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LYAPUNOV FUNCTIONS FOR GENERAL NONUNIFORM
TRICHOTOMY WITH DIFFERENT GROWTH RATES

YONGXIN JIANG, FANG-FANG LIAO

Abstract. In this article, we consider non-autonomous linear equations x′ =

A(t)x that may exhibit stable, unstable and central behaviors in different direc-
tions. We give a complete characterization of nonuniform (µ, ν) trichotomies

in terms of strict Lyapunov functions. In particular, we obtain an inverse theo-
rem giving explicitly Lyapunov functions for each given trichotomy. The main

novelty of our work is that we consider a very general type of nonuniform ex-

ponential trichotomy, which admits different growth rates in the uniform and
nonuniform parts.

1. Introduction

We consider the non-autonomous linear equation

x′ = A(t)x (1.1)

where A : R+
0 → B(X) is a continuous function with values in the space of bounded

linear operators in a Banach space X. Our main aim is to characterize the existence
of nonuniform (µ, ν) trichotomies behavior for the solutions of equation (1.1) in
terms of strict Lyapunov functions.

We consider a very general type of nonuniform trichotomies, which generalizes
the classical notion of exponential trichotomies in various ways: besides introduc-
ing a nonuniform term, we consider arbitrary rates that in particular may not be
exponential, as well as different growth rates in the uniform and nonuniform parts.
This includes for example the classical notion of uniform exponential trichotomies,
as well as the notions of nonuniform exponential trichotomies and ρ-nonuniform
exponential trichotomy.

Exponential trichotomy is the most complex asymptotic property of dynamical
systems arising from the central manifold theory. The conception of trichotomy
was first introduced by Sacker and Sell [22]. They described SS-trichotomy for
linear differential systems by linear skew-product flows. Later, Elaydi and Hájek
[11, 12] gave the notions of exponential trichotomy for differential systems and
for nonlinear differential systems, respectively. These notions are stronger notions
than SS-trichotomy. Recently, Barreira and Valls [6] considered a general concept

2000 Mathematics Subject Classification. 34A30, 37B25.
Key words and phrases. Lyapunov functions; autonomous systems; nonuniform trichotomies;

hyperbolicity.
c©2014 Texas State University - San Marcos.

Submitted April 12, 2014. Published November 20, 2014.

1



2 Y. JIANG, F.-F. LIAO EJDE-2014/244

of nonuniform exponential trichotomy, from which can see exponential trichotomy
as a special case of the nonuniform exponential trichotomy. Jiang [17] consider
a general case of nonuniform (µ, ν) trichotomy for an arbitrary non-autonomous
linear dynamics, and establish the robustness of the nonuniform (µ, ν) trichotomy in
Banach spaces, based on [1] for nonuniform (µ, ν) dichotomy. In [10], they proposed
a ρ-nonuniform exponential trichotomy and considered the Lyapunov functions for
the trichotomy.

The importance of Lyapunov functions is well-established, particularly in the
study of the stability of trajectories both under linear and nonlinear perturba-
tions. This study dates back to the seminal work of Lyapunov in his 1892 thesis
[19]. Among the first accounts of the theory we have the works by LaSalle and
Lefschetz [20], Hahn [16], and Bhatia and Szegö [14]. According to [15], the con-
nection between Lyapunov functions and uniform exponential dichotomies was first
considered by Mažel’ in [21]. For recent works, we refer the reader to [1], [3]-[5],
[13], for nonuniform dichotomies [2], [7]-[10], [18], for the corresponding characteri-
zation of nonuniform exponential contractions, dichotomies and trichotomies using
Lyapunov functions. From there, we follow some of the ideas in the proofs of this
articles. We give a complete characterization of nonuniform (µ, ν) trichotomies in
terms of strict Lyapunov functions. In particular, we obtain an inverse theorem
giving explicitly Lyapunov functions for each given trichotomy.

The remaining part of this paper is organized as follows. In Section 2, we intro-
duce some basic definitions. In Section 3, we establish a criterion for the existence
of partially hyperbolic behavior in terms of pairs of strict Lyapunov functions. A
characterization of nonuniform (µ, ν) trichotomies in terms of quadratic Lyapunov
functions is presented in Section 4.

2. Preliminaries

Let X be a Banach space and denote by B(X) the space of bounded linear
operators acting on X. Given a continuous function A : R+

0 → B(X), we assume
that each solution of (1.1) is global and denote the evolution operator associated
with (1.1) by T (t, s), i.e., the linear operator such that

T (t, s)x(s) = x(t), t, s > 0,

where x(t) is any solution of (1.1). Clearly, T (t, t) = Id and

T (t, τ)T (τ, s) = T (t, s), t, τ, s > 0.

First we introduce the notion of nonuniform (µ, ν) trichotomy. We say that an
increasing function µ : R+

0 → [1,+∞) is a growth rate if

µ(0) = 1 and lim
t→+∞

µ(t) = +∞.

Definition 2.1. Given growth rates µ and ν, we say that (1.1) admits a nonuniform
(µ, ν) trichotomy in I if there exist projections P (t), Q(t), R(t) for each t ∈ I such
that

T (t, τ)P (τ) = P (t)T (t, τ), T (t, τ)Q(τ) = Q(t)T (t, τ), T (t, τ)R(τ) = R(t)T (t, τ)
(2.1)

and
P (t) +Q(t) +R(t) = Id (2.2)
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for every t, τ ∈ I, and there exist constants

0 ≤ η < α, 0 ≤ ξ < β, ε ≥ 0, D ≥ 1 (2.3)

such that for every t, τ ∈ I with t ≥ τ , we have

‖T (t, τ)P (τ)‖ ≤ D
( µ(t)
µ(τ)

)−α
νε(τ),

‖T (t, τ)R(τ)‖ ≤ D
( µ(t)
µ(τ)

)ξ
νε(τ),

(2.4)

and

‖T (t, τ)−1Q(t)‖ ≤ D
( µ(t)
µ(τ)

)−β
νε(t),

‖T (t, τ)−1R(t)‖ ≤ D
( µ(t)
µ(τ)

)η
νε(t).

