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PERIODIC AND SUBHARMONIC SOLUTIONS FOR
FOURTH-ORDER p-LAPLACIAN DIFFERENCE EQUATIONS

XIA LIU, YUANBIAO ZHANG, HAIPING SHI

Abstract. Using critical point theory, we obtain criteria for the existence and
multiplicity of periodic and subharmonic solutions to fourth-order p-Laplacian

difference equations. The proof is based on the Linking Theorem in combina-
tion with variational technique. Recent results in the literature are generalized

and improved.

1. Introduction

Let N, Z and R denote the sets of all natural numbers, integers and real numbers
respectively. For a, b ∈ Z, define Z(a) = {a, a + 1, . . . }, Z(a, b) = {a, a + 1, . . . , b}
when a < b. The symbol * denotes the transpose of a vector.

In this paper, we consider the forward and backward difference equation

∆2
(
γn−2ϕp(∆2un−2)

)
= f(n, un+1, un, un−1), n ∈ Z, (1.1)

where ∆ is the forward difference operator ∆un = un+1− un, ∆2un = ∆(∆un), γn
is real valued for each n ∈ Z, ϕp(s) is the p-Laplacian operator ϕp(s) = |s|p−2s(1 <
p < ∞), f ∈ C(Z × R3,R), γn and f(n, v1, v2, v3) are T -periodic in n for a given
positive integer T .

We may think of (1.1) as a discrete analogue of the fourth-order functional
differential equation

d2

dt2
[
γ(t)ϕp

(d2u(t)
dt2

)]
= f(t, u(t+ 1), u(t), u(t− 1)), t ∈ R. (1.2)

This equation includes the equation

u(4)(t) = f(t, u(t)), t ∈ R, (1.3)

which is used to model deformations of elastic beams [8, 31]. Equations similar
in structure to (1.2) arise in the study of the existence of solitary waves of lattice
differential equations, see Smets and Willem [35].

The theory of nonlinear difference equations has been widely used to study dis-
crete models appearing in many fields such as computer science, economics, neural
networks, ecology, cybernetics, etc. For the general background of difference equa-
tions, one can refer to monographs [1, 19]. Since the last decade, there has been
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much progress on the qualitative properties of difference equations, which included
results on stability and attractivity [12, 23, 26, 42] and results on oscillation and
other topics, see [1, 2, 3, 4, 5, 6, 18, 19, 20, 21, 22, 24, 25, 35, 36, 37, 38, 39, 40, 41].

The motivation of this paper is as follows. It is well known that critical point
theory is a powerful tool that deals with the problems of differential equations [8,
11, 15, 27, 31]. Starting in 2003, critical point theory has been employed to establish
sufficient conditions on the existence of periodic solutions of difference equations.
Particularly, Guo and Yu [14, 15, 16] and Shi et al. [32] studied the existence
of periodic solutions of second-order nonlinear difference equations by using the
critical point theory. Compared to first-order or second-order difference equations,
the study of higher-order equations, and in particular, fourth-order equations, has
received considerably less attention (see, for example, [1, 9, 10, 13, 24, 29, 30, 34, 37]
and the references contained therein). Yan, Liu [37] in 1997 and Thandapani,
Arockiasamy [34] in 2001 studied the fourth-order difference equation

∆2
(
γn∆2un

)
+ f(n, un) = 0, n ∈ Z, (1.4)

and obtained criteria for the oscillation and nonoscillation of solutions for equation
(1.4). In 2005, Cai, Yu and Guo [7] have obtained some criteria for the existence
of periodic solutions of the fourth-order difference equation

∆2
(
γn−2∆2un−2

)
+ f(n, un) = 0, n ∈ Z. (1.5)

