Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 239, pp. 1-17.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

POHOZAEV-TYPE INEQUALITIES AND NONEXISTENCE
RESULTS FOR NON (2 SOLUTIONS OF p(z)-LAPLACIAN
EQUATIONS

GABRIEL LOPEZ

ABSTRACT. In this article we obtain a Pohozaev-type inequality for Sobolev
spaces with variable exponents. This inequality is used for proving the nonex-
istence of nontrivial weak solutions for the Dirichlet problem
—Ap(pyu = [u]?®) 2y, zeQ
u(z) =0, z€0Q,

with non-standard growth. Our results extend those obtained by Otani [16].

1. INTRODUCTION

Let Q be a bounded domain in RY with smooth boundary 9. The domain €2 is
said to be star shaped (respectively strictly star shaped) if (x-v(zx)) > 0 (respectively
if (z-v(z)) = p > 0) holds for all z € 9Q with a suitable choice of the origin, where
v(z) = (vi(x),...,vn(x)) denotes the outward unit normal at = € 9Q. Consider
the problem

—Apyu = f(u), e
u(z) =0, x €09,

where A, ,yu = div(|Vu[P®®~2Vu), and f is a non-linear function.

In [4], to obtain nonexistence results for for star shaped domains €2, Po-
hozaev-type identities are stated and applied to the case in which f does not depend
on p(x) and v € C%(Q). For f(u) = |u|97%u, 1 < ¢ < 00, 2 < p < o0, and p,q
constants, nontrivial solutions of do not belong to C?(Q2) N C(Q), see [11].
The arguments in [IT, Proposition 1.1] are easily extended to the case of Sobolev
Spaces with variable exponents, so that, in general, results in [4] can not be applied
when Vu(z) = 0, not even for solutions in W22 (Q) N WP)(Q). In this way,
solutions to the problem

(1.1)

—Apyu = u|?®=2y, 2

u(z) =0, x €0, (1.2)

in general do not belong to C2().
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The results in the present paper generalize to Sobolev Spaces with Variable
Exponents p(z) the work of Otani [16], which hold for constant exponents p. The
generalization is in the sense that the spaces with p constant are contained in the
spaces with variable exponent, more precisely, the classical Lebesgue space LP(2)
coincides with the modular space (L°(Q)), , [3, Example 2.1.8, p. 25]. As a
consequence, the Pohozaev-type inequality , Theorem in this paper:

N N —
— | ——u|"? dx + / N-p) |VulP@ da
a q(z) o p@)
|V |P(®)

+ [ 2 Vplx)——log (e ' |Vu[f®) dx
[ o) S o (e V)

|u]?(=) 1y (@)
— [ x-Vq(x) 5 log (e Hul?™) dz + R <0,
Q q(x)

holds for p constant in the corresponding Sobolev spaces.

In [16], Otani studied the Existence, Regularity and Nonexistence of . The
existence of solutions for is proved in [7] and [I5]. In [I5], the authors studied
the existence for the case in which the embbeding from WO1 P (')(Q) to LIO)(Q) is
compact. In the same paper, the authors include the study of the case in which the
embbeding from Wol’p(')(Q) to LI0)(Q) is not compact, provided that certain func-
tional inequality holds. On the other hand, the regularity of solutions of problem
is studied in [5, Theorem 1.2].

To the best of my knowledge, many problems related to Pohozaev-type inequal-
ities and Sobolev Spaces with Variable Exponents remain unstudied, among them,
for instance, problem in general exterior domains. Hashimoto and Otani [11]
studied this problem for p constant in an exterior domain Q = RN \ Qy where Qg
is bounded and starshaped.

Many problems related to the p(z)-Laplacian remain open, for instance, a char-
acterization of the solutions in dimension one of the eigenvalue problem

—Apu = Nulf® 2y, e

u=0, x€oiQ,

p(z)

where A is an eigenvalue defined by a Rayleigh quotient equation (see for instance
[T4, equation (2.1), p. 273]). The well known case, p constant [14], has character-
istic solutions in terms of sin,(z), cos,(z) functions, which are generalizations of
the ordinary sine and cosine functions, i. e., the solutions of the one dimensional
eigenvalue problem for p = 2. For p = p(z), the problem seems to be much harder
to solve than the constant case.

The reader is referred to [9] for review of applications of p(x)-Laplacian equations
to ranging from Image Processing to Modeling of Electrorheological fluids.

