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POHOZAEV-TYPE INEQUALITIES AND NONEXISTENCE
RESULTS FOR NON C2 SOLUTIONS OF p(x)-LAPLACIAN

EQUATIONS

GABRIEL LÓPEZ

Abstract. In this article we obtain a Pohozaev-type inequality for Sobolev
spaces with variable exponents. This inequality is used for proving the nonex-

istence of nontrivial weak solutions for the Dirichlet problem

−∆p(x)u = |u|q(x)−2u, x ∈ Ω

u(x) = 0, x ∈ ∂Ω,

with non-standard growth. Our results extend those obtained by Ôtani [16].

1. Introduction

Let Ω be a bounded domain in RN with smooth boundary ∂Ω. The domain Ω is
said to be star shaped (respectively strictly star shaped) if (x·ν(x)) > 0 (respectively
if (x · ν(x)) > ρ > 0) holds for all x ∈ ∂Ω with a suitable choice of the origin, where
ν(x) = (ν1(x), . . . , νN (x)) denotes the outward unit normal at x ∈ ∂Ω. Consider
the problem

−∆p(x)u = f(u), x ∈ Ω

u(x) = 0, x ∈ ∂Ω,
(1.1)

where ∆p(x)u = div(|∇u|p(x)−2∇u), and f is a non-linear function.
In [4], to obtain nonexistence results for (1.1) for star shaped domains Ω, Po-

hozaev-type identities are stated and applied to the case in which f does not depend
on p(x) and u ∈ C2(Ω). For f(u) = |u|q−2u, 1 < q < ∞, 2 < p < ∞, and p, q
constants, nontrivial solutions of (1.1) do not belong to C2(Ω) ∩ C(Ω), see [11].
The arguments in [11, Proposition 1.1] are easily extended to the case of Sobolev
Spaces with variable exponents, so that, in general, results in [4] can not be applied
when ∇u(x) = 0, not even for solutions in W 2,p(x)(Ω) ∩W 1,p(x)(Ω). In this way,
solutions to the problem

−∆p(x)u = |u|q(x)−2u, x ∈ Ω

u(x) = 0, x ∈ ∂Ω,
(1.2)

in general do not belong to C2(Ω).
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The results in the present paper generalize to Sobolev Spaces with Variable
Exponents p(x) the work of Ôtani [16], which hold for constant exponents p. The
generalization is in the sense that the spaces with p constant are contained in the
spaces with variable exponent, more precisely, the classical Lebesgue space Lp(Ω)
coincides with the modular space (L0(Ω))ρp

, [3, Example 2.1.8, p. 25]. As a
consequence, the Pohozaev-type inequality (3.37), Theorem 3.2, in this paper:

−
∫

Ω

N

q(x)
|u|q(x) dx+

∫
Ω

N − p(x)
p(x)

|∇u|p(x) dx

+
∫

Ω

x · ∇p(x)
|∇u|p(x)

p(x)2
log
(
e−1|∇u|p(x)

)
dx

−
∫

Ω

x · ∇q(x)
|u|q(x)

q(x)2
log
(
e−1|u|q(x)

)
dx+R ≤ 0,

holds for p constant in the corresponding Sobolev spaces.
In [16], Ôtani studied the Existence, Regularity and Nonexistence of (1.2). The

existence of solutions for (1.2) is proved in [7] and [15]. In [15], the authors studied
the existence for the case in which the embbeding from W

1,p(·)
0 (Ω) to Lq(·)(Ω) is

compact. In the same paper, the authors include the study of the case in which the
embbeding from W

1,p(·)
0 (Ω) to Lq(·)(Ω) is not compact, provided that certain func-

tional inequality holds. On the other hand, the regularity of solutions of problem
(1.2) is studied in [5, Theorem 1.2].

To the best of my knowledge, many problems related to Pohozaev-type inequal-
ities and Sobolev Spaces with Variable Exponents remain unstudied, among them,
for instance, problem (1.2) in general exterior domains. Hashimoto and Ôtani [11]
studied this problem for p constant in an exterior domain Ω = RN \ Ω̄0 where Ω̄0

is bounded and starshaped.
Many problems related to the p(x)-Laplacian remain open, for instance, a char-

acterization of the solutions in dimension one of the eigenvalue problem

−∆p(x)u = λ|u|q(x)−2u, x ∈ Ω
u = 0, x ∈ ∂Ω,

where λ is an eigenvalue defined by a Rayleigh quotient equation (see for instance
[14, equation (2.1), p. 273]). The well known case, p constant [14], has character-
istic solutions in terms of sinp(x), cosp(x) functions, which are generalizations of
the ordinary sine and cosine functions, i. e., the solutions of the one dimensional
eigenvalue problem for p = 2. For p = p(x), the problem seems to be much harder
to solve than the constant case.

The reader is referred to [9] for review of applications of p(x)-Laplacian equations
to ranging from Image Processing to Modeling of Electrorheological fluids.

This paper is organized as follows. In section 2 some necessary background in
Sobolev Spaces with Variable Exponents is provided including some required Com-
pact Embedding results. In section 3, Theorem 3.2 we state and prove a Pohozaev-
type inequality. In Section 4, we prove some nonexistence results of nontrivial weak
solutions of problem (1.2) as a consequence of Pohozaev-type inequality.
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2. Variable exponent setting

We recall some definitions and basic properties of the Lebesgue-Sobolev spaces
with variable exponent Lp(·)(Ω) and W

1,p(·)
0 (Ω). For any p ∈ C(Ω), the space of

continuous functions in Ω, we define

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

The Lebesgue Space with variable exponent for measurable real-valued functions is
defined as the set

Lp(·)(Ω) = {u :
∫

Ω

|u(x)|p(x) dx <∞},

endowed with the Luxemburg norm

‖u‖p(·) = inf{µ > 0;
∫

Ω

|u(x)
µ
|p(x) dx ≤ 1},

which is a separable and reflexive Banach space if 1 < p− 6 p+ <∞. For the basic
properties of the Lebesgue Spaces with Variable Exponents we refer to [3] and [12].

