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INVARIANT REGIONS AND GLOBAL SOLUTIONS FOR
REACTION-DIFFUSION SYSTEMS WITH A TRIDIAGONAL

SYMMETRIC TOEPLITZ MATRIX OF DIFFUSION
COEFFICIENTS

SALEM ABDELMALEK

Abstract. In this article we construct the invariant regions for m-component

reaction-diffusion systems with a tridiagonal symmetric Toeplitz matrix of dif-
fusion coefficients and with nonhomogeneous boundary conditions. We estab-

lish the existence of global solutions, and use Lyapunov functional methods.

The nonlinear reaction term is assumed to be of polynomial growth.

1. Introduction

In recent years, the existence of global solutions for nonlinear parabolic systems
has received considerable attention. Among valuable works is the one by Morgan
[12], where where all the components satisfy the same boundary conditions (Neu-
mann or Dirichlet), and the reaction terms are polynomially bounded and satisfy
certain inequalities. Hollis, later, completed the work of Morgan and established
global existence in the presence of mixed boundary conditions subject to certain
structure requirements of the system. In 2007, Abdelmalek and Kouachi [1] show
that solutions of m-component reaction-diffusion systems with a diagonal diffusion
matrix exist globally (for m ≥ 2) and reaction terms of polynomial growth. In
the case of 2 × 2-systems, Haraux and Youkana [3] using a judicious Lyapunov
functional, succeeded in considering sub-exponential non-linearities. Kouachi and
Youkana [10] generalized the results of Haraux and Youkana [3] to the triangular
case. Then, Kanel and Kirane [8, 9] proved the global existence for a full matrix of
diffusion coefficients under certain restrictions.

The results obtained in this work prove the existence of global solutions with
nonhomogeneous Neumann, Dirichlet, or Robin conditions. The reaction terms are
again assumed to be of polynomial growth and satisfy a mere single inequality. The
diffusion matrix is a tri-diagonal symmetric Toeplitz matrix.
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In this article, we use the following notation and assumptions: we denote by
m ≥ 2 the number of equations of the system (i.e. an m-component system):

∂u1

∂t
− a∆u1 − b∆u2 = f1(U),

∂u`
∂t
− b∆u`−1 − a∆u` − b∆u`+1 = f`(U), ` = 2, . . . ,m− 1,

∂um
∂t
− b∆um−1 − a∆um = fm(U),

(1.1)

with the boundary conditions

αu` + (1− α)∂ηu` = β`, ` = 1, . . . ,m, on ∂Ω× {t > 0}, (1.2)

and the initial data

u`(0, x) = u0
`(x), ` = 1, . . . ,m, on Ω, (1.3)

where

(i) for nonhomogeneous Robin boundary conditions, we use 0 < α < 1, β` ∈ R,
` = 1, . . . ,m;

(ii) for homogeneous Neumann boundary conditions, we use α = β` = 0, ` =
1, . . . ,m;

(iii) for homogeneous Dirichlet boundary conditions, we use 1 − α = β` = 0,
` = 1, . . . ,m.

Here Ω is an open bounded domain of class C1 in Rn with boundary ∂Ω, ∂
∂η denotes

the outward normal derivative on ∂Ω, and U = (u`)m`=1. The constants a and b are
supposed to be strictly positive and satisfy the condition

2b cos
π

m+ 1
< a. (1.4)

The initial data are assumed to be in the regions:

ΣL,Z =
{

(u0
1, . . . , u

0
m) ∈ Rm :

m∑
k=1

u0
k sin

(m+ 1− `)kπ
m+ 1

≥ 0,

` ∈ L,

m∑
k=1

u0
k sin

(m+ 1− z)kπ
m+ 1

≤ 0, z ∈ Z
}
,

(1.5)

with
m∑
k=1

βk sin
(m+ 1− `)kπ

m+ 1
≥ 0, ` ∈ L,

m∑
k=1

βk sin
(m+ 1− z)kπ

m+ 1
≤ 0, z ∈ Z,

where

L ∩ Z = ∅, L ∪ Z = {1, 2, . . . ,m}.

