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RANDOM ATTRACTORS IN H1 FOR STOCHASTIC TWO
DIMENSIONAL MICROPOLAR FLUID FLOWS WITH

SPATIAL-VALUED NOISES

WENQIANG ZHAO

Abstract. This work studies the long-time behavior of two-dimensional mi-
cropolar fluid flows perturbed by the generalized time derivative of the infinite

dimensional Wiener processes. Based on the omega-limit compactness argu-

ment as well as some new estimates of solutions, it is proved that the generated
random dynamical system admits an H1-random attractor which is compact

in H1 space and attracts all tempered random subsets of L2 space in H1 topol-
ogy. We also give a general abstract result which shows that the continuity

condition and absorption of the associated random dynamical system in H1

space is not necessary for the existence of random attractor in H1 space.

1. Introduction

The micropolar fluid model is a qualitative generalization of the well-known
Navier-Stokes model in the sense that it takes into account the microstructure of
fluid [23]. It was introduced by Eringen [17] as an important model to describe
a class of non-Newtonian fluid motion with micro-rotational effects and inertia
involved.

Let O ⊂ R2 be a smooth bounded domain. This paper is concerned with the
micropolar fluid flows driven by the time-space additive noises

∇ · v = 0 on O × R+,

dv

dt
− (ν + κ)∆v − 2κ∇× V +∇π + v.∇v = f + Ẇ1 on O × R+,

dV

dt
− γ∆V + 4κV − 2k∇× v + v.∇V = g + Ẇ2 on O × R+,

(1.1)

associated with the hard wall boundary condition

v = 0 on ∂O × R+, V = 0 on ∂O × R+, (1.2)

and the initial value condition

v(x, 0) = v0, V (x, 0) = V0, (1.3)
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with a velocity vector field v = v(x, t) = (v1(x, t), v2(x, t)) ∈ R2, a scalar microro-
tation field V = V (x, t) ∈ R, a scalar pressure π = π(x, t) ∈ R. In equations (1.1),
the constants ν > 0, κ ≥ 0, γ > 0 (ν is usually called the Newtonian viscosity, γ
and κ are the microrotation viscosity coefficients), and f(x) = (f1(x), f2(x)) and
g(x) denote the exterior body force and the moment, respectively. Moreover, W1(t)
and W2(t) are independent two-sided real-valued Wiener processes with values in
appropriate function spaces specified later. In addition, ∆ is the Laplacian on O
and

∇× v =
∂v2

∂x1
− ∂v1

∂x2
, ∇ · v =

∂v1

∂x1
+
∂v2

∂x2
, ∇× V =

( ∂V
∂x2

,− ∂V
∂x1

)
.

There is a large volume of literature on the mathematical theory of the au-
tonomous or non-autonomous micropolar fluid model; see, e.g., [20, 23, 24, 25, 29,
16, 8, 9]. Especially, for this two dimensional autonomous model, Lukaszewicz [23]
proved the existence of L2-global attractor in a bounded domain; Dong and Chen
[16] established the existence of L2-global attractor in some unbounded domains;
Chen et al [8] proved that the L2-global attractor was compact in the space H2

based on the notion of the so-called Kuratowski measure of noncompactness of a
bounded set [33]. As for the non-autonomous model, Zhao et al [29] proved the
existence of H1-uniform attractor in an unbounded Poincaré domains by utilizing
the energy method originated from [24]; Chen [10] considered the non-homogeneous
micropolar fluid flows and obtained the existence of L2-pullback attractor in a Lip-
schitz bounded domain by energy equation method; Chen et al [9] and Lukaszewicz
and Tarasińska [25] obtained the existence of H1-pullback attractors in a bounded
domain from a viewpoint of measuring noncompactness [33], respectively.

It is well known that the random attractor, which was initiated by [26, 14], is an
appropriate notion to describe the long-time behavior of the solution of stochastic
partial differential equation. The applications cover a wide range of concrete differ-
ential equations; see, recently, [28, 30, 31, 22, 3] and the references cited there. Such
a attractor, which generalizes non-trivially the global attractors well developed (see,
e.g., [27, 2]), is a compact invariant random set which attracts every orbit in the
state space. It is uniquely determined by attracting deterministic compact sets of
phase space [13].

The goal of this article is to prove the existence of random attractors of the
micropolar fluid model (1.1)–(1.3) in H1 space with irregular and spatially valued
noise. On account of the irregularity of solutions in H1 space, the Sobolev com-
pact imbedding method is unavailable in the proof the compactness of the random
attractor. To achieve our study, we utilize the technique developed in [31, 32] to
surmount this obstacle. Specifically, the notion of omega-limits compactness, which
was initiated in [22] and [21] in the framework of RDS, is successfully employed.
The main advantage of this technique is that we need not to estimate the solutions
in functional spaces of higher regularity to show the existence of compact random
absorbing set which does not work in this case [18].

To solve our problem, we first prove an abstract result. We show that for the bi-
space (X,Z) with a sequence uniqueness (see section 2 Hypothesis A), the random
attractor on the space X is a random attractor on the space Y only if the RDS
ϕ possess omega-limit compactness on the space Y . The continuity (even quasi-
continuity [22]), absorption of the associated random dynamical systems on Z is
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not necessary, see Theorem 2.3. This result is new even in deterministic case, see
[33, 22].

The outline of this article is as follows. Section 2 presents some basic facts
needed for further considerations, including some notions and an abstract result
about random attractors and the appropriate spaces and operators. In section 3
we recall the Ornstein-Uhlenbeck process and its regular hypothesis and then give
the main conclusion of this study. Section 4 is the proof of our main conclusion.

2. Preliminaries

This section contains some background material which we will use in further
discussion.

2.1. Random dynamical systems and an abstract result. In this subsection,
we list some appropriate concepts and tools from the theory of random dynamical
systems (RDSs) and obtain a abstract result. For more details the readers may
refer to [1, 11, 14].

Let (X, ‖ · ‖X) and (Z, ‖ · ‖Z) be two completely separable Banach spaces with
Borel σ-algebras B(X) and B(Z), respectively.

A random dynamical system on a Banach space X is a family of measurable
mappings ϕ incorporated a metric dynamical system (MDS) θ, where the metric
dynamical system θ is a probability space (Ω,F ,P) with a group θt, t ∈ R, of mea-
sure preserving transformations of (Ω,F ,P), and the family of measurable mappings
ϕ : R+ × Ω×X → X; (t, ω, x) 7→ ϕ(t, ω)x satisfies the cocycle property

ϕ(0, ω) = id, ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω),

for all s, t ∈ R+. We will denote this RDS by the simple notation ϕ. An RDS ϕ is
continuous in the meaning that the mappings ϕ(t, ω) : X → X are continuous in
X for all t ∈ R+ and .

