) is called stable (in the sense of Lyapunov) if for
every ε > 0 there exists δ > 0 such that ‖u(·, t)− U‖∞ < ε for all t > 0, whenever
‖u0 − U‖∞ < δ, where ‖ · ‖∞ stands for the norm of the space L∞(D). If there
exists δ1 > 0 such that ‖u0−U‖∞ < δ1 implies that ‖u(·, t)−U‖∞ → 0, as t→∞,
then U is called asymptotically stable. We say that U is unstable if it is not stable.
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Regarding the eigenvalue problem for the linearized problem

divg(a∇gφ) + f ′(U)φ+ λφ = 0 in D
∂φ

∂ν
= 0 in ∂D

(2.9)

the first eigenvalue λ1 is given by

λ1 = min{RU (φ) : φ ∈ H1(D), |φ|L2(D) = 1} (2.10)

where

RU (φ) =
∫
D
{a|∇gφ|2 − f ′(U)φ2}dσ.

It is well known that if λ1 > 0 then U is asymptotically stable and if λ1 < 0 then
U is unstable. If λ1 = 0 then stability or instability can occur.

3. Existence of patterns

Next theorem is the main result of this work.

Theorem 3.1. If for some s0 ∈ (0, l) it holds that( (aψ)′

ψ

)′
(s0) > 0 (3.1)

and if a satisfies

a′(s) ≥ 0 in (0, s0) and a′(s) ≤ 0 in (s0, l), (3.2)

then there exists f ∈ C1(R) such that problem (1.1) admits a nonconstant asymp-
totically stable solution.

We start with a lemma concerning stationary solutions of (1.1). This result was
observed in [14] for a ≡ 1 and for convenience of the reader we will prove it in our
case.

Lemma 3.2. Every stationary solution u of problem (1.1) on D, which depends on
the angular variable θ, is unstable.

Proof. By (2.6) u satisfies the equation

auss +
(ψa)s
ψ

us +
a

ψ2
uθθ + f(u) = 0.

As the function a does not depend on θ we have that uθ is an eigenfunction of (2.9)
with corresponding eigenvalue λ = 0. Since uθ must change sign it cannot be the
eigenfunction corresponding to the lowest eigenvalue. Hence λ1 < 0. �

Lemma 3.3. Let v be a solution of problem (1.1). Let there exist w ∈ C2(D) ∩
C1(D) such that w ≥ 0, w not identically zero on D and

divg(a∇gw) + f ′(v)w ≤ 0, D
∂w

∂ν
> 0, ∂D.

(3.3)

Then v is asymptotically stable.
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Proof. Let λ1 be the smallest eigenvalue of the linearized problem

divg(a∇gφ) + f ′(v)φ+ λφ = 0, D
∂φ

∂ν
= 0, ∂D

(3.4)

and let φ1 be the corresponding eigenfunction. As φ1 > 0 in D (see [15]), we have

0 ≥
∫
D
φ1[divg(a∇gw) + f ′(v)w]dσ

= −
∫
D
∇gφ1(a∇gw)dσ +

∫
∂D

φ1a
∂w

∂ν
dγ +

∫
D
φ1f

′(v)wdσ

=
∫
D
w
[

divg(a∇gφ1) + f ′(v)φ1

]
dσ +

∫
∂D

a
[
φ1
∂w

∂ν
− w∂φ1

∂ν

]
dγ

= −λ1

∫
D
wφ1dσ +

∫
∂D

aφ1
∂w

∂ν
dγ

> −λ1

∫
D
wφ1dσ.

It follows that λ1 > 0 and then v is asymptotically stable. �

The following steps are essential for the proof of Theorem 3.1. Using (3.1) and
the regularity of ψ and a, we can find a neighborhood V of s0 such that( (aψ)′

ψ

)′
(s) > 0, ∀s ∈ V. (3.5)

Consider four points R1, R2, R3, R4 in V such that

R1 < R2 < s0 < R3 < R4.

Obviously, ( (aψ)′

ψ

)′
(s) > 0, ∀s ∈ [R1, R4]. (3.6)

Let z1 = z1(s) be the solution of the Cauchy problem[ (aψz)′

ψ

]′
−Bz = 0 in [0, R2)

z(0) = 0, z′(0) = 1
(3.7)

where

B > B := max
[0,l]

∣∣∣[ (aψ)′

ψ

]′∣∣∣. (3.8)

Analogously let z2 = z2(s) be the solution of the Cauchy problem[ (aψz)′

ψ

]′
−Bz = 0 in (R3, l]

z(l) = 0, z′(l) = −1.
(3.9)

We shall write zi(s) = zi(s,B) (i = 1, 2) to indicate the dependence of the
solution on the parameter B.