Hence, we can see that there are 2m regions. The subsequent work is similar for all
of these regions as will be shown at the end of the paper. Let us now examine the
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first region and then comment on the remaining cases. The chosen region is the
case where L = {1, 2, . . . ,m} and Z = ∅: we have

ΣL,∅ =
{

(u0
1, . . . , u

0
m) ∈ Rm :

m∑
k=1

u0
k sin

(m+ 1− `)kπ
m+ 1

≥ 0, ` ∈ L
}

(1.6)

with
m∑
k=1

βk sin
(m+ 1− `)kπ

m+ 1
≥ 0, ` ∈ L.

The aim is now to study the existence of global solutions for the reaction-diffusion
system (1.1) in this region. To achieve this aim, we need to diagonalize the diffusion
matrix, see formula (4.1). First, let us define the reaction diffusion functions as

F`(w1, w2, . . . , wm) =
m∑
k=1

fk(U) sin
(m+ 1− `)kπ

m+ 1
, (1.7)

where

w` =
m∑
k=1

uk sin
(m+ 1− `)kπ

m+ 1
. (1.8)

The defined functions that satisfy the following three conditions:
(A1) The functions F` are continuously differentiable on Rm+ for all ` = 1, . . . ,m,

and satisfy F`(w1, . . . , w`−1, 0, w`+1, . . . , wm) ≥ 0, for all w` ≥ 0, ` =
1, . . . ,m;

(A2) The functions F` are of polynomial growth (see Hollis and Morgan [5]),
which means that for all ` = 1, . . . ,m with integer N ≥ 1,

|F`(W )| ≤ C1

(
1 +

m∑
`=1

w`

)N
on (0,+∞)m; (1.9)

(A3) The inequality
m−1∑
`=1

D`F`(W ) + Fm(W ) ≤ C2

(
1 +

m∑
`=1

w`

)
, (1.10)

holds for all w` ≥ 0, ` = 1, . . . ,m, and all constants D` ≥ D`, ` = 1, . . . ,m
where D`, ` = 1, . . . ,m are positive constants sufficiently large. Note that
C1 and C2 are positive and uniformly bounded functions defined on Rm+ .

2. Preliminary observations and notation

The usual norms in spaces Lp(Ω), L∞(Ω) and C(Ω) are denoted respectively by

‖u‖pp =
1
|Ω|

∫
Ω

|u(x)|pdx, ‖u‖∞ = ess, supx∈Ω |u(x)|, ‖u‖C(Ω) = max
x∈Ω
|u(x)|.

(2.1)
It is well-known that to prove the existence of global solutions to a reaction-

diffusion system (see Henry [4]), it suffices to derive a uniform estimate of the
associated reaction term on [0;Tmax) in the space Lp(Ω) for some p > n/2. Our
aim is to construct polynomial Lyapunov functionals allowing us to obtain Lp-
bounds on the components, which leads to global existence. Since the reaction
terms are continuously differentiable on Rm+ , it follows that for any initial data in
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C(Ω), it is easy to check directly their Lipschitz continuity on bounded subsets of
the domain of a fractional power of the operator

D = −


λ1∆ 0 . . . 0

0 λ2∆ . . . 0
...

...
. . .

...
0 0 . . . λm∆

 . (2.2)

Under these assumptions, the local existence result is well known (see Friedman [2]
and Pazy [13]).

Assumption (A1) contains smoothness and quasi-positivity conditions that guar-
antee local existence and nonnegativity of solutions as long as they exist, via the
maximum principle (see Smoller [15]). Assumption (A3) is the usual polynomial
growth condition necessary to obtain uniform bounds from p-dependent LP esti-
mates. (see Abdelmalek and Kouachi [1], and Hollis and Morgan [6]).

3. Some properties of the diffusion matrix

Lemma 3.1. Considering the reaction-diffusion system in (1.1), the resulting m×
m diffusion matrix is given by

A =



a b 0 · · · 0 0

b a b
. . . 0 0

0 b a
. . .

...
...

...
. . . . . . . . . b 0

0 · · · 0 b a b
0 · · · 0 0 b a


. (3.1)

This matrix is said to be positive definite if the condition in (1.4) is satisfied.

Proof. The proof of this lemma can be found in [7]. Note that if the matrix is
positive definite, it follows that detA > 0. �

Lemma 3.2. The eigenvalues (λ` < λ`−1; ` = 2, . . . ,m) of A are positive and are
given by

λ` = a+ 2b cos(
`π

m+ 1
), (3.2)

with the corresponding eigenvectors

v` =
(

sin
`π

m+ 1
, sin

2`π
m+ 1

, . . . , sin
m`π

m+ 1

)t
,

for ` = 1, . . . ,m. Hence, we conclude that A is diagonalizable. For simplicity, we
write

λ̄` = λm+1−` = a+ 2b cos(
(m+ 1− `)π

m+ 1
), ` = 1, . . . ,m; (3.3)

thus λ̄` < λ̄`+1, ` = 2, . . . ,m.