In 1995, Peterson and Ridenhour considered the disconjugacy of equation (1.5)
when γn ≡ 1 and f(n, un) = qnun (see [29]). However, to the best of our knowledge,
the results on periodic solutions of fourth-order p-Laplacian difference equations
are very scarce in the literature. We found that [7] is the only paper which deals
with the problem of periodic solutions to fourth-order difference equation (1.5).
Furthermore, since (1.1) contains both advance and retardation, there are very
few manuscripts dealing with this subject. The main purpose of this paper is to
give some sufficient conditions for the existence and multiplicity of periodic and
subharmonic solutions to fourth-order p-Laplacian difference equations. The main
approach used in our paper is the variational technique and the Linking Theorem.
In particular, our results not only generalize the results in the literature [7], but
also improve them. In fact, one can see the Remarks 1.4 and 1.9 for details. The
motivation for the present work stems from the recent papers in [9, 14, 16].

Let
γ = min

n∈Z(1,T )
{γn}, γ = max

n∈Z(1,T )
{γn}.

Our main results read as follows.

Theorem 1.1. Assume that the following hypotheses are satisfied:
(F0) γn > 0 for all n ∈ Z;
(F1) there exists a functional F (n, v1, v2) ∈ C1(Z× R2,R) with F (n, v1, v2) ≥ 0

and it satisfies

F (n+ T, v1, v2) = F (n, v1, v2),

∂F (n− 1, v2, v3)
∂v2

+
∂F (n, v1, v2)

∂v2
= f(n, v1, v2, v3);

(F2) there exist constants δ1 > 0, α ∈
(
0,

γ

2p/2p
(c1/c2)pλpmin

)
such that

F (n, v1, v2) ≤ α
(√

v2
1 + v2

2

)p
, for n ∈ Z and v2

1 + v2
2 ≤ δ2

1 ;
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(F3) there exist constants ρ1 > 0, ζ > 0, β ∈
(

γ̄
2p/2p

(c2/c1)pλpmax,+∞
)

such that

F (n, v1, v2) ≥ β
(√

v2
1 + v2

2

)p
− ζ, for n ∈ Z and v2

1 + v2
2 ≥ ρ2

1,

where c1, c2 are constants which can be referred to (2.4), and λmin, λmax are
constants which can be referred to (2.7).

Then for any given positive integer m > 0, Equation (1.1) has at least three mT -
periodic solutions.

Remark 1.2. By (F3) it is easy to see that there exists a constant ζ ′ > 0 such
that

(F3’)

F (n, v1, v2) ≥ β
(√

v2
1 + v2

2

)p
− ζ ′, ∀(n, v1, v2) ∈ Z× R2.

As a matter of fact, let ζ1 = max
{
|F (n, v1, v2)−β

(√
v2

1 + v2
2

)p+ζ| : n ∈ Z, v2
1+v2

2 ≤
ρ2

1}, ζ ′ = ζ + ζ1, we can easily get the desired result.

Corollary 1.3. Assume that (F0–(F3) are satisfied. Then for any given positive
integer m > 0, (1.1) has at least two nontrivial mT -periodic solutions.

Remark 1.4. The statement in in the above corollary is the same as [7, Theorem
1.1]

Theorem 1.5. Assume that (F0), (F1) and the following conditions are satisfied:

(F4) limρ→0
F (n,v1,v2)

ρp = 0, ρ =
√
v2

1 + v2
2 for all (n, v1, v2) ∈ Z× R2;

(F5) there exist constants θ > p and a1 > 0, a2 > 0 such that

F (n, v1, v2) ≥ a1

(√
v2

1 + v2
2

)θ − a2, ∀(n, v1, v2) ∈ Z× R2.

Then for any given positive integer m > 0, Equation (1.1) has at least three mT -
periodic solutions.

Corollary 1.6. Assume that (F0), (F1), (F4), (F5) are satisfied. Then for any
given positive integer m > 0, Equation (1.1) has at least two nontrivial mT -periodic
solutions.