A random set D = {D(ω)}ω∈Ω is a family of closed subsets of X indexed by
ω ∈ Ω such that for every x ∈ X, the mapping ω 7→ dX(x,D(ω)) is measurable
with respect to F , where for the nonempty sets A,B ∈ 2X ,

dX(A,B) = sup
x∈A

inf
y∈B
‖x− y‖X ,

and in particular dX(x,B) = dX({x}, B).
A random variable R ∈ R+ over a MDS θ is tempered if

lim
t→±∞

1
|t|

log+R(θtω) = 0, (2.1)

for P-a.e. ω ∈ Ω. Note that (2.1) is equivalent to

lim
t→±∞

e−λ|t|R(θtω) = 0 for any λ > 0,

see [19, 6]. A random set D = {D(ω)}ω∈Ω ∈ 2X is called tempered if R(ω) =
supx∈D(ω) ‖x‖X is a tempered random variable.

Let DX and DZ denote the collection of all tempered random subsets of X and
Z, respectively. In addition, we assume that range ϕ(X) ⊆ Z. In the following we
recall the basic concepts about bi-space random attractor; see [2, 30].
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Definition 2.1. (1) A random set KZ ∈ DZ is called an (X,Z)-random absorbing
set for the RDS ϕ over a MDS θ if for every D ∈ DX and P-a.e. ω ∈ Ω, there exists
an T = T (D,ω) > 0 such that for all t ≥ T ,

ϕ(t, θ−tω)D(θ−tω) ⊆ KZ(ω).

(2) A compact random set AZ ∈ 2Z is said to be an (X,Z)-random attractor
for the RDS ϕ over a MDS θ if the invariance property

ϕ(t, ω)AZ(ω) = AZ(θtω)

is satisfied for all t ≥ 0 and P-a.e. ω ∈ Ω, and if in addition, the pullback attracting
property

lim
t→∞

dZ(ϕ(t, θ−tω)D(θ−tω),AZ(ω)) = 0

holds for every D ∈ DX and P-a.e. ω ∈ Ω.

Definition 2.2. An RDS ϕ over an MDS θ is said to be (X,Z)-omega-limit com-
pact if for every ε > 0 and D ∈ DX , there exists T = T (ε,D, ω) such that for all
t ≥ T ,

k
(
∪t≥T ϕ(t, θ−tω)D(θ−tω)

)
≤ ε, P-a.e. ω ∈ Ω,

where k(B) is the Kuratowski measure of non-compactness of a bounded subset
B ⊂ Z defined by

k(B) = inf{d > 0 : B admits a finite cover by sets of diameter ≤ d}.

Hypothesis (A1). Assume that the bi-space (X,Z) satisfies the sequence limits
uniqueness, in the sense that for every bounded sequence {xn}n ⊂ X ∩Z such that
xn → x in X and xn → y in Z, respectively, then we have x = y. The nested
relation between X and Z is unknown except that ϕ(X) ⊆ Z.

Theorem 2.3. Assume that the bi-space (X,Z) satisfies (A1), and ϕ is a contin-
uous RDS on X over a MDS θ. If there exists an (X,X)-random absorbing set K
for ϕ and ϕ is (X,X)-omega-limit compact, then the random set AX ,

AX(ω) = ∩s≥0∪t≥sϕ(t, θ−tω)K(θ−tω)
X
, ω ∈ Ω, (2.2)

is a unique (X,X)-random attractor for ϕ in X, where B
X

denotes the closure of
B with respect to the X-norm.

Furthermore, if ϕ is (X,Z)-omega-limit compact then the random set AZ ,

AZ(ω) = ∩s≥0∪t≥sϕ(t, θ−tω)K(θ−tω)
Z
, ω ∈ Ω, (2.3)

is a unique (X,Z)-random attractor for ϕ. In addition, AX = AZ ∈ DX .

Proof. The first part is the same as [22, Theorem 4.1], so we omit the proof. We
prove the second result. First, (2.3) makes sense by our assumption that ϕ(t, ω)X ⊆
Z. We show that AZ is a random attractor in the space Z, that is, AZ satisfies the
compact, attracting and invariant property.

By [22, Lemma 2.5(v)] and the omega-limit compactness of ϕ in Z, we have

k
(
∪t≥Tϕ(t, θ−tω)K(θ−tω)

Z
)

= k
(
∪t≥T ϕ(t, θ−tω)K(θ−tω)

)
→ 0 as T →∞.

At the same time, ∪t≥Tϕ(t, θ−tω)K(θ−tω)
Z

is norm-closed in Z. Then thanks to
the nested property of the Kuratowski measure of non-compactness (see [22, Lemma
2.5 (iv)]), we know that AZ is nonempty and compact as required.
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Furthermore by a similar argument as in [14, 30, 22] we can show that AZ
possesses (X,Z)-attracting property.

By the definitions of formula (2.2)–(2.3) and the omega-limit compactness of ϕ
in X and Z, it is easy to show that AX = AZ . Thus AZ is invariant since AX is
invariant. �

Remark 2.4. In applications, one can choose X = L2 and Z = Lp (p > 2) or H1

with bounded or unbounded spatial domain. Note that (L2, Lp) and (L2, H1) satisfy
(A1). Therefore, the (A1) is not restrictive in concrete problems. In particular, our
Theorem 2.3 implies [30, Theorem 2.8].

2.2. Functional settings. In this subsection, we introduce some spaces and op-
erators stated as follows.

Let Lp(O) and Hs(O) be the usual Sobolev spaces. We set L2 = (L2(O))2 ×
L2(O), endowed with the following scalar inner product

(., .) = (., .)(L2(O))2 + (., .)L2(O),

and the norms in (L2(O))2, L2(O) and L2 are together denoted by the same no-
tation |.|, without any confusion. We define a functional space V integrated the
boundary and also the divergence free condition,

V = {(v, V ) ∈ (C∞0 (O))2 × C∞0 (O) : div v = 0}.

Define H1 = (H1(O))2 ×H1(O), where H1(O) is the usual Sobolev space. Let H
be the closure of V with respect to the L2-norm. The norm in H is still denoted by
| · |. Moreover, we let V be the closure of V with respect to the H1-norm, possessing
the equivalent norm in V is denoted by ‖ · ‖ = |∇ · |. In addition, V ′ denotes the
dual space of V. Then we have V ⊂ H ⊂ V ′.

For V = (v, V ), we define the operators

A1v = −(ν + κ)∆v, A2V = −γ∆V,

B1(v, v) = v.∇v, B2(v, V ) = v.∇V,
AV = (A1v,A2V ), B(v,V) = (B1(v, v), B2(v, V )),

Lu = (−2κ∇× V,−2κ∇× v + 4κV ), F = (f, g), f ∈ (L2(O))2, g ∈ L2(O).