Proof. Recall that the diffusion matrix is positive definite, hence its eigenvalues are
necessarily positive. For an eigenpair (λ,X), the components in (A−λI)X = 0 are

bxk−1 + (a− λ)xk + bxk+1 = 0, k = 1, . . . ,m,
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with x0 = xm+1 = 0, or equivalently,

xk+2 + (
a− λ
b

)xk+1 + xk = 0, k = 0, . . . ,m− 1.

We seek solutions in the form xk = ξrk for constants ξ and r. This leads to the
quadratic equation

r2 +
(a− λ

b

)
r + 1 = 0,

with roots r1 and r2. The general solution of xk+2 + (a−λb )xk+1 + xk = 0 is

xk =

{
αrk1 + βrk, if r1 6= r2,

αρk + βkρk, if r1 = r2 = ρ,

where α and β are arbitrary constants.
For the eigenvalue problem at hand, r1 and r2 must be distinct -otherwise xk =

αρk + βkρk, and x0 = xm+1 = 0 implies that each xk = 0, which is impossible
because X is an eigenvector. Hence, xk = αrk1 + βrk, and x0 = xm+1 = 0 yields{

0 = α+ β
0 = αrm+1

1 + βrm+1
2

}
⇒ (

r1

r2
)m+1 =

−β
α

= 1⇒ r1

r2
= e

2iπ`
m+1 ;

therefore, r1 = r2e
2iπ`
m+1 for some 1 ≤ ` ≤ m. This coupled with

r2 + (
a− λ
b

)r + 1 = (r − r1)(r − r2)⇒ { r1r2 = 1,
r1 + r2 = −(a−λb ),

leads to r1 = e
iπ`
m+1 , r2 = e−

iπ`
m+1 , and

λ = a+ b
(
e
iπ`
m+1 + e−

iπ`
m+1

)
= a+ 2b cos(

`π

m+ 1
).

The eigenvalues of A can, therefore, be given by

λ` = a+ 2b cos(
`π

m+ 1
), for ` = 1, . . . ,m.

Since these λ`’s are all distinct (cos θ is a strictly decreasing function of θ on
(0, π), and b 6= 0), A is necessarily diagonalizable.

Finally, the `th component of any eigenvector associated with λ` satisfies xk =
αrk1 + βrk2 with α+ β = 0, thus

xk = α
(
e

2iπk
m+1 − e−

2iπk
m+1

)
= 2iα sin

( k

m+ 1
π
)
.

Setting α = 1/(2i) yields a particular eigenvector associated with λ` given by

v` =
(

sin(
1`π
m+ 1

), sin(
2`π
m+ 1

), . . . , sin(
m`π

m+ 1
)
)t
.

Because the λ`’s are distinct, {v1, v2, . . . , vm}, is a complete linearly independent
set, so (v1|v2| . . . |vm) is the diagonal form of A.

Now, let us prove that

λ` < λ`−1, ` = 2, . . . ,m.

We have ` > `− 1, whereupon

`π

m+ 1
>

(`− 1)π
m+ 1

,



6 SALEM ABDELMALEK EJDE-2014/247

The function cos θ is strictly decreasing in θ on (0, π), thus we have

cos
( `π

m+ 1
)
< cos

( (`− 1)π
m+ 1

)
.

Finally, multiplying both sides of the inequality by 2b and adding a yields

λ` = a+ 2b cos
( `π

m+ 1
)
< a+ 2b cos

( (`− 1)π
m+ 1

)
= λ`−1.

�

4. Main results

Proposition 4.1. The eigenvectors of the diffusion matrix associated with the
eigenvalues λ` are defined as v` = (v`1, v`2, . . . , v`m)T . They satisfy the equations:

∂w`
∂t
− λ̄`∆w` = F`(w1, w2, . . . , wm), (4.1)

αw` + (1− α)∂ηw` = ρ` on ∂Ω× {t > 0}, (4.2)

where the reaction term F`, and w` are given in (1.8) and (1.7), respectively.