(2.5)

When ε = 0, we say that (1.1) admits a uniform (µ, ν) trichotomy.

Setting t = τ in (2.4) and (2.5) we obtain

P (t) ≤ Dνε(t), Q(t) ≤ Dνε(t), R(t) ≤ Dνε(t), (2.6)

for every t ∈ I. We refer the reader to [17] for an example with a nonuniform (µ, ν)
trichotomy which can not be uniform.

Now, we introduce the notion of Lyapunov function. Let A : R+
0 → Mp be

a continuous function, where Mp is the set of p × p matrices. Given a function
V : Rp → R, we consider the cones

Cu(V ) = {0} ∪ V −1(0,+∞), Cs(V ) = {0} ∪ V −1(−∞, 0).

Definition 2.2. We say that a continuous function V : R+
0 ×Rp → R is a Lyapunov

function for (1.1) if there exist integers ru, rs ∈ N ∪ {0} with ru + rs = p such that
the following properties hold:

(1) ru and rs are respectively the maximal dimensions of the linear subspaces
inside the cones Cu(Vt) and Cs(Vt), for every t ∈ R+

0 ;
(2) for every x ∈ Rp and t ≥ τ we have

T (t, τ)Cu(Vτ ) ⊂ Cu(Vt), T (τ, t)Cs(Vt) ⊂ Cs(Vτ ),

where Vt = V (t, ·)

In view of the compactness of the closed unit ball in Rp, if (Vt)t∈R is a Lyapunov
function for (1.1), then for each τ ∈ R+

0 the sets

Hu
τ = ∩r∈R+

0
T (τ, r)Cu(Vr) ⊂ Cu(Vτ ), (2.7)

Hs
τ = ∩r∈R+

0
T (τ, r)Cs(Vr) ⊂ Cs(Vτ ) (2.8)

contain subspaces respectively of dimensions ru and rs. We note that for every
t, τ ∈ R+

0 ,
T (t, τ)Hu

τ = Hu
t and T (t, τ)Hs

τ = Hs
t (2.9)

Next, we introduce the notion of strict Lyapunov functions. Given growth rates µ
and ν, we denote by V the Lyapunov function.
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Definition 2.3. Given λ > σ > 0 and γ ≥ 0, we say that V is a (λ, σ)-strict
Lyapunov function if there exist C > 0 and δ ≥ 0 such that

|V (t, x)| ≤ Cνδ(t)‖x‖ (2.10)

for each t ∈ R+
0 and x ∈ Rp, the following properties hold:

(1) if x ∈ Hu
τ then

V (t, T (t, τ)x) ≥
( µ(t)
µ(τ)

)log(λ+σ)

V (τ, x), t ≥ τ ; (2.11)

(2) if x ∈ Hs
τ then

|V (t, T (t, τ)x)| ≤
( µ(t)
µ(τ)

)log(λ−σ)

V (τ, x), t ≥ τ ; (2.12)

(3) if x ∈ Hu
τ ∪Hs

τ then

|V (τ, x)| ≥ ν−γ(τ)‖x‖/C. (2.13)

3. Criterion for nonuniform hyperbolic behavior

For each τ ∈ R+
0 , we set

χ+
τ (x) = lim sup

t→+∞

log ‖T (t, τ)x‖
logµ(t)

. (3.1)

Lemma 3.1. Let µ ≥ ν be growth rates with µ(t)/µ(τ) > ν(t)/ν(τ) for every t ≥ τ .
If there exist a (λ, σ)-strict Lyapunov function V for (1.1) with

(λ+ σ)/(λ− σ) > eδ+γ , (3.2)

then for each t, τ ∈ R+
0 :

(1) the sets Hu
τ and Hs

τ in (2.7) and (2.8) are linear subspaces respectively of
dimensions ru and rs, with

Rp = Hu
τ ⊕Hs

τ , (3.3)

T (t, τ)Hs
τ = Hs

t , T (t, τ)Hu
τ = Hu

t ; (3.4)

(2)

χ+
τ (x) ≥ log(λ+ σ)− δ for x ∈ Hu

τ , (3.5)

χ+
τ (x) ≤ log(λ− σ) + γ for x ∈ Hs

τ ; (3.6)

(3) for each t ≥ τ we have

‖T (t, τ)−1|Hu
t ‖ ≤ C2

( µ(t)
µ(τ)

)− log(λ+σ)

νδ+γ(t), (3.7)

‖T (t, τ)|Hs
τ‖ ≤ C2

( µ(t)
µ(τ)

)log(λ−σ)+γ

νδ+γ(τ). (3.8)

Proof. It follows from (2.13) that (2.7) and (2.8) can be replaced by

Hu
τ ⊂ Cu(Vτ ) and Hs

τ ⊂ Cs(Vτ ). (3.9)

Indeed, if x ∈ Hu
τ \{0}, then by (2.13) we have V (τ, x) > 0. This establishes the

first inclusion in (3.9). A similar argument establishes the second one. By (3.9), the
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function V (τ, ·) is positive in Hu
τ \{0} and negative in Hs

τ\{0}. For each x ∈ Hs
τ , it

follows from (2.12) and (2.13) that for every t ≥ τ we have

‖T (t, τ)x‖ ≤ Cνγ(t)|V (t, T (t, τ)x)|

≤ C
( µ(t)
µ(τ)

)log(λ−σ)

νγ(t)|V (τ, x)|

≤ C
( µ(t)
µ(τ)

)log(λ−σ)

µγ(t)|V (τ, x)|.

(3.10)

Thus, (3.6) holds.
For each x ∈ Hu

τ , it follows from (2.10) and (2.11) that for every t ≥ τ we have

‖T (t, τ)x‖ ≥
( µ(t)
µ(τ)

)log(λ+σ) ν−δ(t)
C
|V (t, T (t, τ)x)|

≥
( µ(t)
µ(τ)

)log(λ+σ)µ−δ(t)
C
|V (τ, x)|.