This paper is organized as follows. In section [2| some necessary background in
Sobolev Spaces with Variable Exponents is provided including some required Com-
pact Embedding results. In section [3] Theorem [3.2] we state and prove a Pohozaev-
type inequality. In Section[d] we prove some nonexistence results of nontrivial weak
solutions of problem as a consequence of Pohozaev-type inequality.
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2. VARIABLE EXPONENT SETTING

We recall some definitions and basic properties of the Lebesgue-Sobolev spaces
with variable exponent LP()(Q) and Wol’p(')(Q). For any p € C(Q), the space of
continuous functions in Q, we define

pt = supp( ) and p~ = inf p(z).
e

The Lebesgue Space with Varlable exponent for measurable real-valued functions is
defined as the set

Q) =Au: /Q lu(z) [P dz < oo},

endowed with the Luzemburg norm

Jully) = inf{p > 0 / 148 o) g < 13,

which is a separable and reflexive Banach space if 1 < p~ < p™ < co. For the basic
properties of the Lebesgue Spaces with Variable Exponents we refer to [3] and [12].

Let L'()(Q) be the conjugate space of LP()(Q), obtained by conjugating the
exponent pointwise; that is, 1/p(z) + 1/p'(z) = 1, [I12, Corollary 2.7]. For any
u € LPO)(Q) and v € Lp'(')(Q) the following Holder type inequality is valid

‘/qudx‘ < ——f— 7)”“”10()”””17 (2.1)

An important role in manipulatmg the generalized Lebesgue-Sobolev spaces is
played by the p(-)-modular of the LP()(Q) space, which is the mapping Pp() -
LP)(Q) — R defined by

/ [ulP® de.

If a sequence (u,), and u are in L”( )(Q then the following relations hold

||u||p(.) <1 (: 1; > 1) & pp(i)(u) <1l(=1;> 1) (2.2)
- +
ey > 1 = [l < oy (@) < Nl (23
+ _
lullpy <1 = Jull2)) < pyy(@) < (2.4)
||un — qu(.) -0 < pp(.)(un — u) — 0, (2.5)

since p™ < oco. For a proof of these facts see [12].
The set Wol’p(m)(Q) is defined as the closure of C§°(€2) under the norm

l[ull = IVullpa)-

The space (W, ?™(Q), | - p(z)) is a separable and reflexive Banach space if 1 <
p~ < pt < oco. We note that if ¢ € C1(Q) and ¢(z) < p*(z) for all z € Q, then the
embedding Wol’p(z)(Q) — L9)(Q) is continuous, where p*(z) = Np(x)/(N —p(x))
if p(z) < N or p*(z) = +o0 if p(z) > N [12] Theorem 3.9 and 3.3] (see also [0,
Theorem 1.3 and 1.1]).

The bounded variable exponent p is said to be Log-Holder continuous if there is
a constant C' > 0 such that

C

< el 20
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for all z,y € RY, such that |z —y| < 1/2. A bounded exponent p is Log-Holder
continuous in ) if and only if there exists a constant C' > 0 such that

|BPa~?i < C (2.7)

for every ball B C 2 [3, Lemma 4.1.6, page 101], where | B| is the Lebesgue measure
of B. Under the Log-Holder condition smooth functions are dense in Sobolev Spaces
with Variable Exponents [3| Proposition 11.2.3, page 346].

Finally, the compact embedding results, as many other facts, are a very delicate
and interesting matters in spaces with variable exponents. For instance, in [I5]
prop 3.1] is shown that, for certain exponents with p*(z) > ¢(x) > p*(x) — € (in our
notation) with z in some subset of €2, the embedding from Wol’p(')(Q) to L90)(Q)
is not compact. On the other hand, if ¢(x) = p*(z) at some point = € Q, it is
known that the embedding is compact in RY (see [3, Theorem 8.4.6] and references
therein). In this paper, we will use [15, Proposition 3.3] which, in our notation, can
be stated as the following proposition.

Proposition 2.1 (Mizuta et al [I5]). Let p(-) satisfying the log-Hélder condition
on the open and bounded set Q@ C RN. Suppose that 0 € C' or Q satisfies the
cone condition, and p™ < N. Let q(-) be a variable exponent on Q such that 1 < q~
and

essinf,eq (p*(x) — q(z)) > 0. (2.8)
Then WP (Q) s LIO(Q), . e. WEPO(Q) is compactly embedded in LI (Q).
0 0

For a definition of the cone condition used in the above theorem, see [I9, p. 159].
In the next section we also require the following Lemma.

Lemma 2.2. Let 1 < p(z) < ¢~ < q(z) < ¢© < 00 a.e. in Q. Assume that
ltunlly < C for 1 <r < oo and u, — u as n — oo in LPC)(Q). Then u, — u as
n — oo in LI (Q), up to a subsequence.