Let Lp
′(·)(Ω) be the conjugate space of Lp(·)(Ω), obtained by conjugating the

exponent pointwise; that is, 1/p(x) + 1/p′(x) = 1, [12, Corollary 2.7]. For any
u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) the following Hölder type inequality is valid∣∣ ∫

Ω

uv dx
∣∣ ≤ ( 1

p−
+

1
p′−
)
‖u‖p(·)‖v‖p′(·) . (2.1)

An important role in manipulating the generalized Lebesgue-Sobolev spaces is
played by the p(·)-modular of the Lp(·)(Ω) space, which is the mapping ρp(·) :
Lp(·)(Ω)→ R defined by

ρp(·)(u) =
∫

Ω

|u|p(x) dx.

If a sequence (un), and u are in Lp(·)(Ω) then the following relations hold

‖u‖p(·) < 1 (= 1; > 1) ⇔ ρp(·)(u) < 1 (= 1; > 1) (2.2)

‖u‖p(·) > 1 ⇒ ‖u‖p
−

p(·) ≤ ρp(·)(u) ≤ ‖u‖p
+

p(·) (2.3)

‖u‖p(·) < 1 ⇒ ‖u‖p
+

p(·) ≤ ρp(·)(u) ≤ ‖u‖p
−

p(·) (2.4)

‖un − u‖p(·) → 0 ⇔ ρp(·)(un − u)→ 0, (2.5)

since p+ <∞. For a proof of these facts see [12].
The set W 1,p(x)

0 (Ω) is defined as the closure of C∞0 (Ω) under the norm

‖u‖ = ‖∇u‖p(x).

The space (W 1,p(x)
0 (Ω), ‖ · ‖p(x)) is a separable and reflexive Banach space if 1 <

p− 6 p+ <∞. We note that if q ∈ C+(Ω) and q(x) < p∗(x) for all x ∈ Ω, then the
embedding W 1,p(x)

0 (Ω) ↪→ Lq(x)(Ω) is continuous, where p∗(x) = Np(x)/(N −p(x))
if p(x) < N or p∗(x) = +∞ if p(x) ≥ N [12, Theorem 3.9 and 3.3] (see also [6,
Theorem 1.3 and 1.1]).

The bounded variable exponent p is said to be Log-Hölder continuous if there is
a constant C > 0 such that

|p(x)− p(y)| 6 C

− log(|x− y|)
(2.6)
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for all x, y ∈ RN , such that |x − y| ≤ 1/2. A bounded exponent p is Log-Hölder
continuous in Ω if and only if there exists a constant C > 0 such that

|B|p
−
B−p

+
B ≤ C (2.7)

for every ball B ⊂ Ω [3, Lemma 4.1.6, page 101], where |B| is the Lebesgue measure
of B. Under the Log-Hölder condition smooth functions are dense in Sobolev Spaces
with Variable Exponents [3, Proposition 11.2.3, page 346].

Finally, the compact embedding results, as many other facts, are a very delicate
and interesting matters in spaces with variable exponents. For instance, in [15,
prop 3.1] is shown that, for certain exponents with p∗(x) > q(x) > p∗(x)− ε (in our
notation) with x in some subset of Ω, the embedding from W

1,p(·)
0 (Ω) to Lq(·)(Ω)

is not compact. On the other hand, if q(x) = p∗(x) at some point x ∈ Ω, it is
known that the embedding is compact in RN (see [3, Theorem 8.4.6] and references
therein). In this paper, we will use [15, Proposition 3.3] which, in our notation, can
be stated as the following proposition.

Proposition 2.1 (Mizuta et al [15]). Let p(·) satisfying the log-Hölder condition
on the open and bounded set Ω ⊂ RN . Suppose that ∂Ω ∈ C1 or Ω satisfies the
cone condition, and p+ < N . Let q(·) be a variable exponent on Ω such that 1 6 q−

and
ess infx∈Ω

(
p∗(x)− q(x)

)
> 0. (2.8)

Then W 1,p(·)
0 (Ω) ↪→↪→ Lq(·)(Ω), i. e. W 1,p(·)

0 (Ω) is compactly embedded in Lq(·)(Ω).

For a definition of the cone condition used in the above theorem, see [19, p. 159].
In the next section we also require the following Lemma.

Lemma 2.2. Let 1 < p(x) < q− < q(x) < q+ < ∞ a.e. in Ω. Assume that
‖un‖r < C for 1 6 r < ∞ and un → u as n → ∞ in Lp(·)(Ω). Then un → u as
n→∞ in Lq(·)(Ω), up to a subsequence.

Proof. Given (2.2) to (2.5), it is enough to show that ρq(·)(un − u)→ 0 as n→∞.
We have

ρq(·)(un − u) =
∫

Ω

|un − u|q(x) dx 6
∫

Ω

|un − u|q
−
dx, (2.9)

for n big enough. In deed, the inequality holds since convergence in Lp(x)(Ω) implies
convergence in Lp

−
(Ω); i.e., ‖un − u‖Lp− → 0. So that, up to a subsequence,

|un − u| → 0 a.e. in Ω by [2, Théorème IV.9]. In this way, there exist No
such that if n > No, |un − u| < 1, a.e. in Ω. Therefore, up to a subsequence,
|un − u|q(x) < |un − u|q

−
, a.e. in Ω, so that the inequality (2.9) holds. Hence, for

some θ ∈ (0, 1) satisfying 1/q− = θ/p− + (1− θ)/q+

ρq(·)(un − u) 6
(∫

Ω

|un − u|p
−
dx
)θq−/p−(∫

Ω

|un − u|q
+
dx
)(1−θ)q−/q+

.