(3.11)

Thus, (3.5) holds. For each τ ∈ R+
0 , let Du

τ ⊂ Hu
τ be any ru-dimensional subspace,

and let Ds
τ ⊂ Hs

τ be any rs-dimensional subspace. By (3.9), we have Hu
τ ∩Hs

τ = {0},
and hence Du

τ ∩Ds
τ = {0}. So we have Rp = Hu

τ ⊕Hs
τ . We want to show that

Hs
τ = Ds

τ and Hu
τ = Du

τ .

If there exists x ∈ Hs
τ\Ds

τ , then we write x = y + z with y ∈ Ds
τ and z ∈ Du

τ \{0}.
By (3.2) we have

log(λ+ σ)− δ > log(λ− σ) + γ.

Hence, it follows from (3.5) and (3.6) that

χ+
τ (x) = max{χ+

τ (y), χ+
τ (z)} = χ+

τ (z) ≥ log(λ+ σ)− δ,

which contradicts to (3.6). This implies that Hs
τ = Ds

τ for each τ ∈ R+
0 . We can

show in a similar manner that Hu
τ = Du

τ for each τ ∈ R+
0 . By (2.10) and (3.10), for

every x ∈ Hs
τ and t ≥ τ we have

‖T (t, τ)x‖ ≤ C
( µ(t)
µ(τ)

)log(λ−σ)

νγ(t)|V (τ, x)|

≤ C
( µ(t)
µ(τ)

)log(λ−σ)( ν(t)
ν(τ)

)γ
νδ+γ(τ)‖x‖

≤ C
( µ(t)
µ(τ)

)log(λ−σ)+γ

νδ+γ(τ)‖x‖.

(3.12)

Moreover, by (2.13) and (3.11), for every x ∈ Hu
τ and t ≥ τ we have

‖T (t, τ)x‖ ≥
( µ(t)
µ(τ)

)log(λ+σ) ν−δ(t)
C
|V (τ, x)|

≥ ν−δ(t)
C

( µ(t)
µ(τ)

)log(λ+σ) ν−γ(τ)
C

‖x‖

≥ 1
C2

( µ(t)
µ(τ)

)log(λ+σ)( ν(t)
ν(τ)

)γ
ν−(δ+γ)(t)‖x‖

≥ 1
C2

( µ(t)
µ(τ)

)log(λ+σ)

ν−(δ+γ)(t)‖x‖.

(3.13)
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Hence, it gives

‖T (t, τ)−1x‖ ≤ C2
( µ(t)
µ(τ)

)− log(λ+σ)

νδ+γ(t)‖x‖ (3.14)

for every x ∈ Hu
τ and t ≥ τ . This completes the proof. �

Now we establish a criterion for the existence of partially hyperbolic behavior in
terms of pairs of strict Lyapunov functions. Without loss of generality we consider
the same constants δ and γ for the two functions in each pair.

Theorem 3.2. Let λ1 > λ2 > 0. If there exist a (λ1, σ1)-strict Lyapunov function
V and a (λ2, σ2)-strict Lyapunov function W for (1.1) with

(λi + σi)/(λi − σi) > eδ+γ , i = 1, 2; (3.15)

λ1 − λ2 ≥ |σ1 − σ2|, (3.16)

then for each t, τ ∈ R+
0 , the following statements hold.

(1) The sets

F sτ = Hs
τ (V ), Fuτ = Hu

τ (W ), F cτ = Hs
τ (W ) ∩Hu

τ (V ) (3.17)

are linear subspaces, with

Rp = Fuτ ⊕ F sτ ⊕ F cτ , (3.18)

T (t, τ)Fuτ = Fut , T (t, τ)F sτ = F st , T (t, τ)F cτ = F ct ; (3.19)

(2) for each t ≥ τ we have

‖T (t, τ)−1|Fut ‖ ≤ C2
( µ(t)
µ(τ)

)−(log(λ2+σ2)−γ)
νδ+γ(t),

‖T (t, τ)|F sτ ‖ ≤ C2
( µ(t)
µ(τ)

)(log(λ1−σ1)+γ)

νδ+γ(τ),
(3.20)

and

‖T (t, τ)|F cτ ‖ ≤ C2
( µ(t)
µ(τ)

)(log(λ2−σ2)+γ)

νδ+γ(τ),

‖T (t, τ)−1|F ct ‖ ≤ C2
( µ(t)
µ(τ)

)−(log(λ1+σ1)−γ)
νδ+γ(t).

(3.21)

Proof. According to Lemma 3.1, it is easy to prove Part 2. Using a similar argument
as in [10], it can be obtained for every τ ∈ R+

0 that

Hs
τ (V ) ⊂ Hs

τ (W ), Hu
τ (W ) ⊂ Hs

τ (V ),

Hs
τ (W ) ∩Hu

τ (V )⊕Hs
τ (V )⊕Hu

τ (W ) = Rp.

So Part 1 holds. This completes the proof. �

Now we consider the particular case of differentiable Lyapunov functions. Set

V̇ (t, x) =
d

dh
V (t+ h, T (t+ h, τ)x)|h=0

=
∂V

∂t
(t, x) +

∂V

∂x
(t, x)A(t)x.