Proof. Given (2.2)) to (2.5), it is enough to show that p,(.)(un, —u) — 0 as n — oo.
We have

Pa() (Un —u) = / [ — |7 da < / [y, —ul? du, (2.9)
Q Q

for n big enough. In deed, the inequality holds since convergence in LP(x)(€)) implies
convergence in LP (Q); ie., ||u, —ull,,- — 0. So that, up to a subsequence,
|up, —u| — 0 a.e. in Q by [2 Théoreme IV.9]. In this way, there exist N,
such that if n > N,, |u, —u| < 1, a.e. in Q. Therefore, up to a subsequence,

Uy, — u|?®) < |u, —ul?, ae. in Q, so that the inequality (2.9) holds. Hence, for
some 6 € (0,1) satisfying 1/¢~ =6/p~ + (1 —0)/q™

_ 0q~ /P~ (1-0)g™ /q*
Py (Un —u) < </ [tr, — ulP dm) (/ [ty — u|q+ dax) .
Q Q
Using the fact that u,, — u in LP () and [I, Theorem 2.11] it follows that
- 0q~ /P~
Pq()(Up —u) < C(/ [tn, — ul? dac) — 0, asn— oo, (2.10)
Q

and the proof is complete. (I
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3. POHOZAEV-TYPE INEQUALITIY

In this section, we state a Pohozaev-type inequality for weak solutions u (defined
in (3.3) below) belonging to the class P defined as

P={ue Wy nL1OYQ) : 2;|ult@ 20 e POQ), i=1,2,...,N} (3.1

where p/'(z) = p(x)/(p(z) — 1) and p™ < N. To this aim, we employ the techniques
introduced by Hashimoto and Otani in [1T}, 10} [16], but within the framework of
spaces with variable exponent, which, as the reader may notice, require much more
careful estimations than those in the constant case.

Let g, () € C1(R) be the cutoff functions such that 0 < g/,(s) <1, s € R and

s (3.2)

S| %
>n+ 1.

guls) =1 "
" (n+1)signs, |[s]

Let u be a weak solution of (1.2)), i.e. a function u € (Wol’p(') N L‘I('))(Q)7 which
satisfies

/ |VulP® =2y - Vo dz = / [u|?®) =2y, ¢ da: for all ¢ € (W(}’p(" N Lq(')>(9),
Q Q

(3.3)
and set u,, = gn(u) then |u,|"2u, € (Wol’p(') N L>)(Q) for r € [2,00). Consider
now the approximate problem

[, |1 =20, — ApzyWn = 2un 9™ 20, in Q,

(3.4)
w, =0 on 0.

Since u,, € L>(R), there exists a sequence {vS} C C§°(2) satisfying
o5, [ (0) < Co, forall e €(0,1), (3.5)
05 — 2|up|1® "2, strongly in L™ (Q) as e — 0, for all 7 € [1,00).  (3.6)
In turn, we require another approximate equation for (E), given by
Jwe |9~ 208 + Acws = 0f, in Q
(3.7)
w;, =0 on 99,

where A.u(x) = — div{(|Vu(z)]? + )P@=2/2Vy(z)} and £ > 0. It is possible to

show that (3.4) and (3.7) have unique solutions and that (3.7) and (3.4)) provide
good approximations for (3.4) and (|1.2), respectively. This fact is stated in the

following lemma.

Lemma 3.1. Let p(-) satisfying the log-Holder condition on the open and bounded
set Q C RN . Suppose that 0 € C* or Q satisfies the cone condition and pt < N.
Then the following statements hold true:

(i) For each e € (0,1) and n € N, there exists a unique solution ws € C%(Q)

of (3.7).
(ii) For each n € N there exists a unique solution w, € CH*(Q) N Wol’p(x)(Q),

0<a<l, of (3.4).

(ili) ws converges to wy, as € — 0 in the following sense:

/ \Vws [P@) d — / |V, [P dz as e — 0, (3.8)
Q Q
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ws — w,  strongly in L") (Q), (3.9)

forr(-) such that 1 <r~ <r(x) <rt a.e. in Q and pt < N.
(iv) w, converges to u as n — oo in the following sense:

Vw,|P@ de — [ [Vu|P® dz asn — oo, 3.10
|
Q Q

/ |wp | dz _’/ u|?™) dz, asn — oo, (3.11)
Q Q

Proof. (i) Since uy, € L*(2), there exists a sequence {v} C C§°(Q) satisfying
o5l Lo (@) < Co, for all e € (0,1), (3.12)
v — 20up, |1® "2y, strongly in L"(Q) as e — 0, for all 7 € [1,00).  (3.13)
Given that v¢ belongs to C2?(Q2) and since A.u is elliptic, [I9, Theorem 15.10]

guarantees the existence of a unique solution wé € C?(Q) of (3.7).
(ii) Set

p(z) q(z)
F(z) :/ V2] dx + 2 da:—Z/ |t |9~ 2, 2 di,
o p@) o q(@) Q

so that F'(z) is strictly convex, coercive and Fréchet differentiable on

(Wolm(a:) n Lq(:c)) ().