Using the fact that un → u in Lp
−

(Ω) and [1, Theorem 2.11] it follows that

ρq(·)(un − u) 6 C
(∫

Ω

|un − u|p
−
dx
)θq−/p−

→ 0, as n→∞, (2.10)

and the proof is complete. �
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3. Pohozaev-type inequalitiy

In this section, we state a Pohozaev-type inequality for weak solutions u (defined
in (3.3) below) belonging to the class P defined as

P =
{
u ∈

(
W

1,p(·)
0 ∩ Lq(·)

)
(Ω) : xi|u|q(x)−2u ∈ Lp

′(·)(Ω), i = 1, 2, . . . , N
}

(3.1)

where p′(x) = p(x)/(p(x)− 1) and p+ < N . To this aim, we employ the techniques
introduced by Hashimoto and Ôtani in [11, 10, 16], but within the framework of
spaces with variable exponent, which, as the reader may notice, require much more
careful estimations than those in the constant case.

Let gn(·) ∈ C1(R) be the cutoff functions such that 0 6 g′n(s) 6 1, s ∈ R and

gn(s) =

{
s, |s| 6 n,
(n+ 1) sign s, |s| > n+ 1.

(3.2)

Let u be a weak solution of (1.2), i.e. a function u ∈
(
W

1,p(·)
0 ∩ Lq(·)

)
(Ω), which

satisfies∫
Ω

|∇u|p(x)−2∇u · ∇φdx =
∫

Ω

|u|q(x)−2uφ dx for all φ ∈
(
W

1,p(·)
0 ∩ Lq(·)

)
(Ω),

(3.3)
and set un = gn(u) then |un|r−2un ∈

(
W

1,p(·)
0 ∩ L∞

)
(Ω) for r ∈ [2,∞). Consider

now the approximate problem

|wn|q(x)−2wn −∆p(x)wn = 2|un|q(x)−2un, in Ω,
wn = 0 on ∂Ω.

(3.4)

Since un ∈ L∞(Ω), there exists a sequence {vεn} ⊂ C∞0 (Ω) satisfying

‖vεn‖L∞(Ω) 6 Co, for all ε ∈ (0, 1), (3.5)

vεn → 2|un|q(x)−2un, strongly in Lr(·)(Ω) as ε→ 0, for all r ∈ [1,∞). (3.6)

In turn, we require another approximate equation for (E)n given by

|wεn|q(x)−2wεn +Aεw
ε
n = vεn, in Ω

wεn = 0 on ∂Ω,
(3.7)

where Aεu(x) = −div{(|∇u(x)|2 + ε)(p(x)−2)/2∇u(x)} and ε > 0. It is possible to
show that (3.4) and (3.7) have unique solutions and that (3.7) and (3.4) provide
good approximations for (3.4) and (1.2), respectively. This fact is stated in the
following lemma.

Lemma 3.1. Let p(·) satisfying the log-Hölder condition on the open and bounded
set Ω ⊂ RN . Suppose that ∂Ω ∈ C1 or Ω satisfies the cone condition and p+ < N .
Then the following statements hold true:

(i) For each ε ∈ (0, 1) and n ∈ N, there exists a unique solution wεn ∈ C2(Ω)
of (3.7).

(ii) For each n ∈ N there exists a unique solution wn ∈ C1,α(Ω) ∩W 1,p(x)
0 (Ω),

0 < α < 1, of (3.4).
(iii) wεn converges to wn as ε→ 0 in the following sense:∫

Ω

|∇wεn|p(x) dx→
∫

Ω

|∇wn|p(x) dx as ε→ 0, (3.8)
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wεn → wn strongly in Lr(x)(Ω), (3.9)

for r(·) such that 1 < r− < r(x) < r+ a.e. in Ω and p+ < N .
(iv) wn converges to u as n→∞ in the following sense:∫

Ω

|∇wn|p(x) dx→
∫

Ω

|∇u|p(x) dx as n→∞, (3.10)∫
Ω

|wn|q(x) dx→
∫

Ω

|u|q(x) dx, as n→∞, (3.11)

Proof. (i) Since un ∈ L∞(Ω), there exists a sequence {vεn} ⊂ C∞0 (Ω) satisfying

‖vεn‖L∞(Ω) 6 Co, for all ε ∈ (0, 1), (3.12)

vεn → 2|un|q(x)−2un, strongly in Lr(Ω) as ε→ 0, for all r ∈ [1,∞). (3.13)

Given that vεn belongs to C2(Ω) and since Aεu is elliptic, [19, Theorem 15.10]
guarantees the existence of a unique solution wεn ∈ C2(Ω) of (3.7).

(ii) Set

F (z) =
∫

Ω

|∇z|p(x)

p(x)
dx+

∫
Ω

|z|q(x)

q(x)
dx− 2

∫
Ω

|un|q(x)−2unz dx,

so that F (z) is strictly convex, coercive and Fréchet differentiable on(
W

1,p(x)
0 ∩ Lq(x)

)
(Ω).

Now, if zn ⇀ zo weakly in
(
W

1,p(x)
0 ∩ Lq(x)

)
(Ω), then, since p ∈ P(Ω, µ) (for defi-

nitions see [3]), the modulars
∫

Ω
|∇z|p(x)/p(x) dx and

∫
Ω
|z|q(x)/q(x) dx are sequen-

tially weakly lower semicontinuous [3, Theorem 3.2.9] and
∫

Ω
|un|q(x)−2unz dx ∈

(Lq(x)(Ω))∗. We conclude that lim infn→∞ F (zn) > F (zo). Since F is bounded
below, there exists wn ∈

(
W

1,p(x)
0 ∩ Lq(x)

)
(Ω) where F attains its minimum, and

since F is Fréchet differentiable 〈F ′(wn), φ〉 = 0 for all φ ∈
(
W

1,p(x)
0 ∩ Lq(x)

)
(Ω),

i.e. wn solves (3.7) in the weak sense and the uniqueness follows from the strict
convexity of F (z). Multiplying (3.7) by |wn|r−2wn (r > 2 constant), using Young’s
ε-inequality with ε = 1/2, and considering that |un|q(x)−2un belongs to L∞(Ω), we
obtain ∫

Ω

|wn|q(x)+r−2 dx+ (r − 1)
∫

Ω

|wn|p(x)|wn|r−2 dx

6
∫

Ω

2(n+ 1)q(x)−1|wn|r−1 dx

6
1
2

∫
Ω

|wn|q(x)+r−2 dx+ 2(q++2r−3)/(q−−1)(n+ 1)q
++r−2|Ω|.