It is obvious that the operator A is a positive self-adjoint unbounded operator
and then A−1 is also self-adjoint but compact operator in H, and we can utilize the
elementary spectral theory in a Hilbert space. We infer that there exists a compete
orthonormal family ofH, {ej}∞j=1 of eigenvectors of A. The corresponding spectrum
of A is discrete and denoted by {λj}∞j=1 which are positive, increasing and tend to
infinity as j →∞.

In particular, we also can use the spectrum theory to allow us to define the
operator As, the power of A. For s > 0, the operator As is also a strictly positive
and self-adjoint unbounded operator in H with a dense domain D(As) ⊂ H. This
allows us to introduce the function spaces

D(As) =
{

V =
∞∑
j=1

(V, ej)ej : ‖V‖2D(As) =
∞∑
j=1

(V, ej)2λ2s
j < +∞

}
.

This norm ‖ · ‖D(As) on D(As) is equivalent to the usual norm induced by H2s; see
Temam [27] for details. In particular, D(A0) = H and D(A1/2) = V. Furthermore,
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we have

min{ν + κ, γ}‖V‖2 ≤ (AV,V) ≤ λ−1/2
0 |AV| ‖V‖, (2.4)

for all V = (v, V ) ∈ D(A), where λ0 > 0 satisfies the Poincaré inequality λ0|V|2 ≤
‖V‖2.

Based on the orthonormal basis {ej}∞j=1 of eigenfunctions of A, we define the m-
dimensional subspace Vm = span{e1, e2, . . . , em} ⊂ V and the canonical orthogonal
projection Pm : V 7→ Vm such that for every V ∈ V, V has a unique decomposition:
V = PmV + Vm, where

PmV =
m∑
j=1

(V, ej)ej ∈ Vm, Vm = (I − Pm)V =
∞∑

j=m+1

(V, ej)ej ∈ V⊥m; (2.5)

that is, V = Vm ⊕ V⊥m.
According to the above notation, we write (1.1)–(1.3) as the evolution equation

dV +AVdt+B(v,V)dt+ LVdt = Fdt+ dW, V(0) = V0 ∈ H, (2.6)

where V = (v, V ) and W = (W1,W2).

3. Existence of (H,V)-random attractor for the generated RDS ϕ

To obtain a priori estimate, we now use the method of Chueshov and Schmalfuß
[12] to transform the evolution equation (2.6) to a deterministic partial differential
equation with a random parameter without white noise.

A standard model for a spatially correlated noise is the the generalized time
derivative of a two-sided Brownian motion ω = ω(x, t), x ∈ R2. Let H be the
separable Hilbert space with norm | · | which is defined in section 2. As usual, we
introduce the spatially valued Brownian motion MDS θ = (Ω,F ,P, (θt)t∈R), where
Ω = {ω ∈ C0(R,H) : ω(0) = 0} with compact open topology. This topology is
metrizable by the complete metric

d(ω1, ω2) =
∞∑
n=1

1
2n

dn(ω1, ω2)
1 + dn(ω1, ω2)

,

where dn(ω1, ω2) = max|t|≤n |ω1 − ω2| for ω1 and ω2 in Ω. F = B(C0(R,H)) is the
Borel-σ-algebra induced by the compact open topology of Ω. Suppose the Wiener
process ω has covariance operator Q. Let P be the Wiener measure with respect to
Q. The Wiener shift is defined by

θsω(t) = ω(t+ s)− ω(s), ω ∈ Ω, t, s ∈ R.

Then the measure P is ergodic and invariant with respect to the shift θ. Then θ is
an ergodic MDS.

The associated probability space defines a canonical Wiener process W . We also
note that such a Wiener process W generates a filtration (Ft)t∈R,

Ft ≡ {W (τ)|τ ≤ t} ⊂ F .

We introduce the following stochastic partial differential equation on O,

dZ +AZdt = dW. (3.1)
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Because A is a positive and self-adjoint operator, there exists a mild solution to
this stochastic equation with the form

Z(t) = Z(0) +
∫ t

0

e−(t−τ)AdW, t > 0,

which is called an Ornstein-Uhlenbeck process; see [15]. For the Ornstein-Uhlenbeck
process we have the regularity hypothesis; see also [12].

Lemma 3.1. Suppose that the covariance operator Q of the Wiener process ω has
a finite trace; i.e., Q satisfies

trH(QA2s−1+δ) = trH(As−1/2+δ/2QAs−1/2+δ/2) < +∞, (3.2)

for some s ≥ 0 and some (arbitrary small) δ > 0, where trH denotes the trace of the
covariance. Then an F0-measurable Gaussian variable Z = (z, Z) ∈ D(As) exists,
and the process (t, ω)→ Z(θtω) is a continuous stationary solution to the stochastic
equation (3.1). Furthermore, the random variable ‖Z(ω)‖2D(As) is tempered and the
expectation

E‖Z‖2D(As) =
1
2

trH(As−
1
2QAs−

1
2 ) < +∞.

Introducing a new variable U = V−Z(θtω), we can rewrite (2.6) as the following
evolution equation with a random parameter ω,

dU
dt

+AU +B(u+ z(θtω),U + Z(θtω)) + L(U + Z(θtω)) = F (x)

U(0) = U0 ∈ H,
(3.3)

or the following functional form

(
dU
dt
, φ) + (AU, φ) + (B(u+ z(θtω),U + Z(θtω)), φ) + (L(U + Z(θtω)), φ)

= (F (x), φ), φ ∈ V

where U = (u, U), u = v − z(θtω), U = V − Z(θtω).
From the analysis above, we obtain the existence of a weak solution for the

problem (3.3)–(3.4) by the standard Galerkin approximation, see, e.g., [7].

Lemma 3.2. Let F = (f, g) ∈ H and U0 = (u0, U0) ∈ H. Then for P-a.e. ω ∈ Ω,
the initial problem (3.3)–(3.4) possesses a unique solution U(t, ω,U0(ω)), where

U = (u, U) ∈ L∞(0,∞;H) ∩ L2(0, T ;V) ∩ C([0,∞;H).

Furthermore, the mapping U0 7→ U(t, ω,U0(ω)) from H to H is continuous for all
t ≥ 0.

By a standard argument on the measurability we can show that the solution gen-
erates a continuous RDS ψ in the space H given by ψ(t, ω)U0(ω) = U(t, ω,U0(ω)).
Put V(t, ω,V0(ω)) = U(t, ω,V0(ω) − Z(ω)) + Z(θtω). Then V(t, ω,V0(ω)) or
briefly V(t) is a solution to (2.6) with initial value V0(ω) ∈ H. Given

ϕ(t, ω)V0(ω) = V(t, ω,V0(ω)) = U(t, ω,V0(ω)− Z(ω)) + Z(θtω), ω ∈ Ω,

then ϕ is also a continuous RDS on H for the original equation (2.6), i.e., system
(1.1)–(1.3).