Now, if z, — z, weakly in (Wol’p(w N L9@®)(Q), then, since p € P(Q, p) (for defi-
nitions see [3]), the modulars [, |Vz[P(®) /p(z) dz and [, |2|%®) /q(z) dz are sequen-
tially weakly lower semicontinuous [3, Theorem 3.2.9] and [, [u, |9 ~2u, 2 dx €
(L) (Q))*. We conclude that liminf, . F(z,) > F(z,). Since F is bounded
below, there exists w, € (Wol’p(l') N L3®)(Q) where F attains its minimum, and

since F is Fréchet differentiable (F'(w,),¢) = 0 for all ¢ € (W, ™ A La@)(q),
i.e. w, solves in the weak sense and the uniqueness follows from the strict
convexity of F'(z). Multiplying by |wy,|" 2w, (r > 2 constant), using Young’s
e-inequality with ¢ = 1/2, and considering that |u,,|7(*)~2u,, belongs to L>(Q), we
obtain

/|wn|‘1(x)+r72 d1‘+(7’—1)/ |wn|p(x)|wn‘r72 da

@ Q

</2(n+1)lJ(r)*1|wn‘r71 de 610
Q

< 1/ |wn|q(z)+r—2 dl,+2(q++27‘73)/(q_71)(n+1)q++,’,72|Q|.
2 Jo

So, by [8, Theorem 1.3, p. 427]
E + 4o -_ Ty
HwnH%q;HiZ < 2.9 +2r=3)/(a 1)(n+1)q +r-2))|
where

+ q+, if ||wn||Lq('t)+r—2 < 1,
q, if ||wn||Lq(:{:)+7‘—2 > 1.
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Hence we can obtain an a priori bound for ||wy,||f¢@)+--2 independent of r. Let-
ting r — oo we get an L*-estimate for w,. Therefore, using [5, Theorem 1.2, p.
400], we conclude w,, € C1*(Q).

(i) With a similar argumentation as in (ii) we obtain

lwy, || Loy < Cp  for all € > 0. (3.15)
Multiply (3.7) by wt to obtain

/|w;\q<w> dx+/(|w;\2+a)<P<w>-2>/2|Vw;|2dx=/v;w; da.
Q Q Q

On the other hand, note that
Vi do = [ (v 20202 v ds
Q Q

g/(|Vwi|2+s)(p(w)’2)/2|waL\2dx.
Q

/|Vw2|p(x) dmé/vflwfldx.
Q

Next, use Young’s inequality and the fact that ¢(z), ¢’ (z) > 1 to obtain

/\Vw |p(=) dx</ v ] x)dl‘-l—/ jws |9 da.

Therefore, by (3.15)) and the fact that v, € C§°(€2), we obtain
Vwy [ Lo ) < Cn forall &> 0. (3.16)

Combining (3.15)), (3.16), Proposition and Lemma, it follows that there

exists a sequence {w:*} such that for p™ < N

Hence, it follows that

wEk — w  strongly in L"(Q), with 1 <7~ <7r(z) <7 < oo, (3.17)
Vwss — Vw weakly in  LP@(Q), (3.18)

/ lwer |9 =2 ery — / |w|?@ 2wy as e — 0, for all v € Wé](x)(Q). (3.19)
Q Q

Weak convergence holds since LP(*) spaces are uniformly convex [3, Theorem
3.4.9], and hence reflexive.

From this point we refer to [I3] for all the notations and results concerning to
subdifferentials. Set

e [ L (e 4o @/2 g
0.2) = [ (Vs ey @2

with D(¢:) = Wol’p(m)(Q) so that ¢. is a convex operator according to in [I3]
Definition in section 1.3.3, p. 24]. Next, since ¢. is Fréchet differentiable, and since

OL(2)v = (Acz,v) = /(|V,z|2 +)P@/27 % . Vo d.
Q

According to [I3, Section 4.2.2], A, € d¢. where J¢. is the subdifferential of ¢..
Hence wg, satisfies

0=(v) — ¢ (wS) > / (Vwg 2+ e)P@2Vwg - V(o — ws) de, Yo e W™ ().
Q
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Now by ,
be(0) — Bo(w) > / (s 1O 208 4 05) - (v —wl)dr.  (3.20)
Q

On the other hand, given strong convergence of w} — w, as ¢ — 0 and strong
convergence of v, — 2|, |7®) =2y, in L' (Q), we have that vZws — 2|u, |9 ~2u,w,
as € — 0 in LY(Q) since

/ |v5 ws, — 2|un|q(x)_2unwn| dx

Q

< / [vg | |ws, — wy| do + / [wn |5, — 2[t, |1 2wy, | da (3.21)
Q Q

< C’o/ |ws, — wy,| dx —|—/ [wn |05 — 2|, |7~ 20, | da,
Q Q

given that (3.5)) holds. Note that the last integral approaches zero as ¢ — 0. It
follows from Holder’s inequality for spaces with variable exponent, w, € L"(Q),

and (3.6).