(3.14)

So, by [8, Theorem 1.3, p. 427]

‖wn‖q
±+r−2
Lq(x)+r−2 6 2 · 2(q++2r−3)/(q−−1)(n+ 1)q

++r−2|Ω|,

where

q± =

{
q+, if ‖wn‖Lq(x)+r−2 < 1,
q−, if ‖wn‖Lq(x)+r−2 > 1.



EJDE-2014/239 POHOZAEV-TYPE INEQUALITIES 7

Hence we can obtain an a priori bound for ‖wn‖Lq(x)+r−2 independent of r. Let-
ting r → ∞ we get an L∞-estimate for wn. Therefore, using [5, Theorem 1.2, p.
400], we conclude wn ∈ C1,α(Ω).

(iii) With a similar argumentation as in (ii) we obtain

‖wεn‖L∞(Ω) 6 Cn for all ε > 0. (3.15)

Multiply (3.7) by wεn to obtain∫
Ω

|wεn|q(x) dx+
∫

Ω

(|∇wεn|2 + ε)(p(x)−2)/2|∇wεn|2 dx =
∫

Ω

vεnw
ε
n dx.

On the other hand, note that∫
Ω

|∇wεn|p(x) dx =
∫

Ω

(|∇wεn|2)(p(x)−2)/2|∇wεn|2 dx

6
∫

Ω

(|∇wεn|2 + ε)(p(x)−2)/2|∇wεn|2 dx.

Hence, it follows that ∫
Ω

|∇wεn|p(x) dx 6
∫

Ω

vεnw
ε
n dx.

Next, use Young’s inequality and the fact that q(x), q′(x) > 1 to obtain∫
Ω

|∇wεn|p(x) dx 6
∫

Ω

|vεn|q
′(x) dx+

∫
Ω

|wεn|q(x) dx.

Therefore, by (3.15) and the fact that vn ∈ C∞0 (Ω), we obtain

‖∇wεn‖Lp(x)(Ω) 6 Cn for all ε > 0. (3.16)

Combining (3.15), (3.16), Proposition 2.1, and Lemma, 2.2 it follows that there
exists a sequence {wεk

n } such that for p+ < N

wεk
n → w strongly in Lr(Ω), with 1 6 r− < r(x) < r+ <∞, (3.17)

∇wεk
n ⇀ ∇w weakly in Lp(x)(Ω), (3.18)∫

Ω

|wεk
n |q(x)−2wεk

n v →
∫

Ω

|w|q(x)−2wv as εk → 0, for all v ∈W p(x)
0 (Ω). (3.19)

Weak convergence holds since Lp(x) spaces are uniformly convex [3, Theorem
3.4.9], and hence reflexive.

From this point we refer to [13] for all the notations and results concerning to
subdifferentials. Set

φε(z) :=
∫

Ω

1
p(x)

(|∇z|2 + ε)p(x)/2 dx

with D(φε) = W
1,p(x)
0 (Ω) so that φε is a convex operator according to in [13,

Definition in section 1.3.3, p. 24]. Next, since φε is Fréchet differentiable, and since

φ′ε(z)v = 〈Aεz, v〉 =
∫

Ω

(|∇z|2 + ε)p(x)/2∇z · ∇v dx.

According to [13, Section 4.2.2], Aε ∈ ∂φε where ∂φε is the subdifferential of φε.
Hence wεn satisfies

φε(v)− φε(wεn) >
∫

Ω

(|∇wεn|2 + ε)p(x)/2∇wεn · ∇(v − wεn) dx, ∀v ∈W 1,p(x)
0 (Ω).
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Now by (3.7),

φε(v)− φε(wεn) >
∫

Ω

(−|wεn|q(x)−2wεn + vεn) · (v − wεn) dx. (3.20)

On the other hand, given strong convergence of wεn → wn as ε → 0 and strong
convergence of vn → 2|un|q(x)−2un in L1(Ω), we have that vεnw

ε
n → 2|un|q(x)−2unwn

as ε→ 0 in L1(Ω) since∫
Ω

|vεnwεn − 2|un|q(x)−2unwn| dx

6
∫

Ω

|vεn||wεn − wn| dx+
∫

Ω

|wn||vεn − 2|un|q(x)−2un| dx

6 Co

∫
Ω

|wεn − wn| dx+
∫

Ω

|wn||vεn − 2|un|q(x)−2un| dx,

(3.21)

given that (3.5) holds. Note that the last integral approaches zero as ε → 0. It
follows from Hölder’s inequality for spaces with variable exponent, wn ∈ Lr(Ω),
and (3.6).

Taking into account that φε(v) → φ0(v), as ε → 0 for all v ∈ W 1,p(x)(Ω), and
that

lim inf
k→∞

φεk
(wεk

n ) > φεk
(w) > φ0(w) (3.22)

holds (since modulars are weakly lower semicontinuous [3, Theorem 2.2.8]), we can
take limits as ε → 0 in (3.20), and after that, we can use (3.6), (3.17), and (3.19)
to obtain

φ0(v)− φ0(w) >
∫

Ω

(
− |w|q(x)−2w + 2|un|q(x)−2un

)
· (v − w) dx, (3.23)

holds for all v ∈ W
1,p(x)
0 (Ω). The last inequality implies, by the definition of

subdifferential [13], that∫
Ω

|∇w|p(x)−2∇w · ∇ϕdx =
∫

Ω

(−|w|q(x)−2w + 2|un|q(x)−2un) · ϕdx, (3.24)

for all ϕ ∈ W 1,p(x)
0 (Ω). We conclude that w = wn, since the argument above does

not depend on the choice of {εk}.
Multiply equation (3.4) by wn and equation (3.7) by wεn, and integrate by parts

to obtain ∫
Ω

|∇wn|p(x) dx = −
∫

Ω

|wn|q(x) dx+ 2
∫

Ω

|un|q(x)−2unwn dx,∫
Ω

(|∇wεn|2 + ε)(p(x)−2)/2|∇wεn|2 dx = −
∫

Ω

|wεn|q(x) dx+
∫

Ω

vεnw
ε
n dx.