Note that condition (1.4) guarantees the parabolicity of the proposed reaction-
diffusion system in (1.1)–(1.3), which implies it is equivalent to (4.1)–(4.2) in the
region

ΣL,∅ =
{

(u0
1, . . . , u

0
m) ∈ Rm : w0

` =
m∑
k=1

u0
k sin

(m+ 1− `)kπ
m+ 1

≥ 0, ` ∈ L}

with

ρ0
` =

m∑
k=1

βk sin
(m+ 1− `)kπ

m+ 1
≥ 0, ` ∈ L.

This implies that the components w` are necessarily positive.

Proposition 4.2. System (4.1)–(4.2) admits a unique classical solution (w1, w2,
. . . , wm) on (0, Tmax)× Ω.

If Tmax <∞ then lim
t↗Tmax

m∑
`=1

‖w`(t, .)‖∞ =∞, (4.3)

where Tmax (‖w0
1‖∞, ‖w0

2‖∞, . . . , ‖w0
m‖∞) denotes the eventual blow-up time.

Before we present the main result of this paper, let us define

Kr
l = Kr−1

r−1 ×K
r−1
l − [Hr−1

l ]2, r = 3, . . . , l, (4.4)

where

Hr
l = det

1≤`,κ≤l

(
(a`,κ) ` 6=l,...r+1

κ6=l−1,...,r

) k=r−2∏
k=1

(
det[k]

)2(r−k−2)

, r = 3, . . . , l − 1,

K2
l = λ̄1λ̄l

l−1∏
k=1

θ
2(pk+1)2

k

m−1∏
k=l

θ
2(pk+2)2

k︸ ︷︷ ︸
positive value

[ l−1∏
k=1

θ2
k −A2

1l

]
,
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H2
l = λ̄1

√
λ̄2λ̄lθ

2(p1+1)2

1

l−1∏
k=2

θ
(pk+2)2+(pk+1)2

k

m−1∏
k=l

θ
2(pk+2)2

k︸ ︷︷ ︸
positive value

[
θ2

1A2l −A12A1l

]
.

The expression det
1≤`,κ≤l

((a`,κ) 6̀=l,...r+1
κ6=l−1,...r

) denotes the determinant of r square symmet-

ric matrix obtained from (a`,κ)1≤`,κ≤m by removing the (r+ 1)th, (r+ 2)th, . . . , lth

rows and the rth, (r + 1)th, . . . , (l − 1)th columns. where det[1], . . . ,det[m] are the
minors of the matrix (a`,κ)1≤`,κ≤m. The elements of the matrix are:

a`κ =
λ̄` + λ̄κ

2
θ
p21
1 . . . θ

p2(`−1)

(`−1) θ
(p`+1)2

` . . . θ
(p(κ−1)+1)2

κ−1 θ(pκ+2)2

κ . . . θ
(p(m−1)+2)2

(m−1) . (4.5)

where λ̄` in (3.2)–(3.3). Note that A`κ = λ̄`+λ̄κ

2
√
λ̄`λ̄κ

for all `, κ = 1, . . . ,m. and

θ`; ` = 1, . . . , (m− 1) are positive constants.

Theorem 4.3. Suppose that the functions F`, ` = 1, . . . ,m, are of polynomial
growth and satisfy condition (1.10) for some positive constants D`, ` = 1, . . . ,m,
sufficiently large. Let (w1(t, ·), w2(t, ·), . . . , wm(t, ·)) be the solution of (4.1)–(4.2)
and

L(t) =
∫

Ω

Hpm(w1(t, x), w2(t, x), . . . , wm(t, x))dx, (4.6)

where

Hpm(w1, . . . , wm)

=
pm∑

pm−1=0

· · ·
p2∑
p1=0

Cpm−1
pm . . . Cp1p2 θ

p21
1 . . . θ

p2(m−1)

(m−1) w
p1
1 wp2−p12 . . . wpm−pm−1

m ,

with pm a positive integer and Cp`pκ = pκ!
p`!(pκ−p`)! . Also suppose that the following

condition is satisfied
Kl
l > 0; l = 2, . . . ,m, (4.7)

where Kl
l was defined in (4.4). Then, the functional L is uniformly bounded on the

interval [0, T ∗], T ∗ < Tmax.