Proposition 3.3. Let V and µ be C1 functions.
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(1) For each x ∈ Hu
τ , property (2.11) is equivalent to

V̇ (t, T (t, τ)x) ≥ V (t, T (t, τ)x)
µ′(t)
µ(t)

ln(λ+ σ), t > τ. (3.22)

(2) For each x ∈ Hs
τ , property (2.12) is equivalent to

V̇ (t, T (t, τ)x) ≥ V (t, T (t, τ)x)
µ′(t)
µ(t)

ln(λ− σ), t > τ. (3.23)

Proof. Let x ∈ Hu
τ , by (3.19) we have T (t, τ)x ∈ Hu

t for every t ∈ R+
0 . We assume

that (2.11) holds. If t > τ and h > 0 then

V (t+ h, T (t+ h, τ)x) ≥
(µ(t+ h)

µ(t)

)ln(λ+σ)

V (t, T (t, τ)x),

and

lim
h→0+

V (t+ h, T (t+ h, τ)x)− V (t, T (t, τ)x)
h

≥ V (t, T (t, τ)x) lim
h→0+

(
µ(t+h)
µ(t)

)ln(λ+σ)

− 1

h

= V (t, T (t, τ)x)
µ′(t)
µ(τ)

ln(λ+ σ).

Similarly, If h < 0 is such that t+ h > τ , then

V (t+ h, T (t+ h, τ)x) ≤
(µ(t+ h)

µ(t)

)ln(λ+σ)

V (t, T (t, τ)x),

and

lim
h→0−

V (t+ h, T (t+ h, τ)x)− V (t, T (t, τ)x)
h

≥ V (t, T (t, τ)x) lim
h→0−

(
µ(t+h)
µ(t)

)ln(λ+σ)

− 1

h

= V (t, T (t, τ)x)
µ′(t)
µ(τ)

ln(λ+ σ).

This establishes (3.22). Now we assume that (3.22) holds. Given x ∈ Hu
τ \{0}, it

follows from (2.13) that V (τ, x) > 0, and thus, by (2.9), V (t, T (t, τ)x) > 0 for every
t ∈ R+

0 . Thus, we can rewrite (3.22) in the form

V̇ (t, T (t, τ)x)
V (t, T (t, τ)x

≥ µ′(t)
µ(t)

ln(λ+ σ),

which implies that

ln
V (t, T (t, τ)x)

V (τ, x)
=
∫ t

τ

V̇ (s, T (s, τ)x)ds
V (s, T (s, τ)x)

≥ ln(λ+ σ) ln
µ(t)
µ(τ)

.

Hence, (2.11) holds. Part 2 is true. �
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4. Quadratic Lyapunov functions

In this section, we give a complete characterization of nonuniform (µ, ν) tri-
chotomies by using quadratic Lyapunov functions. For each t ∈ R+

0 , let S(t) and
T (t) be symmetric invertible p× p matrices. We consider the functions

G(t, x) = 〈S(t)x, x〉, V (t, x) = − signG(t, x)
√
|G(t, x)|, (4.1)

H(t, x) = 〈T (t)x, x〉, W (t, x) = − signH(t, x)
√
|H(t, x)|. (4.2)

Any Lyapunov functions V and W as in (4.1) and (4.2) are called quadratic Lya-
punov functions. Notice that when t 7→ S(t) is differentiable we have

V̇ (t, x) =
∂V

∂t
(t, x) +

∂V

∂x
(t, x)A(t)x

= 〈S′(t)x, x〉+ 2〈S(t)x,A(t)x〉

with similar identities for Ẇ . We present in two theorems a characterization of
nonuniform (µ, ν) trichotomies in terms of quadratic Lyapunov functions.

Theorem 4.1. Assume that (1.1) admits a nonuniform (µ, ν) trichotomy. Then
there exist symmetric invertible p× p matrices S(t) and T (t) for t ∈ R+

0 such that:

(1) t 7→ S(t) and t 7→ T (t) are of class C1, and

lim sup
t→±∞

log ‖S(t)‖
log ν(t)

<∞, (4.3)

lim sup
t→±∞

log ‖T (t)‖
log ν(t)

<∞; (4.4)

(2) there exist K1 > K2 > 0 and L1 > L2 > 0 such that for every t ∈ R+
0 and

x ∈ Rp we have

Ġ(t, x) ≤

−K1
µ′(t)
µ(t) G(t, x)− 1

2
µ′(t)
µ(t) ‖x‖

2 if G(t, x) ≥ 0,

−K2
µ′(t)
µ(τ)G(t, x)− 1

2
µ′(t)
µ(τ) ‖x‖

2 if G(t, x) ≤ 0,
(4.5)

Ḣ(t, x) ≤

L2
µ′(t)
µ(t) H(t, x)− 1

2
µ′(t)
µ(t) ‖x‖

2 if H(t, x) ≥ 0,

L1
µ′(t)
µ(τ)H(t, x)− 1

2
µ′(t)
µ(τ) ‖x‖

2 if H(t, x) ≤ 0.
(4.6)

Proof. Take %1 ∈ (0, (α− η)/2). Let Γ1(t) = Q(t)⊕R(t). Consider the matrices

S(t) =
∫ ∞
t

T (τ, t)∗P (τ)∗P (τ)T (τ, t)
(µ(τ)
µ(t)

)2(α−%1)µ′(τ)
µ(τ)

dτ

−
∫ t

−∞
T (τ, t)∗Γ1(τ)∗Γ1(τ)T (τ, t)

( µ(t)
µ(τ)

)−2(η+%1)µ′(τ)
µ(τ)

dτ.

(4.7)

Similarly, Take %2 ∈ (0, (β − ξ)/2), and let Γ2(t) = P (t)⊕ R(t). Consider also the
matrices

T (t) =
∫ ∞
t

T (τ, t)∗Γ2(τ)∗Γ2(τ)T (τ, t)
(µ(τ)
µ(t)

)−2(ξ+%2)µ′(τ)
µ(τ)

dτ

−
∫ t

−∞
T (τ, t)∗Q(τ)∗Q(τ)T (τ, t)

( µ(t)
µ(τ)

)2(β−%2)µ′(τ)
µ(τ)

dτ.