So that, (3.6) and (3.17) imply∫
Ω

(|∇wεn|2 + ε)(p(x)−2)/2|∇wεn|2 dx→
∫

Ω

|∇wn|p(x) dx as ε→ 0. (3.25)

Take v = w = wn in (3.20) and let ε→ 0 in (3.20) to obtain

lim sup
ε→0

φε(wεn) 6 φ0(wn). (3.26)
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Inequality (3.26) and (3.22) imply∫
Ω

(|∇wεn|2 + ε)p(x)/2 dx→
∫

Ω

|∇wn|p(x) dx as ε→ 0. (3.27)

Moreover, since (3.18) holds, we have

lim inf
ε

∫
Ω

|∇wεn|p(x) dx >
∫

Ω

|∇wn|p(x) dx

since modulars are weakly lower semicontinuous.
On the other hand, since (|∇wεn|2)p(x)/2 6 (|∇wεn|2 + ε)p(x)/2 we have

lim sup
ε

∫
Ω

|∇wεn|p(x) dx 6 lim sup
ε

∫
Ω

(|∇wεn|2 + ε)p(x)/2 dx 6
∫

Ω

|∇wn|p(x) dx.

Therefore, we conclude (3.8).
(iv) We proceed first by noticing that

|un|q(x)−2un → |u|q(x)−2u strongly in Lq
′(x)(Ω) as n→∞, (3.28)

by the uniform convexity of Lq
′(x)(Ω). Multiply (3.4) by wn and integrate by parts

to obtain∫
Ω

|wn|q(x) dx+
∫

Ω

|∇wn|p(x) dx = 2
∫

Ω

|un|q(x)−2unwn dx

6 4‖|un|q(x)−1‖Lq′(x)(Ω)‖wn‖Lq(x)(Ω),

(3.29)

by Hölder’s inequality for Sobolev Spaces with Variable Exponents [3, lemma 2.6.5].
Now, using [8, Theorem 1.3] and (3.29) we obtain

‖wn‖q
±

Lq(x)(Ω)
+ ‖∇wn‖p

±

Lp(x)(Ω)
6 C‖wn‖Lq(x)(Ω), (3.30)

where

q± =

{
q+, if ‖wn‖Lq(x)(Ω) < 1
q−, if ‖wn‖Lq(x)(Ω) > 1,

p± =

{
p+, if ‖∇wn‖Lq(x)(Ω) < 1
p−, if ‖∇wn‖Lq(x)(Ω) > 1.

The fact that p±, q± > 1 imply that ‖wn‖q
±

Lq(x)(Ω)
, ‖∇wn‖p

±

Lp(x)(Ω)
6 C. We use

again Proposition 2.1 and Lemma 2.2 to obtain that, up to a subsequence {nk},

∇wnk
⇀ ∇w weakly in Lp(x)(Ω), (3.31)

wnk
⇀ w weakly in Lq(x)(Ω). (3.32)

And, moreover, wnk
→ w strongly in Lq(x)(Ω) for all q such that 1 6 q− < q(x) <

q+ <∞, and∫
Ω

|wnk
|q(x)−2wnk

· v dx→
∫

Ω

|w|q(x)−2w · v dx for all v ∈ Lq
′(x)(Ω) (3.33)
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as k → ∞. Given that wn is a solution of (3.4), the definition of subdifferential
leads to∫

Ω

1
p(x)
|∇v|p(x) dx−

∫
Ω

1
p(x)
|∇wn|p(x) dx

=
∫

Ω

1
p(x)
|∇v|p(x) dx−

∫
Ω

1
p(x)
|∇wn|p(x) dx

>
∫

Ω

(−|wn|q(x)−2wn + 2|un|q(x)−2un)(v − wn) dx

>
∫

Ω

|wn|q(x) dx−
∫

Ω

|wn|q(x)−2wnv dx+ 2
∫

Ω

|un|q(x)−2un(v − wn) dx,

(3.34)

for all v ∈ C∞0 (Ω) and for n such that supp v ⊂ Ω. Let n = nk →∞ in (3.34) and
recall (3.28), (3.31), (3.32), and (3.33) to obtain∫

Ω

1
p(x)
|∇v|p(x) dx−

∫
Ω

1
p(x)
|∇w|p(x) dx

>
∫

Ω

(−|w|q(x)−2w + 2|u|q(x)−2u)(v − w) dx,
(3.35)

for all v ∈ C∞0 (Ω). Now put v = w + tz with z ∈ C∞o (Ω) and let t → 0+, t → 0−

in (3.35) and use the definition of Fréchet derivative to see that w satisfies∫
Ω

|∇w|p(x)−2∇w · ∇z dx+
∫

Ω

|w|q(x)−2wz dx = 2
∫

Ω

|u|q(x)−2uz dx

for all z ∈ C∞o (Ω). Hence

|w|q(x)−2w −∆p(x)w = |u|q(x)−2u−∆p(x)u

in the sense of distributions. That w = u follows from well-known inequality

|a− b|p 6 Cp
{

(|a|p−2a− |b|p−2b) · (a− b)
}s/2(|a|p + |b|p)1−s/2

which holds for all a, b ∈ RN , where s = p if p ∈ (1, 2) and s = 2 if p > 2, and
Cp > 0 does not depend on a, b (a proof of this inequality is in [17, Lemma A.0.5,
p. 80]). Since the above argument does not depend on the choice of subsequences,
then (3.31), (3.32) and (3.33) hold for nk = n.