Corollary 4.4. Under the assumptions of Theorem 4.3, all solutions of (4.1)–(4.2)
with positive initial data in L∞(Ω) are in L∞(0, T ∗;Lp(Ω)) for some p ≥ 1.

Proposition 4.5. Under the assumptions of Theorem 4.3, and assuming the condi-
tion (1.4) is satisfied, all solutions of (4.1)–(4.2) with positive initial data in L∞(Ω)
are global for some p > Nn

2 .

5. Proofs of main results

For the proof of Theorem 4.3, we first need to define some preparatory Lemmas.

Lemma 5.1. With Hpm being the homogeneous polynomial defined by (4.6), dif-
ferentiating in w1 yields

∂w1Hpm = pm

pm−1∑
pm−1=0

· · ·
p2∑
p1=0

C
pm−1
pm−1 . . . C

p1
p2 θ

(p1+1)2

1 . . . θ
(p(m−1)+1)2

(m−1)

× wp11 wp2−p12 wp3−p23 . . . w(pm−1)−pm−1
m .

(5.1)
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Similarly for ` = 2, . . . ,m− 1, we have

∂w`Hpm = pm

pm−1∑
pm−1=0

· · ·
p2∑
p1=0

C
pm−1
pm−1 . . . C

p1
p2 θ

p21
1 . . . θ

p2(`−1)

`−1 θ
(p`+1)2
` . . . θ

(p(m−1)+1)2

(m−1)

× wp11 wp2−p12 wp3−p23 . . . w(pm−1)−pm−1
m .

(5.2)
Finally, differentiating in wm yields

∂wmHpm = pm

pm−1∑
pm−1=0

· · ·
p2∑
p1=0

C
pm−1
pm−1 . . . C

p2
p3C

p1
p2 θ

p21
1 θ

p22
2 . . . θ

p2(m−1)

(m−1)

× wp11 wp2−p12 wp3−p23 . . . w(pm−1)−pm−1
m .

(5.3)

Lemma 5.2. The second partial derivative of Hpm in w1 is

∂w2
1
Hn = pm(pm − 1)

pm−2∑
pm−1=0

· · ·
p3∑
p2=0

p2∑
p1=0

C
pm−1
pm−2 . . . C

p1
p2

× θ(p1+2)2

1 . . . θ
(p(m−1)+2)2

(m−1) wp11 wp2−p12 . . . w(pm−2)−pm−1
m .

(5.4)

Similarly, we obtain

∂w2
`
Hn = pm(pm − 1)

pm−2∑
pm−1=0

· · ·
p2∑
p1=0

C
pm−1
pm−2 . . . C

p1
p2

× θp
2
1

1 θ
p22
2 . . . θ

p2`−1
`−1 θ

(p`+2)2

` . . . θ
(p(m−1)+2)2

(m−1) wp11 wp2−p12 . . . w(pm−2)−pm−1
m .

(5.5)
for all ` = 2, . . . ,m− 1,

∂w`wκHn = pm(pm − 1)
pm−2∑
pm−1=0

· · ·
p2∑
p1=0

C
pm−1
pm−2 . . . C

p1
p2

× θp
2
1

1 . . . θ
p2`−1
`−1 θ

(p`+1)2

` . . . θ
(pκ−1+1)2

κ−1 θ(pκ+2)2

κ . . . θ
(p(m−1)+2)2

(m−1)

× wp11 wp2−p12 . . . w(pm−2)−pm−1
m

(5.6)

for all 1 ≤ ` < κ ≤ m. Finally, the second derivative in wm is

∂w2
m
Hn = pm(pm − 1)

pm−2∑
pm−1=0

· · ·
p2∑
p1=0

C
pm−1
pm−2 . . . C

p1
p2 θ

p21
1 . . . θ

p2(m−1)

(m−1)

wp11 wp2−p12 . . . w(pm−2)−pm−1
m .

(5.7)

Lemma 5.3 ([1]). Let A be the m-square symmetric matrix defined by A = (a`κ),
with 1 ≤ `, κ ≤ m, then

Km
m = det[m]

k=m−2∏
k=1

(det[k])2(m−k−2)
, m > 2,

K2
2 = det[2],

(5.8)

where

Kl
m = Kl−1

l−1K
l−1
m − (H l−1

m )2, l = 3, . . . ,m,



EJDE-2014/247 INVARIANT REGIONS AND GLOBAL SOLUTIONS 9

H l
m = det

1≤`,κ≤m

(
(a`,κ)` 6=m,...l+1

κ6=m−1,...l

) k=l−2∏
k=1

(
det[k]

)2(l−k−2)

, l = 3, . . . ,m− 1,

K2
m = a11amm − (a1m)2, H2

m = a11a2m − a12a1m.