Lemma 3.4. The solution z1 of problem (3.7) has the following properties:
(i) z1 > 0 in (0, R2);

(ii) z1(·, B) is increasing in [0, R2) for any B > B;
(iii) z1(s, ·) is increasing on (B,∞) for any s ∈ (0, R2);
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(iv) limB→∞ z1(s,B) =∞ for any s ∈ (0, R2).
Similarly, for z2 we have that:

(i’) z2 > 0 in (R3, l);
(ii’) z2(·, B) is decreasing in (R3, l] for any B > B;
(iii’) z2(s, ·) is decreasing in (B,∞) for any s ∈ (R3, l);
(iv’) limB→∞ z2(s,B) =∞ for any s ∈ (R3, l).

Proof. (i) Recalling that z1(0) = 0 and z′1(0) = 1, let us assume that z1 vanishes in
(0, R2) and let s1 ∈ (0, R2) be the first root of z1 in (0, R2). Then

z1(s1) = 0 and z1(s) > 0, ∀s ∈ (0, s1).

Then for some s2 ∈ (0, s1)
z1(s2) = max

[0,s1]
z1 > 0,

i.e., z′1(s2) = 0 and z′′1 (s2) ≤ 0.
It follows that[ (aψz1)′

ψ

]′(s2)−Bz1(s2)

=
[( (aψ)′

ψ

)′
z1 +

(aψ)′

ψ
z′1
]
(s2) + (a′z′1 + az′′1 )(s2)−Bz1(s2)

= (az′′1 )(s2) + z1(s2)
[( (aψ)′

ψ

)′(s2)−B
]

(∗)
< 0,

what contradicts the definition of z1. Note that in (∗) the fact that a(s) > 0 in I
and (3.8) were used.

(ii) Suppose by contradiction that thee exists s1 ∈ (0, R2) such that

z′1(s) > 0, ∀s ∈ (0, s1) and z′1(s1) = 0.

Then z′′1 (s1) ≤ 0. On the other hand,

z′′1 (s1) = −
(z1
a

)
(s1)

[( (aψ)′

ψ

)′(s1)−B
]
> 0,

since a(s1) > 0 and z1(s1) > 0 (from (i)). Therefore z1 is increasing in (0, R2).
(iii) Let B1 > B2 ≥ B and note that[ (aψz1(s,B1))′

ψ

]′
−B2z1(s,B1) ≥ 0 (0, R2)

z1(0, B1) = 0, z′1(0, B1) = 1.
(3.10)

The inequality in the above problem occurs by[ (aψz1(s,B1))′

ψ

]′
−B2z1(s,B1) = (B1 −B2)z1(s,B1) ≥ 0,

for all s ∈ (0, R2).
Now, as z1(s,B2) satisfies[ (aψz1(s,B2))′

ψ

]′
−B2z1(s,B2) = 0 (0, R2)

z1(0, B2) = 0, z′1(0, B2) = 1
(3.11)
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following the procedure used to prove Theorem 13 in Chapter 1 of [12], we can
prove that

z1(s,B2) ≤ z1(s,B1), ∀s ∈ (0, R2).

(iv) Fix any B1 > B. By integrating the equation (3.7) and remembering that
z1 is a solution to (3.24), we get for any B ≥ B1,

(aψz1(η,B))′ = ψ

∫ η

0

Bz1(t, B)dt+ ψc1.

Integrating again

aψz1(s,B) = B

∫ s

0

ψ(η)
∫ η

0

z1(t, B)dtdη + c1

∫ s

0

ψ(η)dη + c2,

where c1 and c2 are constants independent of B. As ψ > 0 and a > 0 then using
(iii) we obtain

z1(s,B) ≥ 1
aψ

[
B

∫ s

0

ψ(η)
∫ η

0

z1(t, B1)dtdη + c1

∫ s

0

ψ(η)dη + c2

]
.

The claim follows by letting B →∞. The proof for z2 is analogous. �

Now, we define the function z : [0, l]→ R,

z(s) :=


z1(s), if s ∈ [0, R2)
z3(s), if s ∈ [R2, R3]
z2(s), if s ∈ (R3, l]

(3.12)

where z3 is a positive smooth function such that z is smooth at the points s = R2

and s = R3. Under these conditions, by Lemma 3.4 (ii) and (ii’) we have that
z′3(R2) > 0 and z′3(R3) < 0. Then there exist s ∈ [R2, R3] such that z′3(s) = 0,
and therefore we take z3 such that s0 (recall that s0 ∈ [R2, R3]) is the only critical
point of z3. Consequently z′′3 (s0) < 0.