Taking into account (3.28), (3.29), (3.31) and (3.32) we obtain

2
∫

Ω

|u|q(x) dx =
∫

Ω

|u|q(x) dx+
∫

Ω

|∇u|p(x) dx

6 lim inf
n→∞

(∫
Ω

|wn|q(x) dx+
∫

Ω

|∇wn|p(x) dx
)

= lim
n→∞

(∫
Ω

|wn|q(x) dx+
∫

Ω

|∇wn|p(x) dx
)

6 2
∫

Ω

|u|q(x) dx.

Consequently,

lim
n→∞

(∫
Ω

|wn|q(x) dx+
∫

Ω

|∇wn|p(x) dx
)

=
∫

Ω

|u|q(x) dx+
∫

Ω

|∇u|p(x) dx
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Moreover, notice that∫
Ω

|u|q(x) dx

6 lim inf
n→∞

∫
Ω

|wn|q(x) dx 6 lim sup
n→∞

∫
Ω

|wn|q(x) dx

= lim sup
n→∞

(∫
Ω

|wn|q(x) dx+
∫

Ω

|∇wn|p(x)

p(x)
dx−

∫
Ω

|∇wn|p(x)

p(x)
dx
)

6 lim sup
n→∞

(∫
Ω

|wn|q(x) dx+
∫

Ω

|∇wn|p(x)

p(x)
dx
)
− lim inf

n→∞

∫
Ω

|∇wn|p(x)

p(x)
dx

6
∫

Ω

|u|q(x) dx.

Therefore,

lim
n→∞

∫
Ω

|wn|q(x) dx =
∫

Ω

|u|q(x) dx,

lim
n→∞

∫
Ω

|∇wn|p(x) dx =
∫

Ω

|∇u|p(x) dx.

This completes the proof. �

To obtain a Pohozaev-type inequality, we introduce the function

F(x, u, s) :=
|u(x)|q(x)

q(x)
+

(|s|2 + ε)p(x)/2

p(x)
− vεn(x)u(x) (3.36)

where s = (s1, . . . , sN ), which will be used in the context of a Pucci-Serrin formula
in [18].

Theorem 3.2 (Pohozaev-type inequality). Let u be a weak solution of (1.2) be-
longing to P. Then u satisfies

−
∫

Ω

N

q(x)
|u|q(x) dx+

∫
Ω

N − p(x)
p(x)

|∇u|p(x) dx

+
∫

Ω

x · ∇p(x)
|∇u|p(x)

p(x)2
log
(
e−1|∇u|p(x)

)
dx

−
∫

Ω

x · ∇q(x)
|u|q(x)

q(x)2
log
(
e−1|u|q(x)

)
dx+R ≤ 0,

(3.37)

where

R =
p† − 1
p+

lim sup
n→∞

lim sup
ε→0

∫
∂Ω

(
|∇wεn|2 + ε

)p(x)/2
(x · ν(x)) dS,

p† = minx∈Ω{2, p(x)}, and wεn is the solution of (3.7) uniquely determined by u.

Proof. Denote by Fs(x, u, s) = (∂s1F , . . . , ∂sN
F), where F is defined in (3.36).

Then
∂siF(x, u, s) = (|s|2 + ε)p(x)/2−1si for i = 1, 2, . . . , N. (3.38)

Hence, we denote

∂si
F(x, u,∇u) = (|∇u|2 + ε)p(x)/2−1∂iu for i = 1, 2, . . . , N, (3.39)

and
Fs(x, u,∇u) = (|∇u|2 + ε)(p(x)−2)/2∇u.
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It follows from (3.38) and (3.39) that

div F(x, u,∇u) = −Aεu.

Finally, we denote by

∇F(x, u,∇u) = (∂x1F , . . . , ∂xN
F) = (∂1F , . . . , ∂NF)

with

∂iF = ∂i

( |u(x)|q(x)

q(x)
+

(|s|2 + ε)p(x)/2

p(x)
− vεn(x)u(x)

)
=
|u|q(x)

(q(x))2

(
log |u|q(x) − 1

)
∂iq(x) + |u|q(x)−2u∂iu

+
(|∇u|2 + ε)p(x)/2

2(p(x))2

(
log(|∇u|2 + ε)p(x) − 1

)
∂ip(x)

+ (|∇u|2 + ε)p(x)/2−1∂i(|∇u|2)−
[
(∂ivεn)u+ vεn∂iu

]
for i = 1, . . . , N.

We shall use the Pucci-Serrin formula [18, Proposition 1, p. 683] in the form∫
∂Ω

[
F(x, 0,∇u)−∇u · Fs(x, 0,∇u)

]
(h · ν) dS

=
∫

Ω

[
F(x, u,∇u) div h+ h · ∇F(x, u,∇u)− (h · ∇u) divFs(x, u,∇u)

−Fs(x, u,∇u) · ∇(h · ∇u)− audivFs(x, u,∇u)

−∇(au) · Fs(x, u,∇u)
]
dx,

(3.40)

where a and h are respectively scalar and vector-valued functions of class C1(Ω).
Taking a constant, h = x = (x1, . . . , xn), and u = wεn, equation (3.40) becomes∫

∂Ω

(|∇wεn|2 + ε)p(x)/2

p(x)
(x · ν) dS

−
∫
∂Ω

(|∇wεn|2 + ε)p(x)/2−1|∇wεn|2(x · ν) dS

=
∫

Ω

N
( |wεn|q(x)

q(x)
+

(|∇wεn|2 + ε)p(x)/2

p(x)
− vεnwεn

)
dx

+
∫

Ω

(x · ∇q(x))
|wεn|q(x)

(q(x))2

(
log |wεn|q(x) − 1

)
dx

+
∫

Ω

(x · ∇p(x))
(|∇wεn|2 + ε)p(x)/2

(p(x))2

(
log(|∇wεn|2 + ε)p(x)/2 − 1

)
dx

−
∫

Ω

wεn(x · ∇vεn) dx−
∫

Ω

(|∇wεn|2 + ε)(p(x)−2)/2|∇wεn|2 dx

+
∫

Ω

awεnAεw
ε
n dx−

∫
Ω

(∇(awεn) · ∇wεn)(|∇wεn|2 + ε)(p(x)−2)/2 dx.