(4.8)
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The matrices S(t) and T (t) are symmetric and invertible for each t ∈ R+
0 . We

define the functions G and H by (4.1) and (4.2). By (2.4) and (2.5), since µ is an
increasing function we have

|G(t, x)| ≤
∫ ∞
t

‖T (τ, t)P (t)x‖2
(µ(τ)
µ(t)

)2(α−%1)µ′(τ)
µ(τ)

dτ

+
∫ t

−∞
‖T (τ, t)Γ1(t)x‖2

( µ(t)
µ(τ)

)−2(η+%1)µ′(τ)
µ(τ)

dτ

≤ D2‖x‖2ν2ε(t)
∫ ∞
t

(µ(τ)
µ(t)

)−2%1 µ′(τ)
µ(τ)

dτ

+ 4D2‖x‖2ν2ε(t)
∫ t

−∞

( µ(t)
µ(τ)

)−2%1 µ′(τ)
µ(τ)

dτ

=
D2

2%1
‖x‖2ν2ε(t) +

4D2

2%1
‖x‖2ν2ε(t)

(
1− lim

τ 7→−∞

( µ(t)
µ(τ)

)−2%1)
≤ 5D2

2%1
‖x‖2ν2ε(t).

Since
∂

∂t
T (τ, t) = −T (τ, t)A(t) and

∂

∂t
T (τ, t)∗ = −A(t)∗T (τ, t)∗,

one can easily verify that S(t) and T (t) are of class C1 in t. Moreover, since S(t)
is symmetric we obtain

‖S(t)‖ = sup
x6=0

|G(t, x)|
‖x‖

≤ 5D2

2%1
ν2ε(t) (4.9)

and (4.3) holds. Similar arguments apply to T (t) to obtain (4.4). Furthermore,
taking derivatives in (4.7) we obtain

S′(t) = −P (t)∗P (t)
µ′(t)
µ(t)

−
∫ ∞
t

A(t)∗T (τ, t)∗P (τ)∗P (τ)T (τ, t)
(µ(τ)
µ(t)

)2(α−%1)µ′(τ)
µ(τ)

dτ

−
∫ ∞
t

T (τ, t)∗P (τ)∗P (τ)T (τ, t)A(t)
(µ(τ)
µ(t)

)2(α−%1)µ′(τ)
µ(τ)

dτ

− 2(α− %1)
µ′(t)
µ(t)

∫ ∞
t

T (τ, t)∗P (τ)∗P (τ)T (τ, t)
(µ(τ)
µ(t)

)2(α−%1)µ′(τ)
µ(τ)

dτ

− Γ1(t)∗Γ1(t)
µ′(t)
µ(t)

+
∫ t

−∞
A(t)∗T (τ, t)∗Γ1(τ)∗Γ1(τ)T (τ, t)

( µ(t)
µ(τ)

)−2(η+%1)µ′(τ)
µ(τ)

dτ.

+
∫ t

−∞
T (τ, t)∗Γ1(τ)∗Γ1(τ)T (τ, t)A(t)

( µ(t)
µ(τ)

)−2(η+%1)µ′(τ)
µ(τ)

dτ.

+ 2(η + %1)
µ′(t)
µ(t)

∫ t

−∞
T (τ, t)∗Γ1(τ)∗Γ1(τ)T (τ, t)

( µ(t)
µ(τ)

)−2(η+%1)µ′(τ)
µ(τ)

dτ

= −[P (t)∗P (t) + Γ1(t)∗Γ1(t)]
µ′(t)
µ(t)

−A(t)∗S(t)− S(t)A(t)
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− 2(α− %1)
µ′(t)
µ(t)

∫ ∞
t

T (τ, t)∗P (τ)∗P (τ)T (τ, t)
(µ(τ)
µ(t)

)2(α−%1)µ′(τ)
µ(τ)

dτ

+ 2(η + %1)
µ′(t)
µ(t)

∫ t

−∞
T (τ, t)∗Γ1(τ)∗Γ1(τ)T (τ, t)

( µ(t)
µ(τ)

)−2(η+%1)µ′(τ)
µ(τ)

dτ.

Thus, we have

S′(t) +A(t)∗S(t) + S(t)A(t) + [P (t)∗P (t) + Γ1(t)∗Γ1(t)]
µ′(t)
µ(t)

= −2(α− %1)
µ′(t)
µ(t)

∫ ∞
t

T (τ, t)∗P (τ)∗P (τ)T (τ, t)
(µ(τ)
µ(t)

)2(α−%1)µ′(τ)
µ(τ)

dτ

+ 2(η + %1)
µ′(t)
µ(t)

∫ t

−∞
T (τ, t)∗Γ1(τ)∗Γ1(τ)T (τ, t)

( µ(t)
µ(τ)

)−2(η+%1)µ′(τ)
µ(τ)

dτ

= −2(α− %1)
µ′(t)
µ(t)

∫ ∞
t

(T (τ, t)P (t))∗T (τ, t)P (t)
(µ(τ)
µ(t)

)2(α−%1)µ′(τ)
µ(τ)

dτ

+ 2(η + %1)
µ′(t)
µ(t)

∫ t

−∞
(T (τ, t)Γ1(t))∗T (τ, t)Γ1(t)

( µ(t)
µ(τ)

)−2(η+%1)µ′(τ)
µ(τ)

dτ.

(4.10)
Since

2〈(P (t)∗P (t) + Γ1(t)∗Γ1(t))x, x〉 ≥ (‖P (t)x‖+ ‖Γ1(t)x‖)2

≥ ‖(P (t) + Γ1(t))x‖2 = ‖x‖,
(4.11)

we have
P (t)∗P (t) + Γ1(t)∗Γ1(t) ≥ 1

2
Id. (4.12)

Given two p × p matrices A and B, we say that A ≥ B if 〈Ax, x〉 ≥ 〈Bx, x〉 for
every x ∈ Rp. Furthermore, if x(t) is a solution of (1.1), then we obain

d

dt
G(t, x(t)) = 〈S′(t)x(t), x(t)〉+ 〈S(t)x′(t), x(t)〉+ 〈S(t)x(t), x′(t)〉

= 〈(S′(t) +A(t)∗S(t) + S(t)A(t))x(t), x(t)〉.
(4.13)

We note that

G(t, x(t)) =
∫ ∞
t

‖T (τ, t)P (t)‖2
(µ(τ)
µ(t)

)2(α−%1)µ′(τ)
µ(τ)

dτ

−
∫ t

−∞
‖T (τ, t)Γ1(t)‖2

( µ(t)
µ(τ)

)−2(η+%1)µ′(τ)
µ(τ)

dτ .