Proof of Theorem 4.3. The aim is to prove that L(t) is uniformly bounded on the
interval [0, T ∗], T ∗ < Tmax. Let us start by differentiating L with respect to t:

L′(t) =
∫

Ω

∂tHpmdx =
∫

Ω

m∑
`=1

∂w`Hpm

∂w`
∂t

dx

=
∫

Ω

m∑
`=1

∂w`Hpm(λ̄`∆w` + F`)dx

=
∫

Ω

m∑
`=1

λ̄`∂w`Hpm∆w`dx+
∫

Ω

m∑
`=1

∂w`HpmF`dx

= I + J,

where

I =
∫

Ω

m∑
`=1

λ̄`∂w`Hpm∆w`dx, (5.9)

J =
∫

Ω

m∑
`=1

∂w`HpmF`dx. (5.10)

Using Green’s formula, we can divide I into two parts I1 and I2 where

I1 =
∫
∂Ω

m∑
`=1

λ̄`∂w`Hpm∂ηw`dx, (5.11)

I2 = −
∫

Ω

[((λ` + λκ
2

∂wκw`Hpm

)
1≤`,κ≤m

)
T
]
T dx, (5.12)

for p1 = 0, . . . , p2, p2 = 0, . . . , p3 . . . pm−1 = 0, . . . , pm − 2 and

T = (∇w1,∇w2, . . . ,∇wm)t.

Applying Lemmas 5.1 and 5.2 yields( λ̄` + λ̄κ
2

∂wκw`Hpm

)
1≤`,κ≤m

= pm(pm − 1)
pm−2∑
pm−1=0

· · ·
p2∑
p1=0

C
pm−1
pm−2 . . . C

p1
p2

(
(a`κ)1≤`,κ≤m

)
wp11 . . . w(pm−2)−pm−1

m ,

(5.13)
where (a`κ)1≤`,κ≤m is the matrix defined in formula (4.5).

Now, the proof of positivity for I is reduced to proving that there exists a positive
constant C4 independent of t ∈ [0, Tmax) such that

I1 ≤ C4 for all t ∈ [0, Tmax), (5.14)

and that
I2 ≤ 0, (5.15)

for several boundary conditions. First, let us prove the formula in (5.14):
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(i) If 0 < α < 1 , then using the boundary conditions (1.2) we obtain

I1 =
∫
∂Ω

m∑
`=1

λ̄`∂w`Hpm(γ` − σw`)dx,

where σ = α
1−α and γ` = β`

1−α , for ` = 1, . . .m. Since

H(W ) =
m∑
`=1

λ`∂w`Hpm(γ` − σw`) = Pn−1(W )−Qn(W ),

where Pn−1 and Qn, are polynomials with positive coefficients and degrees n − 1
and n, respectively, and since the solution is positive, it follows that

lim supPm
`=1 |w`|→+∞

H(W ) = −∞, (5.16)

which proves that H is uniformly bounded on Rm+ and consequently (5.14).
(ii) If α = 0, then I1 = 0 on [0, Tmax).
(iii) The case of homogeneous Dirichlet conditions is trivial, since in this case

the positivity of the solution on [0, Tmax) × Ω implies ∂ηw` ≤ 0,∀` = 1, . . .m on
[0, Tmax) × ∂Ω. Consequently, one obtains the same result in (5.14) with C4 = 0.
Hence, the proof of (5.14) is complete.

Now, we pass to the proof of (5.15): Recall the matrix (a`κ)1≤`,κ≤m which was
defined in formula (4.5). The quadratic forms (with respect to ∇w`, ` = 1, . . . ,m)
associated with the matrix (a`κ)1≤`,κ≤m, with p1 = 0, . . . , p2, p2 = 0, . . . , p3

. . . pm−1 = 0, . . . , pm−2, is positive definite since its minors det[1], det[2], . . .det[m]
are all positive. Let us examine these minors and prove their positivity by induction.