(3.41)
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For the surface integrals in (3.41), by adding and subtracting ε
∫
∂Ω

(|∇wεn|2 +
ε)p(x)/2−1(x · ν) dS we have∫

∂Ω

(|∇wεn|2 + ε)p(x)/2

p(x)
(x · ν) dS −

∫
∂Ω

(|∇wεn|2 + ε)p(x)/2−1|∇wεn|2(x · ν) dS

=
∫
∂Ω

( 1
p(x)

− 1
)(
|∇wεn|2 + ε

)p(x)/2(x · ν) dS

+ ε

∫
∂Ω

(|∇wεn|2 + ε)p(x)/2−1(x · ν) dS.

(3.42)
On the other hand, since (x · ν(x)) > 0 for all x ∈ ∂Ω, it follows that

ε

∫
∂Ω

(|∇wεn|2 + ε)p(x)/2−1(x · ν) dS

6


∫
∂Ω
εp(x)/2(x · ν(x)) dS, if 1 < p(x) 6 2,∫

∂Ω
p(x)−2
p(x) (|∇wεn|2 + ε)p(x)/2(x · ν) dS

+
∫
∂Ω

2
p(x)ε

p(x)/2(x · ν(x)) dS, if 2 < p(x).

(3.43)

Next, we analyze the behavior of each term in (3.41) as ε → 0. We begin the
analysis with the last term in the right hand side of the equation and we end with
the first term:

−
∫

Ω

(∇(awεn) · ∇wεn)(|∇wεn|2 + ε)(p(x)−2)/2 dx→ −a
∫

Ω

|∇wn|p(x) dx (3.44)

by (3.25).∫
Ω

awεnAεw
ε
n dx→ a

(∫
Ω

2|un|q(x)−2unwn dx−
∫

Ω

|wn|q(x) dx
)

(3.45)

by (3.7) and (3.21).

−
∫

Ω

(|∇wεn|2 + ε)(p(x)−2)/2|∇wεn|2 dx→ −
∫

Ω

|∇wn|p(x) dx (3.46)

by (3.25).
For the term −

∫
Ω
wεn(x · ∇vεn) dx, since ∇(wεnv

ε
n) = vεn∇wεn + wεn∇vεn, we have

−
∫

Ω

wεn(x · ∇vεn) dx = −
∫

Ω

x · ∇(wεnv
ε
n) dx+

∫
Ω

vεnx · ∇wεn dx. (3.47)

Note that ∫
Ω

vεnx · ∇wεn dx→ 2
∫

Ω

|un|q(x)−2unx · ∇wn dx

as ε→ 0, by a similar proof as in (3.21).
On the other hand, calculating the first term in the right-hand side of (3.47), we

obtain

−
∫

Ω

x · ∇(wεnv
ε
n) dx =

∫
Ω

vεnw
ε
n div x dx−

∫
∂Ω

vεnw
ε
n(x · ν) dS

= N

∫
Ω

vεnw
ε
n dx.

(3.48)
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We claim that

I1 :=
∫

Ω

(x · ∇q(x))
|wεn|q(x)

(q(x))2

(
log |wεn|q(x) − 1

)
dx

→
∫

Ω

(x · ∇q(x))
|wn|q(x)

(q(x))2

(
log |wn|q(x) − 1

)
dx

(3.49)

and

I2 :=
∫

Ω

(x · ∇p(x))
(|∇wεn|2 + ε)p(x)/2

(p(x))2

(
log(|∇wεn|2 + ε)p(x)/2 − 1

)
dx

→
∫

Ω

(x · ∇p(x))
|∇wn|p(x)

(p(x))2

(
log |∇wn|p(x) − 1

)
dx.

(3.50)

To prove (3.49) and (3.50), we estimate I1 by distinguishing the two cases |wεn| ≤ 1
and |wεn| > 1. Notice that the relations

sup
0≤t≤1

tη| log t| <∞, (3.51)

sup
t>1

t−η log t <∞ (3.52)

hold for η > 0.
Set Ω1 := {x ∈ Ω : |wεn(x)| ≤ 1} and Ω2 := {x ∈ Ω : |wεn(x)| > 1}. We can

choose k ∈ N such that p(x) − 1/k ≥ p−. Since wεn ∈ Lp
−

(Ω) and |wεn(x)| ≤ 1, in
Ω1, we have∣∣(x · ∇q(x))

|wεn|q(x)

(q(x))2
log |wεn|q(x)

∣∣ ≤ C|wεn(x)|p(x)−1/m ≤ C|wεn(x)|p
−
, (3.53)

for m > k. For x ∈ Ω2, we can choose k′ such that p(x) + 1/k′ ≤ (p(x))∗ =
Np(x)/(N − p(x)). So∣∣(x · ∇q(x))

|wεn|q(x)

(q(x))2
log |wεn|q(x)

∣∣ ≤ C|wεn(x)|p(x)+1/m ≤ C|wεn(x)|(p(x))∗ , (3.54)

for m > k′, and x ∈ Ω2. Therefore (3.53), (3.54), and the convergence of wεn in
Lemma 3.1 imply that there exists h(x) ∈ L1(Ω) such that∣∣(x · ∇q(x))

|wεn|q(x)

(q(x))2
log |wεn|q(x)

∣∣ ≤ h(x). (3.55)

On the other hand, given the convergence Lemma 3.1, assertion (3.9) and the
continuity of the log function, we conclude that

(x · ∇q(x))
|wεn|q(x)

(q(x))2
log |wεn|q(x) → (x · ∇q(x))

|wn|q(x)

(q(x))2
log |wn|q(x) (3.56)

a.e. in Ω as ε → 0. With (3.55), (3.56), and the Lebesgue Convergence Theorem
the claims (3.49) and loggrad follow.