If f(n, un+1, un, un−1) = qng(un), then (1.1) reduces to the fourth-order nonlin-
ear equation

∆2
(
γn−2ϕp(∆2un−2)

)
= qng(un), n ∈ Z, (1.6)

where g ∈ C(R,R), qn+T = qn > 0, for all n ∈ Z. Then, we have the following
results.

Theorem 1.7. Assume that (F0) and the following hypotheses are satisfied:

(G1) there exists a functional G(v) ∈ C1(R,R) with G(v) ≥ 0 and it satisfies

dG(v)
dv

= g(v);

(G2) there exist constants δ2 > 0, α ∈
(
0,

γ

p (c1/c2)pλpmin

)
such that G(v) ≤ α|v|p,

for |v| ≤ δ2;
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(G3) there exist constants ρ2 > 0, ζ > 0, β ∈
(
γ̄
p (c2/c1)pλpmax,+∞

)
such that

G(v) ≥ β|v|p − ζ, for |v| ≥ ρ2,

where c1, c2 are constants which can be referred to (2.4), and λmin, λmax are
constants which can be referred to (2.7).

Then for any given positive integer m > 0, Equation (1.6) has at least three mT -
periodic solutions.

Corollary 1.8. Assume that (F0), (G1)–(G3) are satisfied. Then for any given
positive integer m > 0, Equation (1.6) has at least two nontrivial mT -periodic
solutions.

Remark 1.9. The statement of above corollary is the same as [7, Theorem 1.2].

The rest of the paper is organized as follows. First, in Section 2 we shall establish
the variational framework associated with (1.1) and transfer the problem of the
existence of periodic solutions of (1.1) into that of the existence of critical points
of the corresponding functional. Some related fundamental results will also be
recalled. Then, in Section 3, we shall complete the proof of the results by using the
critical point method. Finally, in Section 4, we shall give an example to illustrate
the main result.

2. Variational structure and some lemmas

In order to apply the critical point theory, we shall establish the corresponding
variational framework for (1.1) and give some basic notation and useful lemmas. For
the basic knowledge of variational methods, the reader is referred to [17, 27, 28, 31].

Let S be the set of sequences u = (. . . , u−n, . . . , u−1, u0, u1, . . . , un, . . . ) =
{un}+∞n=−∞, that is

S = {{un} : un ∈ R, n ∈ Z}.
For any u, v ∈ S, a, b ∈ R, au+ bv is defined by

au+ bv = {aun + bvn}+∞n=−∞.

Then S is a vector space. For any given positive integers m and T , EmT is defined
as a subspace of S by

EmT = {u ∈ S : un+mT = un, ∀n ∈ Z}.
Clearly, EmT is isomorphic to RmT . EmT can be equipped with the inner product

〈u, v〉 =
mT∑
j=1

ujvj , ∀u, v ∈ EmT , (2.1)

by which we introduce the norm

‖u‖ =
( mT∑
j=1

u2
j

)1/2

, ∀u ∈ EmT . (2.2)

It is obvious that EmT with the inner product (2.1) is a finite dimensional Hilbert
space and linearly homeomorphic to RmT .

On the other hand, we define the norm ‖ · ‖r on EmT as follows:

‖u‖r =
( mT∑
j=1

|uj |r
)1/r

, (2.3)
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for all u ∈ EmT and r > 1.
Since ‖u‖r and ‖u‖2 are equivalent, there exist constants c1, c2 such that c2 ≥

c1 > 0, and
c1‖u‖2 ≤ ‖u‖r ≤ c2‖u‖2, ∀u ∈ EmT . (2.4)

Clearly, ‖u‖ = ‖u‖2. For all u ∈ EmT , define the functional J on EmT as follows:

J(u) =
mT∑
n=1

[1
p
γn−1|∆2un−1|p − F (n, un+1, un)

]
, (2.5)

where
∂F (n− 1, v2, v3)

∂v2
+
∂F (n, v1, v2)

∂v2
= f(n, v1, v2, v3).