The main conclusion of this study reads as follows.
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Theorem 3.3. We suppose that (3.2) holds. Set

M(ω) = C(‖Z(ω)‖2H2 + ‖z(ω)‖2H1)− 1
2
λ0ς, (3.4)

where C is a positive constant depending only on the physical coefficients of the fluid
model, ς = min{ν, γ} and λ0 is the same as in (2.4). Assume that the mathematical
expectation EM < 0. Then the RDS ϕ generated by (1.1)–(1.3) admits a unique
(H,V)-random attractor AV . In addition, AV = AH, where AH is the (H,H)-
random attractor.

4. Proofs of main results

First we list some basic facts. By using the Young’s inequality and combination
with the divergence free condition, the operators A,L and B possess the following
relationships:

−(AU,U)− (LU,U) ≤ −min{ν, γ}‖U‖2, ∀U = (u, U) ∈ V, (4.1)

−(LU, AU) = −2κ(ν + κ)(∇× U,∆u)− 2κγ(∇× u,∆U)− 4κγ‖U‖2

≤ 1
2
|AU|2 + 2κ2‖U‖2, ∀U = (u, U) ∈ D(A),

(4.2)

B(u,U,V) = −B(u,V,U), B(u,U,U) = 0,

∀(u,U,V) ∈ (H1(O))2 × V × V.
(4.3)

We recall the Agmon’s inequality; see [27],

‖u‖L∞ ≤ c|u|1/2|A1u|1/2, ∀ u ∈ D(A1). (4.4)

For the projector Pm defined in Section 2, one can easily show that

|A1Pmu|2 ≤ λm+1|A1/2
1 Pmu|2, ∀U = (u, U) ∈ D(A),

and hence by the classic Brezis-Gallouet’s inequality; see [4, 5], we have

‖Pmu‖L∞ ≤ c|A1/2
1 Pmu|

(
1 + log

|A1Pmu|2

λ1|A1/2
1 Pmu|2

)1/2

≤ c‖u‖
(

1 + log
λm+1

λ1

)1/2

, ∀u ∈ D(A1),

(4.5)

where the letter c in (4.4) and (4.5) is a deterministic positive constant and λ1 is
the first eigenvalue of the stokes operator A.

Lemma 4.1. There exist positive constants C and c depending only on the physical
coefficients of this model and the domain O such that

d

dt
|U|2 + ς‖U‖2 ≤M(θtω)|U|2 +G(θtω), (4.6)

d

dt
((ν + κ)‖u‖2 + γ‖U‖2) ≤ ((ν + κ)‖u‖2 + γ‖U‖2)g(t, ω) + h(t, ω) (4.7)

where ς = min{ν, γ} and

M(ω) = C(‖z(ω)‖2 + ‖Z(ω)‖2H2)− 1
2
λ0ς,

G(ω) = c(‖z(ω)‖4 + |z(ω)|2 ‖Z(ω)‖2H2 + |z(ω)|2 + |Z(ω)|2 + |F |2),

g(t, ω) = c(‖u‖2 + ‖U‖2)(|u|2 + |z|2),
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h(t, ω) = 4κ2‖U‖2 + c|u|2(‖z‖4 + ‖Z‖4) +H(ω),

H(ω) = c(‖z‖2H2 + |z|2‖z‖4 + |z|2‖Z‖4 + ‖z‖2 + ‖Z‖2 + |Z|2 + |F |2).

Proof We multiply (3.3) by U and then integrate over O, along with (4.1) and
(4.3), to yield

1
2
d

dt
|U|2

= −(AU,U)− (LU,U)− (B(u+ z,U + Z),U)− (LZ,U) + (F,U)

≤ −ς‖U‖2 − (B(u+ z,U + Z),U)− (LZ,U) + (F,U)

= −ς‖U‖2 − (B(u+ z,Z),U)− (LZ,U) + (F,U)

= −ς‖U‖2 − (B1(u+ z, u+ z), u)− (B2(u+ z, Z), U)− (LZ,U) + (F,U),

(4.8)

where
− (LZ,U) + (F,U)

= 2κ(∇× Z, u) + 2κ(∇× z, U)− 4κ(Z,U) + (F,U)

= 2κ(∇× u, Z) + 2κ(∇× U, z)− 4κ(Z,U) + (F,U)

≤ ς

8
‖U‖2 + c(|z|2 + |Z|2 + |F |2).

(4.9)

By the Hölder’s inequality and Gagliardo-Nirenberg’s inequality, we have

(B1(u+ z, u+ z), u) = (B1(u, z), u) + (B1(z, z), u)

≤ c‖u‖L4 ‖z‖ ‖u‖L4 + c‖z‖L4‖z‖ ‖u‖L4

≤ c|u| ‖z‖ ‖u‖+ c‖z‖2 ‖u‖

≤ ς

16
‖u‖2 +

C

2
|u|2 ‖z‖2 + c‖z‖4,

(4.10)

(B2(u+ z, Z), U) ≤ c|u+ z| ‖∇Z‖L4‖U‖L4

≤ c|u| ‖Z‖H2‖U‖+ c|z| ‖Z‖H2‖U‖

≤ ς

16
‖U‖2 +

C

2
|u|2 ‖Z‖2H2 + c|z|2 ‖Z‖2H2 .

(4.11)

Then from (4.8)–(4.11) it follows that

d

dt
|U|2 +

3
2
ς‖U‖2

≤ C(‖z‖2 + ‖Z‖2H2)|U|2 + c(‖z‖4 + |z|2 ‖Z‖2H2 + |z|2 + |Z|2 + |F |2),
(4.12)

where c and C is the positive constants independent of t, u, U, z, Z. Further, the
Poincaré’s inequality implies

d

dt
|U|2 + ς‖U‖2 ≤M(θtω)|U|2 +G(θtω), (4.13)

which shows that (4.6) holds.
Multiplying (3.3) by AU and then integrating over O, along with (4.2), gives

d

dt
((ν + κ)‖u‖2 + γ‖U‖2)

= −2|AU|2 − 2(LU, AU)− 2(B(u+ z,U + Z), AU)− 2(LZ, AU) + 2(F,AU)

≤ −|AU|2 + 4κ2‖U‖2 − 2(B(u+ z,U + Z), AU)− 2(LZ, AU) + 2(F,AU),
(4.14)
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where
− (LZ, AU) + (F,AU)

= 2κ(ν + κ)(∇× Z,∆u) + 2κγ(∇× z,∆U) + 4κγ(Z,∆U) + (F,AU)

≤ 1
16
|AU|2 + c(‖z‖2 + ‖Z‖2 + |Z|2 + |F |2).