Taking into account that ¢.(v) — ¢o(v), as e — 0 for all v € WP (Q), and
that

liminf ¢c, (w;k) = ¢e, (w) = ¢o(w) (3.22)

k—

holds (since modulars are weakly lower semicontinuous [3, Theorem 2.2.8]), we can

take limits as ¢ — 0 in (3.20)), and after that, we can use (3.6)), , and ((3.19)

to obtain
bo(v) — do(w) > / (= [P 2w 4 2un 7 2u,) - (0 —w)de,  (3.23)
Q

holds for all v € VVO1 P (m)(ﬂ). The last inequality implies, by the definition of
subdifferential [I3], that

/ Vw|P® =2V - Vo de = /(_\w|q(’”)_2w + 20U, |7 2uy) - od,  (3.24)
Q Q

for all ¢ € W&’p(x)(Q). We conclude that w = w,, since the argument above does
not depend on the choice of {e}.

Multiply equation (3.4) by w,, and equation (3.7) by w, and integrate by parts
to obtain

/|an|p(z) dx = —/ |w, |16 dx—|—2/ |t |9~ 20w, da,
Q Q Q
/(|wal|2+€)(”(I)72)/2|wal\2dz:—/ |wg |9 dz+/ vy ws, d.
o Q Q
So that, (3.6) and (3.17)) imply
/(|wab|2 +&)P@=2/2|7 e |2 dz — / |Vw,|P® dz  as e — 0. (3.25)
Q Q

Take v = w = wy, in (3.20]) and let € — 0 in (3.20) to obtain
lim sup ¢e(w5,) < do(wy,). (3.26)
e—0
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Inequality and imply
/Q(|wal|2 +e)P@/2 dg — /Q |Vw,|P®) de as e — 0. (3.27)
Moreover, since holds, we have
lirneinf/Q|wal|p(I) dx >/Q|an|p(w) dx

since modulars are weakly lower semicontinuous.
On the other hand, since (|Vws|?)P(*)/2 < (|Vws | 4 £)P(*)/2 we have

limsup/ |Vws [P@) da < limsup/(|Vw§|2 +e)P@)/2 4y < / |Vw,|P®) da.
Q e Ja Q

€

Therefore, we conclude ([3.8)).
(iv) We proceed first by noticing that

[ |92, — |u]?®) =2y strongly in LY @) (Q) as n — oo, (3.28)

by the uniform convexity of L« *)(Q). Multiply (3.4) by w,, and integrate by parts
to obtain

/|wn|q(z) da:+/ |an‘p(z) dsz/ |un|q(ﬂc)—2unwndm
Q Q Q

< 4|||un|q(z)_1”Lq’(z)(Q)HwnHLq(I)(Q)a

(3.29)

by Holder’s inequality for Sobolev Spaces with Variable Exponents [3, lemma 2.6.5].
Now, using [8, Theorem 1.3] and (3.29) we obtain

+
||wn||%Q(z) Q) + ||vwn||LD(z) < CHwnHL‘I("?)(Q)a (3.30)
where

+_)at i wnllee@ <1 o T i [V e @) <1
g, if |wallpee @) =1 p~, i [Vl paw ) 2 1

The fact that p*,¢& > 1 imply that ||wTL||Lq(m) @) ||an||Lp<z) @ S < C. We use
again Proposition and Lemma to obtain that, up to a subsequence {n;},

Vw,, = Vw weakly in LP*)(Q), (3.31)
—w  weakly in L1®)(Q). (3.32)

Wny,

And, moreover, w,,, — w strongly in L) (Q) for all ¢ such that 1 < ¢~ < q(z) <
gt < oo, and

wn, |7 2w, vde — w|?® 2y . pdr  for all v € LY@ (Q 3.33
o " Q
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as k — oo. Given that w, is a solution of (3.4)), the definition of subdifferential
leads to

1 1
/ —— |VoP@® d:c—/ —— |Vw, [P dx
o p(x) o p(x)

1 1
:/ —— |VoP@® dxf/ —— |Vw, [P® dz
o p(z) o p(x)

(3.34)
> [ (2 4 201 2,0 )
Q

2/ w,, |1 da 7/ |wn |1 2w, 0 da + 2/ |t |9 20, (v — wy,) da,
Q Q Q

for all v € C§°(Q2) and for n such that suppv C Q. Let n = nj — oo in (3.34]) and
recall (3.28)), (3.31)), (3.32)), and (3.33]) to obtain