The first minor

det[1] = λ1θ
(p1+2)2

1 θ
(p2+2)2

2 . . . θ
(p(m−1)+2)2

(m−1) > 0

is trivial for p1 = 0, . . . , p2, p2 = 0, . . . , p3 . . . pm−1 = 0, . . . , pm − 2.
For the second minor det[2], according to Lemma 5.3, we obtain

det[2] = K2
2 = λ1λ2θ

2(p1+1)2

1

m−1

Π
k=2

θ
2(pk+2)2

k [θ2
1 −A2

12].

Using (4.7) for l = 2 we get det[2] > 0.
Similarly, for the third minor det[3], and again using Lemma 5.3, we have

K3
3 = det[3] det[1].

Since det[1] > 0, we conclude that

sign(K3
3 ) = sign(det[3]).

Again, using (4.7) for l = 3, we obtain det[3] > 0.
To conclude the proof, let us suppose det[k] > 0 for k = 1, 2, . . . , l− 1 and show

that det[l] is necessarily positive. We have

det[k] > 0, k = 1, . . . , (l − 1),⇒
k=l−2∏
k=1

(det[k])2(l−k−2)
> 0. (5.17)

From Lemma 5.3, we obtain

Kl
l = det[l]

k=l−2∏
k=1

(det[k])2(l−k−2)
,
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and from (5.17), we obtain sign(Kl
l ) = sign(det[l]). Since Kl

l > 0 according to (4.7)
then det[l] > 0 and the proof of (5.15) is finished. It follows from (5.14) and (5.15)
that I is bounded. Now, let us prove that J in (5.10) is bounded. Substituting the
expressions of the partial derivatives given by 5.1 in the second integral of (5.10)
yields

J =
∫

Ω

[
pm

pm−1∑
pm−1=0

· · ·
p2∑
p1=0

C
pm−1
pm−1 . . . C

p1
p2w

p1
1 wp2−p12 . . . wpm−1−pm−1

m

]

×
(m−1∏
`=1

θ
(p`+1)2

` F1 +
m−1∑
κ=2

κ−1∏
k=1

θ
p2k
k

m−1∏
`=κ

θ
(p`+1)2

` Fκ +
m−1∏
`=1

θ
p2`
` Fm

)
dx

=
∫

Ω

[
pm

pm−1∑
pm−1=0

· · ·
p2∑
p1=0

C
pm−1
pm−1 . . . C

p1
p2w

p1
1 wp2−p12 . . . wpm−1−pm−1

m

]

×
(∏m−1

`=1 θ
(p`+1)2

`∏m−1
`=1 θ

p2`
`

F1 +
m−1∑
κ=2

∏κ−1
k=1 θ

p2k
k

∏m−1
`=κ θ

(p`+1)2

`∏m−1
`=1 θ

p2`
`

Fκ + Fm

)m−1∏
`=1

θ
p2`
` dx

=
∫

Ω

[
pm

pm−1∑
pm−1=0

· · ·
p2∑
p1=0

C
pm−1
pm−1 . . . C

p1
p2w

p1
1 wp2−p12 . . . wpm−1−pm−1

m

]

×
(m−1∏
`=1

θ
(p`+1)2

`

θ
p2`
`

F1 +
m−1∑
κ=2

κ−1∏
k=1

θ
p2k
k

m−1∏
`=κ

θ
(p`+1)2

`

θ
p2`
`

Fκ + Fm

)m−1∏
`=1

θ
p2`
` dx.

Hence, using condition (1.10), we deduce that

J ≤ C5

∫
Ω

[ pm−1∑
pm−1=0

· · ·
p2∑
p1=0

Cp1p2 . . . C
pm−1
pm−1w

p1
1 wp2−p12 . . . wpm−1−pm−1

m (1+
m∑
`=1

w`)
]
dx.

To prove that the functional L is uniformly bounded on the interval [0, T ∗], let us
first write

pm−1∑
pm−1=0

· · ·
p2∑
p1=0

Cp1p2 . . . C
pm−1
pm−1w

p1
1 wp2−p12 . . . wpm−1−pm−1

m

(
1 +

m∑
`=1

w`

)
= Rpm(W ) + Spm−1(W ),

where Rpm(W ) and Spm−1(W ) are two homogeneous polynomials of degrees pm
and pm − 1, respectively. Since all of the polynomials Hpm and Rpm are of degree
pm, there exists a positive constant C6 such that∫

Ω

Rpm(W )dx ≤ C6

∫
Ω

Hpm(W )dx. (5.18)

Applying Hölder’s inequality to the following integral one obtains∫
Ω

Spm−1(W )dx ≤ (meas Ω)
1
pm

(∫
Ω

(Spm−1(W ))
pm
pm−1 dx

) pm−1
pm

.