If G(t, x(t)) ≥ 0, then by (4.10), (4.12) and (4.13), since η + %1 < α − %1 and µ is
an increasing function, we obtain

d

dt
G(t, x(t)) ≤ −1

2
‖x(t)‖2µ

′(t)
µ(t)

− 2(α− %1)
µ′(t)
µ(t)

∫ ∞
t

‖T (τ, t)P (t)‖2
(µ(τ)
µ(t)

)2(α−%1)µ′(τ)
µ(τ)

dτ

+ 2(α− %1)
µ′(t)
µ(t)

∫ t

−∞
‖T (τ, t)Γ1(t)‖2

( µ(t)
µ(τ)

)−2(η+%1)µ′(τ)
µ(τ)

dτ

= −1
2
‖x(t)‖2µ

′(t)
µ(t)

− 2(α− %1)
µ′(t)
µ(t)

G(t, x(t)).
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Thus, we can take K1 = 2(α− %1) > 0. On the other hand, if G(t, x(t)) ≤ 0, then
by (4.10), (4.12) and (4.13) again, since η + %1 < α − %1 and µ is an increasing
function, we obtain
d

dt
G(t, x(t))

≤ −1
2
‖x(t)‖2µ

′(t)
µ(t)

− 2(η + %1)
µ′(t)
µ(t)

∫ ∞
t

‖T (τ, t)P (t)‖2
(µ(τ)
µ(t)

)2(α−%1)µ′(τ)
µ(τ)

dτ

+ 2(η + %1)
µ′(t)
µ(t)

∫ t

−∞
‖T (τ, t)Γ1(t)‖2

( µ(t)
µ(τ)

)−2(η+%1)µ′(τ)
µ(τ)

dτ

= −1
2
‖x(t)‖2µ

′(t)
µ(t)

− 2(η + %1)
µ′(t)
µ(t)

G(t, x(t)).

Take K2 = 2(η + %1) > 0. Furthermore, we have

K1 −K2 = 2(α− η − 2%1) > 0.

Proceeding in a similar manner with T (t) we deduce that

T ′(t) +A(t)∗T (t) + T (t)A(t) + [Γ2(t)∗Γ2(t) +Q(t)∗Q(t)]
µ′(t)
µ(t)

= 2(ξ + %2)
µ′(t)
µ(t)

∫ ∞
t

(T (τ, t)Γ2(t))∗T (τ, t)Γ2(t)
(µ(τ)
µ(t)

)−2(ξ+%2)µ′(τ)
µ(τ)

dτ

− 2(β − %2)
µ′(t)
µ(t)

∫ t

−∞
(T (τ, t)Q(t))∗T (τ, t)Q(t)

( µ(t)
µ(τ)

)2(β−%2)µ′(τ)
µ(τ)

dτ

Note that inequalities (4.6) hold with L1 = 2(β − %2) > 0 and L2 = 2(ξ + %2) > 0.
Moreover, by the choice of %2 we have

L1 − L2 = 2(β − ξ − 2%2) > 0.

This completes the proof. �

Theorem 4.2. Assume that there exist constants γ, a, κ > 0 such that

‖T (t, s)‖ ≤ κνa(t) whenever |t− s| ≤ γ. (4.14)

Also assume that µ, ν is of class C1, and that there exist symmetric invertible p×p
matrices S(t) and T (t) for t ∈ R+

0 , satisfying conditions 1 and 2 in Theorem 4.1
with K1 − K2 > 2a and L1 − L2 > 2a. Then (1.1) admits a nonuniform (µ, ν)
trichotomy with

α =
K1

2
− a, β =

L1

2
− a, ξ =

L2

2
+ a, η =

K2

2
+ a. (4.15)

Proof. We start with some auxiliary results. Set

Isτ = {0} ∪ {x ∈ Rp : G(t, T (t, τ)x) > 0 for every t ≥ τ},
Iuτ = {0} ∪ {x ∈ Rp : G(t, T (t, τ)x) < 0 for every t ≥ τ}.

Lemma 4.3. If x ∈ Isτ then

G(t, T (t, τ)x) ≤
( µ(t)
µ(τ)

)−K1

G(τ, x), t ≥ τ, (4.16)

and if x ∈ Iuτ then

|G(t, T (t, τ)x)| ≥
( µ(t)
µ(τ)

)−K2

|G(τ, x)|, t ≥ τ. (4.17)
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Proof. Given x ∈ Isτ\{0}, since G(t, T (t, τ)x) > 0 for every t ≥ τ , it follows from
(4.5) that

Ġ(t, T (t, τ)x)
G(t, T (t, τ)x)

≤ −K1
µ′(t)
µ(t)

, t > τ.

This implies that

ln
G(t, T (t, τ)x)

G(τ, x)
≤ −K1

∫ t

τ

µ′(s)
µ(s)

ds = −K1(lnµ(t)− lnµ(τ)).

Hence, (4.16) holds. Similarly, given x ∈ Iuτ \{0}, since G(t, T (t, τ)x) < 0 for every
t ≥ τ , it follows from (4.5) that

Ġ(t, T (t, τ)x)
G(t, T (t, τ)x)

≥ −K2
µ′(t)
µ(t)

, t > τ.

This implies that

ln
∣∣G(t, T (t, τ)x)

G(τ, x)

∣∣ ≥ −K2

∫ t

τ

µ′(s)
µ(s)

ds = −K2(lnµ(t)− lnµ(τ)).

Thus, (4.17) holds. �

Lemma 4.4. If x ∈ Iuτ ∪ Isτ then there holds

|G(τ, x)| ≥ 1
2κ2

max{γ, (1− e−K2γ)/K2}ν−2a(τ)‖x‖2.