1 1
/ —— |V |P@® dx—/ —— |Vw|P® da
o () o ()
> [l 2+ 2uf1 ) 2u) o - w)
Q

(3.35)

for all v € C§°(Q). Now put v = w + tz with z € C°(Q) and let t — 07, t — 0~
in (3.35) and use the definition of Fréchet derivative to see that w satisfies

/ |Vw|P®) =2V - V2 de —|—/ |w|1®) 2wz de = 2/ |1 =2y2 do
) Q Q

for all z € C2°(€2). Hence
|w|q(w)*2w —Apyw = |u|q(z)*2u — Apz)u
in the sense of distributions. That w = u follows from well-known inequality
ja =07 < Cy{(laf*"2a — p~2b) - (a — )} (|a]” + [pl?) =/

which holds for all a,b € RN, where s = p if p € (1,2) and s = 2 if p > 2, and
Cp > 0 does not depend on a,b (a proof of this inequality is in [I7, Lemma A.0.5,
p. 80]). Since the above argument does not depend on the choice of subsequences,
then (3.31)), (3.32)) and (3.33) hold for ny = n.

Taking into account (3.28), (3.29), (3.31) and we obtain

2/ Jul*®) dw:/ Ju|?) dw+/ V[P da
Q o) Q
<limin ( / w1 da + / [V ") dz)
Q Q

n—o0

= lim (/ w9 daz—l—/ |Vw,|P®) da:)

<2 [ |u|?™ da.
Q

Consequently,

lim (/ |w, |2 dm+/ |V, [P d:v) :/ || 2(®) dx+/ |VulP@ dz
n—oo A Jo Q Q Q
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Moreover, notice that

/ |u|q(w) dr
Q

< liminf |wn|q(z) dr < lim sup/ |wn|Q(w) dx
Q

n—oo  JO n— oo

P@) p(z)
:limsup(/ w1 d:c+/ NVl e - /de)

p(w) p(:c)
Slimsup(/ |wn|q(:c) dx—l—/ Mdm —hmlnf/ |an|
Q o p)

n—00 n—0o0
< / |7 dz.
Q
Therefore,
lim |w 19®) dg: —/ |7 dx
n—oo Q
lim |Vw P(®) dy —/ |VulP@ da.
n—oo O
This completes the proof. ([

To obtain a Pohozaev-type inequality, we introduce the function
@I (s + 2
q(z) p(x)

where s = (s1,...,sn), which will be used in the context of a Pucci-Serrin formula
n [18].

F(x,u,s) =

— vt (z)u(zx) (3.36)

Theorem 3.2 (Pohozaev-type inequality). Let u be a weak solution of (1.2)) be-
longing to P. Then u satisfies

- [ st [ E g o

Vuppo
+ | = -Vp(x log (e ' |Vu[P®)) da 3.37
RO g( ) (337)

q(z)
/ x - Vq(z )‘ Y log( _1|u|q(x)) dx + R <0,
o q(z)?

where
T

_b
R= =

1 ©
lim sup lim sup/ (IVws > + E)p( )2 (- v(x))dS,
09

n— o0 e—0
pl = mingca{2,p(x)}, and ws is the solution of (3.7) uniquely determined by wu.

Proof. Denote by Fs(z,u,s) = (9s,F,...,0syF), where F is defined in (3.36]).
Then

D, F(z,u,8) = (]s]? +e)P@/271s; fori=1,2,...,N. (3.38)
Hence, we denote
0, F(z,u, Vu) = (|Vul? + e)P@/27 19,0 for i =1,2,...,N, (3.39)

and
Fo(z,u, V) = (|[Vul? 4 &) P@)=2/2y,,
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It follows from and that

div F(z,u, Vu) = —Acu.
Finally, we denote by

VF(@,u,Vu) = (05, F, ..y 0uyF) = (O F,...,ONF)

with
. lu(z)]2(®) (|S|2+€)p(az)/2 vl
W= T (@u())
|u‘q(w) » s
= oz (o ™) = )ig(e) + uf*udu
ul? p(z)/2
™ s 7 -

+ (|Vul? + e)P2719,(IVu)?) — [(005)u + v50u] fori=1,...,N.

We shall use the Pucci-Serrin formula [I8, Proposition 1, p. 683] in the form

/ [f(x, 0, V) — Vau - Fo (2,0, Vu)} (h-v)dS

a0

= / [f(m,m Vu)divh +h - VF(z,u, Vu) — (h- Vu) div Fs(z, u, Vu) (3.40)
o .