(4.15)

Consider that

(B(u+ z,U+Z), AU) = (B1(u+ z, u+ z), A1u) + (B2(u+ z, U +Z), A2U). (4.16)

Then by (4.4) we have

(B1(u+ z, u+ z), A1u)

≤ ‖u+ z‖L∞‖u+ z‖ |A1u|

≤ c|u+ z|1/2|A1(u+ z)|1/2‖u+ z‖ |A1u|

≤ 1
8
|A1u|2 + c|u+ z| |A1(u+ z)| ‖u+ z‖2

≤ 1
8
|A1u|2 + c|u+ z| ‖u+ z‖2 |A1u|+ c|u+ z| ‖u+ z‖2 |A1z|

≤ 1
8
|A1u|2 +

1
8
|A1u|2 + c|u+ z|2‖u+ z‖4 + c|A1z|2

≤ 1
4
|A1u|2 + c(‖u‖4|u|2 + ‖u‖4|z|2 + |u|2‖z‖4 + |z|2‖z‖4 + |A1z|2),

(4.17)

(B2(u+ z, U + Z), A2U)

≤ ‖u+ z‖L∞‖U + Z‖ |A2U |

≤ c|u+ z|1/2|A1(u+ z)|1/2 ‖U + Z‖ |A2U |

≤ 1
8
|A2U |2 + c|u+ z| |A1(u+ z)| ‖U + Z‖2

≤ 1
8
|A2U |2 + c|u+ z| ‖U + Z‖2|A1u|+ c|u+ z| ‖U + Z‖2|A1z|

≤ 1
8
|A2U |2 +

1
8
|A1u|2 + c|u+ z|2‖U + Z‖4 + c|A1z|2

≤ 1
8
|A2U |2 +

1
8
|A1u|2 + c|u|2‖U‖4 + c|u|2‖Z‖4 + c|z|2‖U‖4

+ c|z|2‖Z‖4 + c|A1z|2.

(4.18)

Therefore, from (4.14)–(4.18) it follows that
d

dt
((ν + κ)‖u‖2 + γ‖U‖2)

≤ c(‖u‖4 + ‖U‖4)(|u|2 + |z|2) + 4κ2‖U‖2 + c|u|2(‖z‖4 + ‖Z‖4)

+ c(|A1z|2 + |z|2‖z‖4 + |z|2‖Z‖4 + ‖z‖2 + ‖Z‖2 + |Z|2 + |F |2)

≤ c((ν + κ)‖u‖2 + γ‖U‖2)(‖u‖2 + ‖U‖2)(|u|2 + |z|2) + c|u|2(‖z‖4 + ‖Z‖4)

+ 4κ2‖U‖2 + c(‖z‖2H2 + |z|2‖z‖4 + |z|2‖Z‖4 + ‖z‖2 + ‖Z‖2 + |Z|2 + |F |2),

which proves (4.7).

Lemma 4.2. Assume that the expectation EM < 0, where M is in (3.4). Let
D ∈ D. Then for P-a.e. ω ∈ Ω, there exist tempered random radius R1(ω) and
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constant T = T (D,ω) > 0 such that for all t ≥ T , the solution U(t, ω,V0(ω)−Z(ω))
of the initial problem (3.3) with V0 ∈ D satisfies that for every l ∈ [t, t+ 1],

|U(l, θ−t−1ω,V0(θ−t−1ω)− Z(θ−t−1ω))| ≤ R1(ω), (4.19)

where D is the collection of all tempered random subsets of H.

Proof. Applying the Gronwall’s lemma (see [27]) to (4.6), we find that for every
l ≥ 0,

|U(l, ω,V0(ω)− Z(ω))|2 ≤ e
R l
0 M(θτω)dτ |U0(ω)|2 + c

∫ l

0

G(θsω)e
R l
s
M(θτω)dτds,

in which we replace ω with θ−t−1ω and get that for l ∈ [t, t+ 1],

|U(l, θ−t−1ω,V0(θ−t−1ω)− Z(θ−t−1ω))|2

≤ e
R l
0 M(θτ−t−1ω)dτ |U0(θ−t−1ω)|2 +

∫ l

0

G(θs−t−1ω)e
R l
s
M(θτ−t−1ω)dτds

= e
R l−t−1
−t−1 M(θτω)dτ |U0(θ−t−1ω)|2 +

∫ l−t−1

−t−1

G(θsω)e
R l−t−1
s

M(θτω)dτds

≤ 2e
R l−t−1
−t−1 M(θτω)dτ (|V0(θ−t−1ω)|2 + |Z(θ−t−1ω)|2)

+
∫ 0

−t−1

G(θsω)e
R l−t−1
s

M(θτω)dτds.

(4.20)

By noting that for l ∈ [t, t+ 1], l− t−1 ∈ [−1, 0], we deduce that for s ∈ [−t−1, 0],

e
R l−t−1
s

M(θτω)dτ = e−
1
2λ0ς(l−t−1)+ 1

2λ0ςse
R l−t−1
s

C(‖Z(θτω)‖2
H2+‖z(θτω)‖2)dτ

≤ e 1
2λ0ς+

1
2λ0ςse

R 0
s
C(‖Z(θτω)‖2

H2+‖z(θτω)‖2)dτ

≤ e 1
2λ0ςe

R 0
s
M(θτω)dτ .

(4.21)

Then by (4.20) and (4.21) we obtain that for every l ∈ [t, t+ 1],

|U(l, θ−t−1ω,V0(θ−t−1ω)− Z(θ−t−1ω))|2

≤ K
(
e

R 0
−t−1M(θsω)ds|V0(θ−t−1ω)|2 + |Z(θ−t−1ω)|2)

+
∫ 0

−t−1

G(θsω)e
R 0
s
M(θτω)dτds

)
,

where K = 2e
1
2λ0ς . By the Birkhoff’s ergodic theorem and along with our assump-

tion that EM(ω) < 0, it yields that

lim
t→±∞

1
t+ 1

∫ 0

−t−1

M(θτω)dτ = EM(ω) = µ̂ < 0,

which implies ∫ 0

−t−1

M(θτω)dτ ≈ µ̂(t+ 1), as t→ +∞.