Proof. Set x(t) = T (t, τ)x. It follows from (4.5) that if x ∈ Isτ , then it holds

d

dt
G(t, x(t)) ≤ −1

2
‖x(t)‖2µ

′(t)
µ(t)

.

Since µ is a growth rate, given τ ∈ R+
0 , we take t > τ such that lnµ(t) = lnµ(τ)+γ

(with γ as in (4.14)). Then

G(t, x(t))−G(τ, x) =
∫ t

τ

d

ds
G(s, x(s))ds ≤ −1

2

∫ t

τ

‖x(s)‖2µ
′(s)
µ(s)

ds

= −1
2

∫ t

τ

‖T (s, τ)x‖2µ
′(s)
µ(s)

ds

≤ −1
2
‖x‖2

∫ t

τ

1
‖T (τ, s)‖2

µ′(s)
µ(s)

ds.

It follows from (4.14) that

G(t, x(t))−G(τ, x) ≤ −1
2
‖x‖2

∫ t

τ

ν−2a(τ)
κ2

µ′(s)
µ(s)

ds

= − 1
2κ2

ν−2a(τ)‖x‖2(lnµ(t)− lnµ(τ))

= − γ

2κ2
ν−2a(τ)‖x‖2.

So we have
G(τ, x) ≥ G(τ, x)−G(t, x(t)) ≥ γ

2κ2
ν−2a(τ)‖x‖2.

On the other hand, it follows from (4.5) that if x ∈ Iuτ , then it has

d

dt
(µK2(t)G(t, x(t)) = µK2(t)

( d
dt
G(t, x(t)) +K2

µ′(t)
µ(t)

G(t, x(t))
)
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≤ −1
2
µ′(t)
µ(t)

µK2(t)‖x(t)‖2.

Hence, given τ ∈ R+
0 and t < τ such that lnµ(τ) = lnµ(t) + γ , using (4.14) again

we obtain

µK2(τ)G(τ, x)− µK2(t)G(t, x(t)) ≤ − 1
2κ2

ν−2a(τ)‖x‖2
∫ τ

t

µ′(s)
µ(s)

µK2(s)ds

= − 1
2κ2K2

ν−2a(τ)(µK2(τ)− µK2(t))‖x‖2.

Since G(t, x(t)) < 0 and G(τ, x) < 0, we have

µK2(τ)|G(τ, x)| ≥ − 1
2κ2K2

ν−2a(τ)(µK2(τ)− µK2(t))‖x‖2,

|G(τ, x)| ≥ − 1
2κ2K2

ν−2a(τ)
[
1−

( µ(t)
µ(τ)

)K2
]
‖x‖2

= − 1
2κ2K2

ν−2a(τ)[1− e−K2γ ]‖x‖2.

This completes the proof. �

Now we set

Jsτ = {0} ∪ {x ∈ Rp : H(t, T (t, τ)x) > 0 for every t ≥ τ},
Juτ = {0} ∪ {x ∈ Rp : H(t, T (t, τ)x) < 0 for every t ≥ τ}.

Proceeding in a similar manner to that in the proofs of Lemmas 4.3 and 4.4 we
obtain the following statements.

Lemma 4.5. If x ∈ Jsτ , then

H(t, T (t, τ)x) ≤
( µ(t)
µ(τ)

)L2

H(τ, x), t ≥ τ, (4.18)

and if x ∈ Juτ , then

|H(t, T (t, τ)x)| ≥
( µ(t)
µ(τ)

)L1

|H(τ, x)|, t ≥ τ. (4.19)

Lemma 4.6. If x ∈ Juτ ∪ Jsτ , then

|H(τ, x)| ≥ 1
2κ2

max{γ, (1− e−L2γ)/L2}ν−2a(τ)‖x‖2.

Lemma 4.7. The function V in (4.1) is a (λ1, σ1) strict Lyapunov function for
(1.1) with

λ1 =
e−K1/2 + e−K2/2

2
, σ1 =

e−K2/2 − e−K1/2

2
.

Proof. By (4.3), for each δ > 0 there exists d > 0 such that

‖S(t)‖ ≤ dνδ(t),
for every t ∈ R+

0 . So we have

|G(t, x)| ≤ dνδ(t)‖x‖2.
That is,

|V (t, x)| ≤
√
dνδ/2(t)‖x‖2,
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and (2.10) holds. Furthermore, by Lemma 4.4, for x ∈ Iuτ ∪ Isτ = Hu
τ ∪Hs

τ we have

|V (τ, x)| ≥ 1√
2κ

max{γ, (1− e−L2γ)/L2}1/2ν−a(τ)‖x‖2. (4.20)

and (2.13) holds. Finally, by Lemma 4.3, if x ∈ Isτ = Hs
τ then

|V (t, T (t, τ)x)| ≤
( µ(t)
µ(τ)

)−K1/2

|V (τ, x)|, t ≥ τ.

That is, (2.12) holds with λ1 − σ1 = e−K1/2. Moreover, if x ∈ Iuτ = Hu
τ then

V (t, T (t, τ)x) ≥
( µ(t)
µ(τ)

)−K2/2

V (τ, x), t ≥ τ.

That is, (2.11) holds with λ1 + σ1 = e−K2/2. This completes the proof. �

In an analogous manner we can prove the following result.

Lemma 4.8. The function W in (4.2) is a (λ2, σ2) strict Lyapunov function for
(1.1) with

λ2 =
eL1/2 + eL2/2

2
, σ2 =

eL1/2 − eL2/2

2
.

Since V and W is a strict Lyapunov function, by Lemma 3.1, there exist sub-
spaces Hu

t (V ) and Hs
t (V ), Hu

t (W ) and Hs
t (W ) such that Rp = Hu

t (V ) ⊕ Hs
t (V ),

Rp = Hu
t (W )⊕Hs

t (W ) for each t ∈ R+
0 . We consider the associated projections

PV (t) : Rp → Hs
t (V ), QV (t) : Rp → Hu

t (V ),

PW (t) : Rp → Hs
t (W ), QW (t) : Rp → Hu

t (W ).