— Fs(z,u,Vu) - V(h - Vu) — audiv Fs(z, u, Vu)

— V(au) - Fs(z,u, Vu)} dz,

where a and h are respectively scalar and vector-valued functions of class C1(Q).
Taking a constant, h = z = (z1,...,%,), and u = ws, equation (3.40) becomes

Vwe |2 + ¢)P(@)/2
[, s

—/ (\waf+€)p(w)/2_1|wal|2(m-u)dS
Ble)

-/ A U L P
Q q() p(z) e
|w7sl|q(r)

x-Vq(x og |we [7®) — 1) dx 3.41
+ [ @ Vata)) Fls (gt 1)~ 1) a (3.41)

o (e VR + P2 e @2 1) da
+/Q( Vp(a) T (B +-2) 1)d

—/w;(x-w;)dx—/(|Vw;=;|2+5)<P<w>-2>/2|w;|2dx
Q Q

+ [ awicwde— [ (Vaws) - us)(Vug + 202 da,
Q Q
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For the surface integrals in ([3.41), by adding and subtracting e [, (|Vwg|* +
e)P@)/2=1(z . ) dS we have

2 p(x)/2
/ Werl + " o yds— [ (Vwi 2 + 6@/ 211Vl 2o - v) dS
o0 p(x) o0

:/8 (%—1)(|wal\2—i—s)p(m)/Q(xW)dS

o P\
+5/ (Vs 2+ £)P@/21 (. 1) ds.
09
(3.42)
On the other hand, since (z - v(x)) > 0 for all z € 09, it follows that
s/ (IVws|? + &)P@ /21 (. 1) dS
o9

f(’)Q E;D(ac)/Q(x . y( )) ds, if1< p(x) <2, (3.43)
S 9 Jog p(f@ (IVwg|? + e)P@/2(z - v) dS
+fas2 p(z)gp(m)ﬂ(x v(z))ds, if 2 < p(x).

Next, we analyze the behavior of each term in (3.41) as ¢ — 0. We begin the
analysis with the last term in the right hand side of the equation and we end with
the first term:

- / (V(aws) - Vws)(|[Vws | +e)P@=22 4y — —q [ |[Vw,[P® de  (3.44)
Q Q
by (3.25)).

/awaAawZ dx — a(/ 2|1 |1 20w, dx—/ |w, |26 dx) (3.45)
Q Q Q
by (3.7) and (3.21).

—/(|Vw§|2+e)(p(x)’2)/2|waL|2dx—> _/ |V, [P dx (3.46)
Q Q

by (B-29).

For the term — [, w§ (x - Vo5,) dz, since V(w§vs) = v, Vws, + wi, Vs, we have

—/wi(x~Vvi)d:c=—/ - V(w;v},) dx+/ vix - Vs, dr. (3.47)
Q Q

Q
Note that

/ vix - Vwi, de — 2 |un|Q(I)72unx -V, dz
Q Q

as € — 0, by a similar proof as in (3.21)).
On the other hand, calculating the first term in the right-hand side of (3.47)), we
obtain

—/x-V(wZUfl)dac:/viwidivxdw—/ vyws (z - v)dS
Q Q

o0 (3.48)
:N/U,iwidx.
Q
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We claim that

g 5
I == [ (z-Vq(x)) 5 (log |w, |9=) — 1) d
/ e 519)
oo (Va2 e e 195 — 1) da
| Vata) T (o s 1) 1)
and
I = /({E - Vp(z)) (|qu€1|2 + 62)17(:10)/2 (log(|v'wi|2 + E)p(:zz)/2 _ 1) dx
a ) 550)
|an|p(z) p(x .

To prove ([3.49) and (3.50)), we estimate I; by distinguishing the two cases |w&| < 1
and |ws| > 1. Notice that the relations

sup t"|logt| < oo, (3.51)
0<t<1

supt~"logt < o0 (3.52)
t>1

hold for n > 0.

Set 1 := {x € Q: |wi(z)| < 1} and Qg := {x € Q@ : |wi(x)] > 1}. We can
choose k € N such that p(xz) — 1/k > p~. Since wt € LP (Q) and |ws(z)] < 1, in
Q1, we have
|we |9(*)
(q(x))?
for m > k. For x € Qa, we can choose k' such that p(x) + 1/k < (p(x))* =
Np(z)/(N = p(z)). So

|w;|q(1’)

|(9C'VQ($))W

for m > Kk, and © € Qy. Therefore (3.53), (3.54), and the convergence of wg in
Lemma imply that there exists h(z) € L1(£2) such that

|(z - V() log [y, |9 | < Cluf () PO~Y™ < Clug (@), (3.53)

log [w;, || < Cluf, () PO+™ < Ol ()| PO, (3.54)

‘wﬂq(aﬂ)

- Vel Gy

On the other hand, given the convergence Lemma assertion (3.9) and the
continuity of the log function, we conclude that

log |wa|‘1(”’)| < h(z). (3.55)

Jwé |9(=) |y, |9(®)
(z - V() —

(q(x))? (q(x))?