Finally,∫
Ω

N
( |wεn|q(x)

q(x)
+

(|∇wεn|2 + ε)p(x)/2

p(x)

)
dx→

∫
Ω

N
( |wn|q(x)

q(x)
+
|∇wn|p(x)

p(x)

)
dx (3.57)

as ε→ 0 by (3.25) and (3.9).
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Considering items (3.44)–(3.57), identities (3.41), (3.42), and inequality (3.43),
we obtain

N

∫
Ω

|wn|q(x)

q(x)
dx+

∫
Ω

N − p(x)
p(x)

|∇wn|p(x) dx

+
∫

Ω

x · ∇p(x)
|∇wn|p(x)

p(x)2

(
log |∇wn|p(x) − 1

)
dx

+
∫

Ω

x · ∇q(x)
|wn|q(x)

q(x)2

(
log |wn|q(x) − 1

)
dx+ 2

∫
Ω

|un|q(x)−2unx · ∇wn dx

+ a
(∫

Ω

2|un|q(x)−2unwn dx−
∫

Ω

|wn|q(x) dx−
∫

Ω

|∇wn|p(x) dx
)

+Rn

≤ 0,

(3.58)

where

Rn =
p† − 1
p+

lim sup
ε→0

∫
∂Ω

(
|∇wεn|2 + ε

)p(x)/2(x · ν(x)) dS,

and p† = minx∈Ω{2, p(x)}.
Next let n→∞ in (3.58) and take into account (3.10), and (3.11) to obtain

N

∫
Ω

|u|q(x)

q(x)
dx

+
∫

Ω

N − p(x)
p(x)

|∇u|p(x) dx+
∫

Ω

x · ∇p(x)
|∇u|p(x)

p(x)2

(
log |∇u|p(x) − 1

)
dx

+
∫

Ω

x · ∇q(x)
|u|q(x)

q(x)2

(
log |u|q(x) − 1

)
dx+ 2

∫
Ω

|u|q(x)−2u(x · ∇u) dx

+ a
(∫

Ω

|u|q(x) dx−
∫

Ω

|∇u|p(x) dx
)

+R ≤ 0,

(3.59)

where

R =
p† − 1
p+

lim sup
n→∞

lim sup
ε→0

∫
∂Ω

(
|∇wεn|2 + ε

)p(x)/2
(x · ν(x)) dS.

Further, notice that since u is a weak solution of (1.2),∫
Ω

|u|q(x) dx−
∫

Ω

|∇u|p(x) dx = 0. (3.60)

In fact, multiplying (1.2) by ϕ ∈W 1,p(·)
0 (Ω), and integrating by parts, we have∫

Ω

|∇u|p(x)−2∇u dx =
∫

Ω

|u|q(x)−2uϕdx.

Taking ϕ = u we obtain (3.60), as wanted. On the other hand,∫
Ω

x · ∇|u|q(x)

q(x)
dx =

∫
Ω

|u|q(x)−2u(x · ∇u) dx

+
∫

Ω

1
q(x)2

|u|q(x) log |u|q(x)(x · ∇q(x)) dx,
(3.61)
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so that∫
Ω

x · ∇|u|q(x)

q(x)
dx = −

∫
Ω

div
( x

q(x)
)
|u|q(x) dx+

∫
∂Ω

|u|q(x) ∂

∂ν

( x

q(x)
)
dS

−N
∫

Ω

|u|q(x)

q(x)
dx+

∫
Ω

|u|q(x)x · ∇q(x)
q(x)2

dx.

(3.62)

Hence, from (3.61), and (3.62), we obtain∫
Ω

|u|q(x)−2u(x · ∇u) dx

= −N
∫

Ω

|u|q(x)

q(x)
dx+

∫
Ω

|u|q(x)x · ∇q(x)
q(x)2

(
1− log |u|q(x)

)
dx

(3.63)

We obtain (3.37) by substituting (3.60) and (3.63) in (3.59). �

4. Nonexistence of nontrivial solutions

Now we can state a nonexistence theorem which is a generalization to the case
of Sobolev Spaces with variable exponents of [16, Theorem III, p. 142]. The proofs
are similar to those in [16], but are included here for the reader’s convenience.

Theorem 4.1. Consider Problem (1.2), where Ω ⊂ RN is a bounded domain of
class C1, p(·) is a log-Hölder exponent with 1 < p− 6 p(x) 6 p+ < N . Let P be as
defined in (3.1). Then we have:

(i) If Ω is star-shaped and q− > (p+)∗ then Problem (1.2) has no nontrivial
weak solution belonging to P ∩ E where

E =
{
u :
∫

Ω

log
( (|∇u|p(x)e−1)

x·∇p

p2 |∇u|
p(x)

(|u|q(x)e−1)
x·∇q

q2 |u|q(x)

)
dx > 0

}
.

(ii) If Ω is strictly star-shaped and q− = (p+)∗ then Problem (1.2) has no
nontrivial weak solution of definite sign belonging to P ∩ E.

Proof. (i) If Ω is star-shaped, then R > 0 in (3.37). Then it follows that(N − p+

p+
− N

q−

)∫
Ω

|u|q(x) dx 6 0.

So u ≡ 0.
(ii) If Ω is strictly star-shaped, then R = 0 in (3.37). It follows that

0 = R > ρ lim sup
n→∞

lim sup
ε→0

∫
∂Ω

(
|∇wεn|2 + ε

)p(x)/2
dS.

Since ρ > 0 we have

0 = lim sup
n→∞

lim sup
ε→0

∫
∂Ω

(
|∇wεn|2 + ε

)p(x)/2
dS.

Multiplying (3.7) by v(x) ≡ 1, integrating by parts, and taking lim sup as ε → 0
and n→∞ we obtain∣∣ ∫

Ω

|u|q(x)−2u dx
∣∣ 6 C lim sup

n→∞
lim sup
ε→0

∫
∂Ω

(
|∇wεn|2 + ε

)p(x)/2
dS = 0, C > 0.

Therefore,
∫

Ω
|u|q(x)−2u dx = 0. �
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