We take z3 in this way to ensure that the function a′z′3 is positive in [R2, R3].
Thus by Lemma 3.4 and by the assumptions on a(·) (see (3.2)) we have

a′z′(s) ≥ 0, ∀s ∈ (0, l). (3.13)

Furthermore, the function z is smooth in [0, l], z > 0 in (0, l) and z(0) = z(l) = 0.

Lemma 3.5. Let the function z be defined by (3.12). Then there exists f ∈ C1(R)
such that the function

Z(s) :=
∫ s

0

z(t)dt (s ∈ [0, l]) (3.14)

is a stationary nonconstant solution of problem (1.1).

Proof. Since z > 0 in (0, l) we have that u = Z(s) is increasing in (0, l). Hence we
can define the inverse function X(u) = Z−1(u). Put

f(u) :=


−Bu− a(0) if u ≤ 0

−
d

du{(aψ)[X(u)]z[X(u)]}
ψ[X(u)] d

du [X(u)]
if 0 < u < Z(l)

−Bu+BZ(l) + a(l) if u ≥ Z(l).

(3.15)
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It is not difficult to see that f is continuous in R and C1 in R − {0, Z(l)}. Note
that X(·) is smooth and satisfies X ′(u) = 1/z(X(u)) > 0; i.e., f(u) is smooth in
(0, Z(l)).

Therefore we have to prove that f is smooth at u = 0 and u = Z(l). The
smoothness at u = 0 will follow if we show that

f(u) = −Bu− a(0),

for all u ∈ (0, Z(R2)).
Integrating (3.7) in (0, s), for any fixed s in (0, R2), we obtain

(aψz)′

ψ
(s)− (aψz)′

ψ
(0) = B

∫ s

0

z(t)dt,

i.e.
(aψz)′

ψ
(s) = BZ(s) + a(0). (3.16)

By the definition of f ,

f(Z(s)) = − (aψz)′

ψ
(s) (3.17)

for any s ∈ (0, l). Hence by (3.16) and (3.17)

f(Z(s)) = −BZ(s)− a(0),

for any s ∈ (0, R2]. Since Z is increasing, f(u) can be written as

f(u) = −Bu− a(0),

for any u ∈ (0, Z(R2)). Similarly it is seen that

f(u) = −Bu+BZ(l) + a(l)

for any u ∈ [Z(R3), Z(l)). Therefore, f ∈ C1(R).
Now we prove that Z(·) is a stationary solution to problem (1.1) with f defined

by (3.15). For all s ∈ (0, l), Z(s) ∈ (0, Z(l)), thus

f(Z(s)) = − (aψz)′

ψ
(s) = − (aψZ ′)′

ψ
(s);

i.e.,
(aψZ ′)′

ψ
(s) + f(Z(s)) = 0 s ∈ (0, l),

and further
Z ′(0) = z(0) = 0 and Z ′(l) = z(l) = 0.

Moreover, Z(·) is nonconstant since Z ′ = z > 0 in (0, l). �

Proof of Theorem 3.1. Let z be the function defined by (3.12) and m1 > 0 and
m2 > 0 constants to be chosen later. Define

w(s) :=


z(s)−m1z(R1)(s−R2)3 if s ∈ [0, R2)
z(s) if s ∈ [R2, R3]
z(s) +m2z(R4)(s−R3)3 if s ∈ (R3, l].

(3.18)

Note that w > 0 in [0,l], and w depends on the parameter B, because z depends
on B (see (3.7), (3.9) and (3.12)). We have (see (2.4))

∂w

∂ν
(0) = −w′(0),

∂w

∂ν
(l) = w′(l). (3.19)
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To use Lemma 3.3, we prove the following claim.
Claim: Let Z be the stationary solution of (1.1) defined by (3.14). Then there
exist m1 > 0, m2 > 0 and B > 0 satisfying (3.8) such that

divg(a∇gw) + f ′(Z)w ≤ 0, D
∂w

∂ν
> 0, ∂D.

(3.20)

The above problem can be written as

(aψw′)′

ψ
+ f ′(Z)w ≤ 0, (0, l)

w′(0) < 0, w′(l) > 0.
(3.21)

Now we partition the interval (0, l) as follows:

(0, l) = (0, R2) ∪ [R2, R3] ∪ (R3, l).

For any s ∈ (0, R2) ∪ (R3, l) we have that

f ′(Z(s)) = −B. (3.22)

By (3.7) and (3.9),
(aψz′)′

ψ
−Bz = −

[ (aψ)′

ψ

]′
z − a′z′, (3.23)

for all s ∈ (0, R2) ∪ (R3, l). Thus, for any s ∈ (0, R2),

(aψw′)′

ψ
+ f ′(Z)w

=
(aψw′)′

ψ
−Bw

=
(aψz′ − 3aψm1z(R1)(s−R2)2)′

ψ
−Bz +Bz(R1)m1(s−R2)3

=
(aψz′)′

ψ
−Bz − 3

(aψ)′

ψ
m1z(R1)(s−R2)2 − 6am1z(R1)(s−R2)

+Bz(R1)m1(s−R2)3

(∗)
= −[

(aψ)′

ψ
]′z − a′z′ +m1z(R1)(R2 − s)

[
6a+ 3

(aψ)′

ψ
(s−R2)−B(s−R2)2

]
.