a.e. in Q as e — 0. With (3.55), (3.56), and the Lebesgue Convergence Theorem

the claims ([3.49) and loggrad follow.
Finally,

|we ‘q(z) (|Vws | + £)P()/2 / |w,, |9(®) |an|P(””)
N(—2 + n de — | N + dxr (3.57
G~ ) N ) 6
as € — 0 by (3.25) and (3.9).

log [wy, |1 — (2 - Va(x)) log [w, ) (3.56)
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Considering items ((3.44)—(3.57)), identities (3.41)), (3.42)), and inequality (3.43)),

we obtain
(@) N —
|wn| de +/ wn|p(w)dac
|an|
—|—/:E~Vp ———(log |Vw, P(@) _ 1) dz
RRCORSEE ( V[P — 1)

(3.58)

|, |7®) (x) (2)—2
+ [ z-Vq(x) (log |w, ™) = 1) dz +2 | |u,|? U - Vw, dx
Q q(z)? Q

—i—a(/ 2t |1 20w, dm—/ Jw,, |1®) da —/ |V, [P dm) + R,
Q Q Q

<0,

where

1 -
R, = p - limsup/ (|Vws|? + s)p( )/2(:r -v(x))dS,
p e—0 JoQ

and pT = mlnleﬂ{zap(‘r)}

Next let n — oo in (3.58) and take into account (3.10), and (3.11) to obtain
IU|q v

(z)

p(z)
/N ‘Vu‘p (2) dx+/ﬂc~Vp( )%(IOQVMZ’(’“) )dm
ul9®) (8:59)

+ / x - Vq(z) 5 (log |u|?@) — 1) dz + 2/ |24z - V) da
Q q(w) Q

Jra(/ || dz:f/ |Vu|P®) dz) +R<O,
Q Q

where
T_1 -
rR=" —— limsup limsup/ (IVws > + E)p( )2 (x - v(x))dS.
D n—oo e—0 o0
Further, notice that since u is a weak solution of (|1.2)),

/ ]9 dar — / VP dg = 0. (3.60)
Q Q
In fact, multiplying (1.2) by ¢ € WO1 P (')(Q), and integrating by parts, we have
/ |VulP® 2Ty dz :/ [u| 1)~ 2yp da.
Q Q

Taking ¢ = u we obtain (3.60)), as wanted. On the other hand,

. a(z)
/ @ Va7 doe = / [u| 9@ ~2y(z - Vu) dz
Q q(z) Q

) (3.61)
+ — |9 log |u|?®) (2 - Vq(z)) dx
[ gl o - V(o)
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so that
. q(z)
/%dx /le (7)‘u|q(w dx+/ |u|q(w E(i) ds
o a(z) q(x) v q(x)
(x) o (3.62)
[ gy [t St
Hence, from (3.61] , and ( - we obtaln
/|u\q<m)_2u(x~Vu)d$
¢ (3.63)

a(z) a(@)
— _N |u| /|u| )z - Vq )( —log|u|q(w))d$

We obtain m by substltutlng 3.60)) and (3.63]) in (3.59)). (I

4. NONEXISTENCE OF NONTRIVIAL SOLUTIONS

Now we can state a nonexistence theorem which is a generalization to the case
of Sobolev Spaces with variable exponents of [16] Theorem III, p. 142]. The proofs
are similar to those in [16], but are included here for the reader’s convenience.

Theorem 4.1. Consider Problem (1.2)), where Q C RY is a bounded domain of
class C*, p(-) is a log-Hélder exponent with 1 < p~ < p(x) < p™ < N. Let P be as

defined in (3.1). Then we have:

(i) If Q is star-shaped and q— > (p*)* then Problem (1.2)) has no nontrivial
weak solution belonging to P N E where

c_ {u : / log ((Ivup<z>61)f%,zpvw<f>)dx § 0}.
Q

(Jua(@)e—1) = el

(ii) If Q is strictly star-shaped and q— = (p*)* then Problem (1.2) has no
nontrivial weak solution of definite sign belonging to PN E.

Proof. (i) If  is star-shaped, then R > 0 in . Then it follows that
N —
( - — / lu|?®) dz < 0.

p+

So u = 0.
(ii) If Q is strictly star-shaped, then R = 0 in (3.37). It follows that

0= R > plimsup limsup/ (IVws > + 5)p(x)/2 ds.
0 o0

n—oo E—
Since p > 0 we have
0 = limsup limsup/ ([Vws > + €)p(z)/2 ds.
n—oo e—0 o0
Multiplying by v(xz) = 1, integrating by parts, and taking limsup as ¢ — 0
and n — oo we obtain

|/ || 1) =2y dz| < Climsuplim sup/ (|Vws [? —|—€)p(w)/2 ds=0, C=0.
Q 0

n— oo e—0

Therefore, [, [u|?®~2udz = 0. O
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