Since G(θs) is sub-exponential growth,∫ 0

−∞
G(θsω)e

R 0
s
M(θτω)dτds < +∞.
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Consider that ‖Z(ω)‖D(A) is tempered. Then |Z(ω)| is tempered, whence by the
initial data V0(ω) ∈ D(ω), there exists constant T = T (D,ω) > 0 such that for all
t ≥ T with l ∈ [t, t+ 1],

|U(l, θ−t−1ω,V0(θ−t−1ω)− Z(θ−t−1ω))|2

≤ R1(ω)2 := K(1 +
∫ 0

−∞
G(θsω)e

R 0
s
M(θτω)dτds).

We can use the method in [6, Lemma 4.6] to show that the random variable R1(ω)
is tempered. Indeed, for an arbitrary λ > 0, and let t < 0. We then have

e−2λ|t|R1(θtω)2

= Keλ2t +Keλt
∫ 0

−∞
G(θs+tω)eλt+

R 0
s
M(θτ+tω)dτds.

= Keλ2t +Keλt
∫ 0

−∞
G(θs+tω)eλt+

R 0
s+t(M(θτω)−µ̂)dτ−

R 0
t

(M(θτω)−µ̂)dτ−µ̂sds.

(4.22)
Let 0 < ε < 1

4 min{−µ̂, λ}. Then using again the sub-exponential growth of G(θτ ),
there exists t1 = t1(ε, ω) < 0 such that for all t < t1,

G(θs+t) ≤ e−ε(s+t). (4.23)

On the other hand, there exists t2 = t2(ε, ω) < 0 such that for all t < t2,∫ 0

s+t

(M(θτω)− µ̂)dτ ≤ −ε(t+ s); −
∫ 0

t

(M(θτω − µ̂) ≤ −ε(t+ s). (4.24)

Put t0 = min{t1, t2}. Then it follows from (4.22)–(4.24) that for all t < t0,

e−2λ|t|R1(θtω)2 ≤ Keλ2t +Keλt
∫ 0

−∞
eλt−3ε(t+s)−µ̂sds

≤ Keλ2t +Keλt
∫ 0

−∞
eε(t+s)ds→ 0

as t→ −∞. Similarly, we can prove the convergence for t→ +∞. �

Lemma 4.3. Assume that the expectation EM < 0, where M is in (3.4). Let
D ∈ D. Then for P-a.e. ω ∈ Ω, there exist random radius R2(ω) and constant
T = T (D,ω) > 0 such that for all t ≥ T , the solution U(t, ω,V0(ω)−Z(ω)) of the
initial problem (3.3) with V0 ∈ D satisfies that for every l ∈ [t, t+ 1],

‖U(l, θ−t−1ω,V0(θ−t−1ω)− Z(θ−t−1ω))‖ ≤ R2(ω),

where D is the collection of tempered random subsets of H.

Proof. Integrating (4.6) from t to t+ 1 yields∫ t+1

t

‖U(s, ω,V0(ω)− Z(ω))‖2ds

≤ c
∫ t+1

t

M(θsω)|U(s, ω,V0(ω)− Z(ω))|2ds

+ c

∫ t+1

t

G(θsω)ds+ c|U(t, ω,V0(ω)− Z(ω))|2.
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Then by Lemma 4.2 we know that there exists a T = T (D,ω) > 0 such that for
every t ≥ T ,∫ t+1

t

‖U(s, θ−t−1ω,V0(θ−t−1ω)− Z(θ−t−1ω))‖2ds

≤ cR1(ω)2

∫ t+1

t

M(θs−t−1ω)ds+ c

∫ t+1

t

G(θs−t−1ω)ds+ cR1(ω)2

= c(R1(ω)2

∫ 0

−1

M(θsω)ds+
∫ 0

−1

G(θsω)ds+R1(ω)2) := C1(ω).

(4.25)

Using the classic Gronwall’s lemma to (4.7) on the interval [s, l] with t ≤ s ≤ l ≤
t+ 1, we obtain

‖U(l, ω,V0(ω)− Z(ω))‖2 ≤ ce
R t+1
t

g(τ,ω)dτ (‖U(s, ω,V0(ω)− Z(ω))‖2

+
∫ t+1

t

h(s, ω)ds),

from which it follows that
‖U(l, θ−t−1ω,V0(θ−t−1ω)− Z(θ−t−1ω))‖

≤ ce
R t+1
t

g(τ,θ−t−1ω)dτ (
∫ t+1

t

‖U(s, θ−t−1ω,V0(θ−t−1ω)− Z(θ−t−1ω))‖2ds

+
∫ t+1

t

h(s, θ−t−1ω)ds).

(4.26)

Note that by Lemma 4.1 and association with (4.25), there exists T = T (D,ω) > 0
such that for all t ≥ T ,∫ t+1

t

g(τ, θ−t−1ω)dτ

= c

∫ t+1

t

(‖u(s)‖2 + ‖U(s)‖2)(|u(s)|2 + |z(θs−t−1ω)|2)ds

≤ c(R1(ω)2 + max
−1≤t≤0

{|z(θtω)|2}
∫ t+1

t

(‖u(s)‖2 + ‖U(s)‖2)ds

≤ c(R1(ω)2 + max
−1≤t≤0

{|z(θtω)|2})C1(ω) := C2(ω),

(4.27)

∫ t+1

t

h(s, θ−t−1ω)ds

= c

∫ t+1

t

‖U(s)‖2ds+ c

∫ t+1

t

|u(s)|2(‖z(θs−t−1ω)‖4 + ‖Z(θs−t−1ω)‖4)ds

+
∫ t+1

t

H(θs−t−1ω)ds

≤ c max
−1≤t≤0

{‖z(θtω)‖4 + ‖Z(θtω)‖4}(C1(ω) +R1(ω)2) +
∫ 0

−1

H(θsω)ds

:= C3(ω).

(4.28)

Then by (4.26)–(4.28) it gives that for all t ≥ T and l ∈ [t, t+ 1],

‖U(l, θ−t−1ω,V0(θ−tω)− Z(θ−tω))‖2 ≤ ceC2(ω)(C1(ω) + C3(ω)) := R2(ω)2.
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This completes the proof. �

Lemma 4.4. Assume that the expectation EM < 0, where M is in (3.4). Let
D ∈ D. Then for P-a.e. ω ∈ Ω and every ε > 0, there are N = N(ε, ω),K =
K(ω), and T = T (ε,D, ω) > 0 such that for all t ≥ T and m ≥ N , the solution
U(t, ω,V0(ω)− Z(ω)) of the initial problem (3.3) with V0 ∈ D satisfies that

‖PmU(t, θ−tω,V0(θ−tω)− Z(θ−tω))‖ ≤ K,
‖(I − Pm)U(t, θ−tω,V0(θ−tω)− Z(θ−tω))‖ ≤ ε,

where D is the collection of tempered random subsets of H.