Clearly, J ∈ C1(EmT ,R) and for any u = {un}n∈Z ∈ EmT , by using u0 =
umT , u1 = umT+1, we can compute the partial derivative as

∂J

∂un
= ∆2

(
γn−2ϕp(∆2un−2)

)
− f(n, un+1, un, un−1).

Thus, u is a critical point of J on EmT if and only if

∆2
(
γn−2ϕp(∆2un−2)

)
= f(n, un+1, un, un−1), ∀n ∈ Z(1,mT ).

Due to the periodicity of u = {un}n∈Z ∈ EmT and f(n, v1, v2, v3) in the first variable
n, we reduce the existence of periodic solutions of (1.1) to the existence of critical
points of J on EmT . That is, the functional J is just the variational framework of
(1.1).

Let P be the mT ×mT matrix defined by

P =


2 −1 0 . . . 0 −1
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 2 −1
−1 0 0 . . . −1 2

 .

By matrix theory, we see that the eigenvalues of P are

λk = 2
(
1− cos(

2k
mT

π)
)
, k = 0, 1, 2, . . . ,mT − 1. (2.6)

Thus, λ0 = 0, λ1 > 0, λ2 > 0, . . . , λmT−1 > 0. Therefore,

λmin = min{λ1, λ2, . . . , λmT−1} = 2
(

1− cos(
2
mT

π)
)
,

λmax = max{λ1, λ2, . . . , λmT−1}

=

{
4, if mT is even,
2
(
1 + cos( 1

mT π)
)
, if mT is odd.

(2.7)

Let
W = kerP = {u ∈ EmT |Pu = 0 ∈ RmT }.

Then
W = {u ∈ EmT |u = {c}, c ∈ R}.

Let V be the direct orthogonal complement of EmT to W ; i.e.; EmT = V ⊕W . For
convenience, we identify u ∈ EmT with u = (u1, u2, . . . , umT )∗.
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Let E be a real Banach space, J ∈ C1(E,R); i.e., J is a continuously Fréchet-
differentiable functional defined on E. J is said to satisfy the Palais-Smale condi-
tion ((PS) condition for short) if any sequence {u(k)} ⊂ E for which {J

(
u(k)

)
} is

bounded and J ′(u(k))→ 0(k →∞) possesses a convergent subsequence in E.
Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote its

boundary.

Lemma 2.1 (Linking Theorem [31]). Let E be a real Banach space, E = E1 ⊕
E2, where E1 is finite dimensional. Suppose that J ∈ C1(E,R) satisfies the (PS)
condition and
(J1) there exist constants a > 0 and ρ > 0 such that J |∂Bρ∩E2 ≥ a;
(J2) there exists an e ∈ ∂B1 ∩E2 and a constant R0 ≥ ρ such that J |∂Q ≤ 0, where
Q = (B̄R0 ∩ E1)⊕ {re|0 < r < R0}.
Then J possesses a critical value c ≥ a, where

c = inf
h∈Γ

sup
u∈Q

J(h(u)),

and Γ = {h ∈ C(Q̄, E) | h|∂Q = id}, where id denotes the identity operator.

Lemma 2.2. Assume that (F0), (F1), (F3) are satisfied. Then the functional J is
bounded from above in EmT .

Proof. By (F3’) and (2.4), for any u ∈ EmT ,

J(u) =
mT∑
n=1

[1
p
γn−1|∆2un−1|p − F (n, un+1, un)

]
≤ γ̄

p
cp2

[ mT∑
n=1

(∆un −∆un−1)2
]p/2
−

mT∑
n=1

F (n, un+1, un)