Lemma 4.9. There exists K > 0 such that for each t ∈ R+
0 we have

‖PV (t)‖ = ‖QV (t)‖ ≤ Kν2a(t)‖S(t)‖,
‖PW (t)‖ = ‖QW (t)‖ ≤ Kν2a(t)‖T (t)‖.

Proof. We prove only the statement for the Lyapunov function V . The proof for
W is completely analogous. We note that

V (t, PV (t)x)2 = 〈S(t)PV (t)x, PV (t)x〉, (4.21)

V (t, QV (t)x)2 = −〈S(t)QV (t)x,QV (t)x〉. (4.22)

Given x ∈ Rp we write x = y + z with

y = PV (t)x ∈ Hs
t (V ) and z = QV (t)x ∈ Hu

t (V ).

Now take b(t) > 0, and set

V s(t, y) = −V (t, y)2 + b(t)‖y‖2 = −〈S(t)y, y〉+ b(t)‖y‖2.

By (4.20), there exists K > 0 such that

V s(t, y) ≤ −Kν−2a(t)‖y‖2 + b(t)‖y‖2 = (b(t)−Kν−2a(t))‖y‖2.

Similarly, for each t ∈ R+
0 we set

V u(t, z) = V (t, z)2 − b(t)‖z‖2 = −〈S(t)z, z〉 − b(t)‖z‖2.

By (4.20), we have
V u(t, z) ≥ (Kν−2a(t)− b(t))‖z‖2.
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We conclude that if b(t) ≤ Kν−2a(t), then

−V (t, y)2 + b(t)‖y‖2 ≤ 0, V (t, z)2 − b(t)‖z‖2 ≥ 0.

Thus, from (4.21) and (4.22) it follows that

−〈S(t)PV (t)x, PV (t)x〉+ b(t)‖PV (t)x‖2 ≤ 0,

−〈S(t)QV (t)x,QV (t)x〉 − b(t)‖QV (t)x‖2 ≥ 0.

Since S(t) is symmetric, subtracting the two inequalities we obtain

0 ≥ b(t)‖PV (t)x‖2 + b(t)‖QV (t)x‖2

− 〈S(t)PV (t)x, PV (t)x〉+ 〈S(t)QV (t)x,QV (t)x〉
= b(t)‖PV (t)x‖2 + b(t)‖QV (t)x‖2 + 〈S(t)x, x〉 − 2〈S(t)PV (t)x, x〉.

Hence, we have

b(t)‖PV (t)x− 1
2b(t)

S(t)x‖2 + b(t)‖QV (t)x+
1

2b(t)
S(t)x‖2

= b(t)‖PV (t)x‖2 + b(t)‖QV (t)x‖2 +
‖S(t)x‖

2b(t)
+ 〈S(t)x, x〉 − 2〈S(t)PV (t)x, x〉

≥ ‖S(t)x‖
2b(t)

,

and

‖PV (t)x− 1
2b(t)

S(t)x‖2 + ‖QV (t)x+
1

2b(t)
S(t)x‖2 ≤ ‖S(t)x‖

2b(t)2
.

This implies

‖PV (t)x‖2 = ‖PV (t)x− 1
2b(t)

S(t)x+
1

2b(t)
S(t)x‖

≤ ‖PV (t)x− 1
2b(t)

S(t)x‖+
1

2b(t)
‖S(t)x‖

≤ 1√
2b(t)

‖S(t)x‖+
1√

2b(t)
‖S(t)x‖

≤
√

2
b(t)
‖S(t)x‖.

Similarly, we obtain

‖QV (t)x‖2 ≤ ‖QV (t)x− 1
2b(t)

S(t)x‖+
1

2b(t)
‖S(t)x‖

≤ 1√
2b(t)

‖S(t)x‖+
1√

2b(t)
‖S(t)x‖

≤
√

2
b(t)
‖S(t)x‖.

Taking b(t) =
√

2
K ν−2a(t) we obtain the desired statement. �

Note that by taking δ sufficiently small we have

λ1 + σ1

λ1 − σ1
= e(K1−K2)/2 > ea+δ/2,
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λ2 + σ2

λ2 − σ2
= e(L1−L2)/2 > ea+δ/2.

Moreover, we can easily verify that λ2 − λ1 > |σ2 − σ1|. This allows us to apply
Theorem 3.2 (with V and W interchanged). If we set

P (τ) = PW (τ) : R→ F sτ = Hs
τ (W ),

Q(τ) = QV (τ) : R→ Fuτ = Hu
τ (V ),

R(τ) = PV (τ)⊕QW (τ) : R→ F cτ = Hs
τ (V ) ∩Hu

τ (W ).

The subspaces F sτ , Fuτ and F cτ satisfy the properties in Theorem 3.2. Moreover, for
every t ≥ τ we have

‖T (t, τ)P (τ)‖ ≤ ‖T (t, τ)|F sτ ‖ ‖P (τ)‖,
‖T (t, τ)−1Q(τ)‖ ≤ ‖T (t, τ)−1|Fuτ ‖ ‖Q(τ)‖,
‖T (t, τ)R(τ)‖ ≤ ‖T (t, τ)|F cτ ‖ ‖R(τ)‖,

‖T (t, τ)−1R(τ)‖ ≤ ‖T (t, τ)−1|F cτ ‖ ‖R(τ)‖.
Hence, by property 2 in Theorem 3.2 and Lemma 4.9 there exist constants as in

(2.3) satisfying (2.4) and (2.5). In other words, (1.1) admits a nonuniform (µ, ν)
trichotomy. By (3.20), (3.21), and Lemma 4.9 we can take the constants α, β, ξ, η
in (2.3) as in (4.15). This completes the proof. �
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