Proof. Multiplying (3.3) by AUm and then integrating over O, we have
d

dt
((ν + κ)‖um‖2 + γ‖Um‖2) + 2|AUm|2

= −2(LU, AUm)− 2(B(u+ z,U + Z), AUm)− 2(LZ, AUm) + 2(F,AUm),
(4.29)

where
− (LU, AUm)

= −2κ(ν + κ)(∇× U,∆um)− 2κγ(∇× u,∆Um)− 4κγ‖Um‖2

≤ 1
2
|AUm|2 + 2κ2‖U‖2,

(4.30)

− (LZ, AUm)

= −2κ(ν + κ)(∇× Z,∆um)− 2κγ(∇× z,∆Um) + 4κγ(Z,∆Um)

≤ 1
64
|AUm|2 + c(‖z‖2 + ‖Z‖2 + |Z|2),

(4.31)

2(F,AUm) ≤ 1
32
|AUm|2 + c|F |2. (4.32)

Then from (4.29)–(4.32), we obtain
d

dt
((ν + κ)‖um‖2 + γ‖Um‖2) + |AUm|2

≤ −2(B(u+ z,U + Z), AUm) +
1
16
|AUm|2

+ c‖U‖2 + c(‖z‖2 + ‖Z‖2 + |Z|2 + |F |2).

(4.33)

Likewise, we have

|AUm|2 ≥ λm+1|A1/2Um|2 = λm+1((ν + κ)‖um‖2 + γ‖Um‖2). (4.34)

It remains to estimate the first term on the right hand side of (4.33). To this end,
we rewrite

(B(u+ z,U + Z), AUm)

= (B1(u+ z, u+ z), A1um) + (B2(u+ z, U + Z), A2Um) = I1 + I2,
(4.35)

where

I1 = (B1(u+ z, u+ z), A1um), I2 = (B2(u+ z, U + Z), A2Um).

To estimate I1, we rewrite it as
I1 = (B1(u, u), A1um) + (B1(u, z(θtω)), A1um)

+ (B1(z(θtω), z(θtω)), A1um) + (B1(z(θtω), v), A1um),
(4.36)
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where by (4.4) and (4.5), we calculate that

|(B1(u, u), A1um)|
≤ |(B1(Pmu, u), A1um)|+ |(B1(um, u), A1um)|
≤ ‖Pmu‖L∞‖u‖ |A1um|+ ‖um‖L∞‖u‖ |A1um|

≤ c(1 + log
λm+1

λ1
)1/2‖u‖2 |A1um|+ c‖um‖1/2|A1um|3/2‖u‖

≤ 1
32
|A1um|2 + c(1 + log

λm+1

λ1
)‖u‖4 + c|u|2‖u‖4,

(4.37)

|(B1(u, z(θtω)), A1um)|
≤ |(B1(Pmu, z(θtω)), A1um)|+ |(B1(um, z(θtω)), A1um)|
≤ ‖Pmu‖L∞‖z(θtω)‖ |A1um|+ ‖um‖L∞‖z(θtω)‖ |A1um|

≤ c(1 + log
λm+1

λ1
)1/2‖u‖ ‖z(θtω)‖ |A1um|+ c|um|1/2|A1um|3/2‖z(θtω)‖2

≤ 1
32
|A1um|2 + c(1 + log

λm+1

λ1
)‖u‖2‖z(θtω)‖2 + c|u|2‖z(θtω)‖4,

(4.38)

|(B1(z(θtω), z(θtω)), A1um)| ≤ 1
32
|A1um|2 + c‖z(θtω)‖2H2‖z(θtω)‖2, (4.39)

|(B1(z(θtω), u), A1um)| ≤ 1
32
|A1um|2 + c‖z(θtω)‖2H2‖u‖2. (4.40)

Then it follows from (4.35)–(4.40) that

I1 ≤
1
8
|A1um|2 + c(1 + log

λm+1

λ1
)(‖u‖2‖z(θtω)‖2 + ‖u‖4)

+ c(|u|2‖u‖4 + ‖z(θtω)‖2H2‖u‖2 + |u|2‖z(θtω)‖4

+ ‖z(θtω)‖2H2‖z(θtω)‖2).

(4.41)

Then we estimate I2 in (4.13), by writing it as

I2 = (B2(u, Z(θtω)), A2Um) + (B2(u, U), A2Um)

+ (B2(z(θtω), Z(θtω)), A2Um) + (B2(z(θtω), U), A2Um),
(4.42)

where
|(B2(u, U), A2Um)|
≤ |(B2(Pmu, U), A2Um)|+ |(B2(um, U), A2Um)|
≤ ‖Pmu‖L∞‖U‖ |A2Um|+ ‖um‖L∞‖U‖ |A2Um|

≤ c‖u‖(1 + log
λm+1

λ1
)1/2‖U‖ |A2Um|+ c|u|1/2|A1um|1/2‖U‖ |A2Um|

≤ 1
32
|A2Um|2 + c(1 + log

λm+1

λ1
)‖u‖2‖U‖2 + c|u| |A1um| ‖U‖2

≤ 1
32
|A2Um|2 + c(1 + log

λm+1

λ1
)‖u‖2‖U‖2 +

1
32
|A1um|2 + c|u|2‖U‖4,

(4.43)

|(B2(u, Z(θtω)), A2Um)| ≤ 1
32
|A2Um|2 + c(1 + log

λm+1

λ1
)‖u‖2‖Z(θtω)‖2

+
1
32
|A1um|2 + c|u|2‖Z(θtω)‖4,

(4.44)
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|(B2(z(θtω), Z(θtω)), A2Um)| ≤ 1
32
|A2Um|2 + c‖z(θtω)‖2H2‖Z(θtω)‖2, (4.45)

|(B2(z(θtω), U), A2Um)| ≤ 1
32
|A2Um|2 + c‖z(θtω)‖2H2‖U‖2. (4.46)

Then it follows from (4.42)–(4.46) that

I2 ≤
1
8
|A2Um|2 +

1
8
|A1um|2 + c(1 + log

λm+1

λ1
)
(
‖u‖2‖U‖2

+ ‖u‖2‖Z(θtω)‖2
)

+ c(|u|2‖U‖4 + |u|2‖Z(θtω)‖4 + c‖z(θtω)‖2H2‖U‖2

+ ‖z(θtω)‖2H2‖Z(θtω)‖2).