Since for all w1, w2,..., wm−1 ≥ 0 and wm > 0,

(Spm−1(W ))
pm
pm−1

Hpm(W )
=

(Spm−1(x1, x2, . . . , xm−1, 1))
pm
pm−1

Hpm(x1, x2, . . . , xm−1, 1)
,
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where for all ` ∈ {1, 2, . . . ,m− 1}, x` = w`
w`+1

and

lim
x`→+∞

(Spm−1(x1, x2, . . . , xm−1, 1))
pm
pm−1

Hpm(x1, x2, . . . , xm−1, 1)
< +∞,

one asserts that there exists a positive constant C7 such that

(Spm−1(W ))
pm
pm−1

Hpm(W )
≤ C7, for all w1, w2, . . . , wm ≥ 0. (5.19)

Hence, the functional L satisfies the differential inequality

L′(t) ≤ C6L(t) + C8L
pm−1
pm (t),

which for Z = L
1
pm can be written as

pmZ
′ ≤ C6Z + C8. (5.20)

A simple integration gives the uniform bound of the functional L on the interval
[0, T ∗]. This completes the proof. �

Proof of Corollary 4.4. The proof of is an immediate consequence of Theorem 4.3
and the inequality ∫

Ω

( m∑
`=1

w`(t, x)
)p
dx ≤ C9L(t) on [0, T ∗]. (5.21)

for some p ≥ 1. �

Proof of Proposition 4.2. From Corollary 4.4, there exists a positive constant C10

such that ∫
Ω

( m∑
`=1

w`(t, x) + 1
)p
dx ≤ C10 on [0, Tmax). (5.22)

From (1.9), we have that for all ` ∈ {1, 2, . . . ,m},

|F`(W )|
p
N ≤ C11(W )

( m∑
`=1

W`(t, x)
)p

on [0, Tmax)× Ω. (5.23)

Since w1, w2, . . . , wm are in L∞(0, T ∗;Lp(Ω)) and p
N > n

2 , the solution is global. �

6. Final remarks

Recall that the eigenvectors of the diffusion matrix associated with the eigenvalue
λ` is defined as v` = (v`1, v`2, . . . , v`m)t. It is important to note that if v` is an
eigenvector then so is (−1)v`. In the region considered in previous sections, we only
used the positive v`. The remainder of the 2m regions can be formed using negative
versions of the eigenvectors. In each region, the reaction-diffusion system with a
diagonalized diffusion matrix is formed by multiplying each of the m equations
in (1.1) by the corresponding element of either v` or (−1)v` and then adding the
m equations together. The equations multiplied by elements of v` form a set L,
whereas the equations multiplied by elements of (−1)v` form a set Z. Hence, we
can define the region in the form

ΣL,Z =
{

(u0
1, u

0
2, . . . , u

0
m) ∈ Rm : w0

` =
m∑
k=1

u0
kv`k ≥ 0,
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` ∈ L, w0
z = (−1)

m∑
k=1

u0
kvzk ≥ 0, z ∈ Z

}
with

ρ0
` =

m∑
k=1

βkv(m+1−`)k ≥ 0, ` ∈ L,

ρ0
` = (−1)

m∑
k=1

βkv(m+1−z)k ≥ 0, z ∈ Z.

Using Lemma 3.2 we obtain

ΣL,Z =
{

(u0
1, u

0
2, . . . , u

0
m) ∈ Rm : w0

` =
m∑
k=1

u0
k sin

(m+ 1− `)kπ
m+ 1

≥ 0,

` ∈ L, w0
z = (−1)

m∑
k=1

u0
k sin

(m+ 1− z)kπ
m+ 1

≥ 0, z ∈ Z
}
,

with

ρ0
` =

m∑
k=1

βk sin
(m+ 1− `)kπ

m+ 1
≥ 0, ` ∈ L

ρ0
z = (−1)

m∑
k=1

βk sin
(m+ 1− z)kπ

m+ 1
≥ 0, z ∈ Z,

L ∩ Z = ∅, L ∪ Z = {1, 2, . . . ,m}.
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