In (*) we used (3.23). Recall that (0, R2) = (0, R1)∪ [R1, R2), a′z′ ≥ 0 in (0, l) (see
(3.13)) and that z = z1 in (0, R2). Then
• in (0, R1),

−
[( (aψ)′

ψ

)′
z
]
(s)− a′z′(s) ≤ −

[( (aψ)′

ψ

)′
z
]
(s)

≤
∣∣( (aψ)′

ψ

)′
z
∣∣(s)

≤ Bz(R1),

with B defined by (3.8), and
• in [R1, R2),

−
[( (aψ)′

ψ

)′
z
]
(s)− a′z′(s) ≤ −B̂z(s) ≤ −B̂z(R1)
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where

B̂ := min
[R1,R2]

[ (aψ)′

ψ

]′
,

and B̂ > 0 due to (3.6).
By the above remarks, in (0, R1) it holds that

(aψw′)′

ψ
+ f ′(Z)w ≤ z(R1)

[
B +m1R2

(
3(CR2 + 2a(s0))−B(R1−R2)2)

)]
, (3.24)

where

C := max
[0,l]
| (aψ)′

ψ
|.

Similarly in [R1, R2),

(aψw′)′

ψ
+ f ′(Z)w ≤ z(R1)

[
− B̂ +m1R2(6a(s0) + 3CR2)

]
. (3.25)

Now, if

m1 :=
B̂

3R2(CR2 + 2a(s0))
a simple calculation shows that the right-sides of (3.24) and (3.25) are both negative
if

B ≥ max
{
B, 3

(
1 +

B

B̂

)(CR2 + 2a(s0)
(R1 −R2)2

)}
.

It follows that
(aψw′)′

ψ
+ f ′(Z)w < 0 in (0, R2]. (3.26)

Similarly we obtain
(aψw′)′

ψ
+ f ′(Z)w < 0 in (R3, l). (3.27)

Now consider the interval [R2, R3]. Since Z is a stationary solution to problem
(1.1), in [R2, R3] we have

aZ ′′ +
(aψ)′

ψ
Z ′ + f(Z) = 0.

Differentiating the above equation and remembering that Z ′ = z, we have

az′′ +
(aψ)′

ψ
z′ + f ′(Z)z = −[

(aψ)′

ψ
]′z − a′z′,

as w = z in [R2, R3]

(aψw′)′

ψ
+ f ′(Z)w = aw′′ +

(aψ)′

ψ
w′ + f ′(Z)w = −[

(aψ)′

ψ
]′z − a′z′ < 0.

The above inequality holds because z > 0 in [R2, R3], and using (3.6) and (3.13).
Thus we conclude the first inequality in (3.21). It remains to prove that w′(0) < 0
and w′(l) > 0. Note that by Lemma 3.4 (iv) and (iv’) we can take B sufficiently
large such that

z(R1) = z1(R1, B) >
1

3m1R2
2

, z(R4) = z2(R4, B) >
1

3m2(l −R3)2

thus implying that

w′(0) = 1− 3m1z(R1)R2
2 < 0, w′(l) = −1 + 3m2z(R4)(l −R3)2 > 0.
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Therefore our Claim is proved.
At last, by Lemmas 3.3 and 3.5, we have that Z is a stable nonconstant stationary

solution of problem (1.1) with f given by (3.15). �

We finish this work by giving a simple example of a surface and a diffusivity
function which satisfy the hypotheses of Theorem 3.1. Consider the domain of
revolution D obtained from the parametrization

ψ(s) =
s2

4
+

1
2
, χ(s) =

s

4

√
4− s2 + arcsin(

s

2
),

s ∈ (0, 1), which resembles a frustum of a hyperboloid. Also consider

a(s) = −s2 + s+ 3;

i.e., a(x) = −4
√
x2

1 + x2
2 +

√
4
√
x2

1 + x2
2 − 2 + 5, x ∈ D.

A simple computation shows that the hypotheses (1.2) and (1.3) are satisfied by
taking s0 = 1/2. Hence by Theorem 3.1 we conclude that there is f such that the
problem (1.1) possesses patterns.

Remark 3.6. Theorem 3.1 should hold when D is a surface of revolution without
border. However in this case f should be required to be analytic as in [13].
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