(4.47)

Then we incorporate (4.34), (4.35), (4.41) and (4.47) into (4.33) to give

d

dt
((ν + κ)‖um‖2 + γ‖Um‖2) ≤ −λm+1((ν + κ)‖um‖2 + γ‖Um‖2)

+ (1 + log
λm+1

λ1
)P (t, ω) +Q(t, ω),

(4.48)

where

P (t, ω) = c(‖u‖4 + ‖u‖2‖z(θtω)‖2 + ‖u‖2‖U‖2 + ‖u‖2‖Z(θtω)‖2),

Q(t, ω) = c(‖U‖2 + |u|2‖u‖4 + |u|2‖z(θtω)‖4 + |u|2‖U‖4 + ‖u‖2‖Z(θtω)‖4

+ ‖z(θtω)‖2H2‖U‖2 + ‖z(θtω)‖2H2‖Z(θtω)‖2 + ‖z(θtω)‖2H2‖z(θtω)‖2

+ ‖z(θtω)‖2H2‖u‖2 + |Z(θtω)|2 + ‖z(θtω)‖2 + ‖Z(θtω)‖2 + |F |2).

Multiplying (4.48) by eλm+1t and then integrating over the interval [t, t + 1], we
infer that

‖Um(t+ 1, ω,V0(ω)− Z(ω))‖2

≤ c(1 + log
λm+1

λ1
)e−λm+1(t+1)

∫ t+1

t

eλm+1sP (s, ω)ds

+ e−λm+1(t+1)

∫ t+1

t

eλm+1sQ(s, ω)ds

+ e−λm+1(t+1)

∫ t+1

t

eλm+1s‖Um(s, ω,V0(ω)− Z(ω))‖2ds.

(4.49)

According to Lemma 4.3, there exists T = T (D,ω) > 0 such that for all t ≥ T ,∫ t+1

t

eλm+1sP (s, θ−t−1ω)ds

≤ c
∫ t+1

t

eλm+1s
(
R2(ω)4 +R2(ω)2‖z(θs−t−1ω)‖2

+R2(ω)4 +R2(ω)2‖Z(θs−t−1ω)‖2
)
ds

≤ c

λm+1
eλm+1(t+1)(2R2(ω)4 +R2(ω)2 sup

−1≤s≤0
‖z(θsω)‖2

+R2(ω)2 sup
−1≤s≤0

‖Z(θsω)‖2)

:=
R̂(ω)
λm+1

eλm+1(t+1),

(4.50)
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where

R̂(ω) = c(2R2(ω)4 +R2(ω)2 sup
−1≤s≤0

‖z(θsω)‖2 +R2(ω)2 sup
−1≤s≤0

‖Z(θsω)‖2)

is independent of λm+1. By a similar calculation as (4.50), we find that there exists

a random variable ˆ̂
R(ω) such that for all t ≥ T ,∫ t+1

t

eλm+1sQ(t, θ−t−1ω)ds ≤
ˆ̂
R(ω)
λm+1

eλm+1(t+1), (4.51)

and ∫ t+1

t

eλm+1s‖Um(s, θ−t−1ω)‖2ds ≤ R2(ω)2

λm+1
eλm+1(t+1), (4.52)

where R2(ω) is in Lemma 4.3. Then (4.49), together with (4.50)–(4.52), implies
that for all t ≥ T ,

‖Um(t+ 1, θ−t−1ω,V0(θ−t−1ω)− Z(θ−t−1ω))‖2

≤ 1
λm+1

(1 + log
λm+1

λ1
)R̂(ω) +

1
λm+1

( ˆ̂
R(ω) +R2(ω)2)→ 0,

as m→ +∞. As a consequence, for every ε > 0 and D ∈ D, there exists an integer
N and positive constant K = K(ω) such that for all t ≥ T and m ≥ N ,

‖(I − Pm)U(t, θ−tω,V0(θ−tω)− Z(θ−tω))‖ ≤ ε,
‖PmU(t, θ−tω,V0(θ−tω)− Z(θ−tω))‖ ≤ K.

This concludes the proof. �

Lemma 4.5. Assume that the expectation EM < 0, where M is in (3.4). Then
the RDS ϕ generated by the solution of stochastic michropolar fluid flows (1.1) is
omega-limit compact in V; i.e., for every ε > 0 and an arbitrary D ∈ D, there is
an T = T (ε,D, ω) > 0 such that for P-a.e. ω ∈ Ω,

k
(
∪t≥T ϕ(t, θ−tω)D(θ−tω)

)
≤ ε,

where D is the collection of tempered random subsets of H.

Proof. By Lemma 4.4, there exist constants K̂(ω) and T = T (ε,D, ω) and N1 ∈
N such that for all t ≥ T and m ≥ N1, there hold ‖PmU(t, θ−tω,V0(θ−tω) −
Z(θ−tω))‖ ≤ K̂(ω) and

‖(I − Pm)U(t, θ−tω,V0(θ−tω)− Z(θ−tω))‖ ≤ ε

2
. (4.53)

Note that ‖PmZ(ω)‖ ≤ ‖Z(ω)‖, and

‖(I − Pm)Z(ω)‖ ≤ 1
λm+1

‖Z(ω)‖H2 → 0

as m→∞; and then there exists N2 ∈ N such that for every m ≥ N2,

‖PmZ(ω)‖ ≤ ‖Z(ω)‖, ‖(I − Pm)Z(ω)‖ ≤ ε

2
. (4.54)

Put N = max{N1, N2}, by (4.53) and (4.54) we find that there exist K(ω) =
K̂(ω) + ‖Z(ω)‖2 and T = T (ε,D, ω) > 0 such that for all t ≥ T ,

‖PNϕ(t, θ−tω)D(θ−tω)‖ ≤ K(ω), (4.55)

‖(I − PN )ϕ(t, θ−tω)D(θ−tω)‖ ≤ ε. (4.56)
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That is to say the RDS ϕ satisfies the flattening conditions in V; see [21]. By
utilizing the additive property of Kuratowski measure of non-compactness; see, [22,
Lemma 2.5 (ii)], it follows from (4.55) and (4.56) that for P-a.e. ω ∈ Ω,

k
(
∪t≥T ϕ(t, θ−tω)D(θ−tω)

)
≤ k

(
PN

(
∪t≥T ϕ(t, θ−tω)D(θ−tω)

))
+ k
(

(I − PN )
(
∪t≥T ϕ(t, θ−tω)D(θ−tω)

))
≤ 0 + k(BV(0, ε)) = 2ε,

where BV(0, ε) is the ε- neighborhood at centre 0 in V. This completes the proof.
�

Proof of Theorem 3.3. According to Lemma 4.5, by the embedding relation V ↪→
H, we can show that ϕ is omega-limit compact in H. But by Lemma 4.2, ϕ pos-
sesses a tempered random absorbing set D̂ ∈ D in H. Thus by the first conclusion
in Theorem 2.3, we know that ϕ admits an (H,H)-random attractor AH. From
Lemma 4.5, ϕ is (H,V)-omega-limit compact. Then the second conclusion in The-
orem 2.3 implies that the existence of (H,V)-random attractor AV . Furthermore,
AV = AH. �
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