≤ γ̄

p
cp2(x∗Px)p/2 −

mT∑
n=1

[
β
(√

u2
n+1 + u2

n

)p − ζ ′]
≤ γ̄

p
cp2λ

p/2
max‖x‖

p
2 − β

[( mT∑
n=1

(√
u2
n+1 + u2

n

)p)1/p]p
+mTζ ′

≤ γ̄

p
cp2λ

p/2
max‖x‖

p
2 − βc

p
1

[ mT∑
n=1

(
u2
n+1 + u2

n

) ]p/2
+mTζ ′

=
γ̄

p
cp2λ

p/2
max‖x‖

p
2 − βc

p
1

(
2‖u‖22

)p/2 +mTζ ′

≤ γ̄

p
cp2λ

p/2
max‖x‖

p
2 − 2p/2βcp1‖u‖

p
2 +mTζ ′,

where x = (∆u1,∆u2, . . . ,∆umT )∗. Since

‖x‖p2 =
[ mT∑
n=1

(un+1 − un, un+1 − un)
]p/2

= (u∗Pu)p/2 ≤ λp/2max‖u‖
p
2,

we have
J(u) ≤ γ̄

p
cp2λ

p
max‖u‖

p
2 − 2p/2βcp1‖u‖

p
2 +mTζ ′ ≤ mTζ ′.

The proof is complete. �
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Remark 2.3. The case mT = 1 is trivial. For the case mT = 2, P has a different
form, namely,

P =
(

2 −2
−2 2

)
However, in this special case, the argument need not to be changed and we omit it.

Lemma 2.4. Assume that (F0), (F1), (F3) are satisfied. Then the functional J
satisfies the (PS) condition.

Proof. Let {J
(
u(k)

)
} be a bounded sequence from the lower bound; i.e., there exists

a positive constant M1 such that

−M1 ≤ J
(
u(k)

)
, ∀k ∈ N.

By the proof of Lemma 2.2, it is easy to see that

−M1 ≤ J
(
u(k)

)
≤
( γ̄
p
cp2λ

p
max − 2p/2βcp1

)
‖u(k)‖p2 +mTζ ′, ∀k ∈ N.

Therefore, (
2p/2βcp1 −

γ̄

p
cp2λ

p
max

)
‖u(k)‖p2 ≤M1 +mTζ ′.

Since β > γ̄
2p/2p

(c2/c1)pλpmax, it is not difficult to know that
{
u(k)

}
is a bounded

sequence in EmT . As a consequence,
{
u(k)

}
possesses a convergence subsequence

in EmT . Thus the (PS) condition is verified. �

3. Proof of main results

In this Section, we shall prove our main results by using the critical point method.

Proof of Theorem 1.1. Assumptions (F1) and (F2) imply that F (n, 0) = 0 and
f(n, 0) = 0 for n ∈ Z. Then u = 0 is a trivial mT -periodic solution of (1.1).

By Lemma 2.4, J is bounded from above on EmT . We define c0 = supu∈EmT J(u).
The proof of Lemma 2.4 implies lim‖u‖2→+∞ J(u) = −∞. This means that −J(u)
is coercive. By the continuity of J(u), there exists ū ∈ EmT such that J(ū) = c0.
Clearly, ū is a critical point of J .

We claim that c0 > 0. Indeed, by (F2), for any u ∈ V, ‖u‖2 ≤ δ1, we have

J(u) =
mT∑
n=1

[1
p
γn−1|∆2un−1|p − F (n, un+1, un)

]
≥ 1
p
γcp1

[ mT∑
n=1

(∆un −∆un−1)2
]p/2
−

mT∑
n=1

F (n, un+1, un)

≥ 1
p
γcp1(x∗Px)p/2 −

mT∑
n=1

F (n, un+1, un)

≥ 1
p
γcp1λ

p/2
min‖x‖

p
2 − α

mT∑
n=1

(√
u2
n+1 + u2

n

)p
=

1
p
γcp1λ

p/2
min‖x‖

p
2 − α

[( mT∑
n=1

(√
u2
n+1 + u2

n

)p)1/p]p
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≥ 1
p
γcp1λ

p/2
min‖x‖

p
2 − αc

p
2

[ mT∑
n=1

(
u2
n+1 + u2

n

) ]p/2
,

where x = (∆u1,∆u2, . . . ,∆umT )∗. Since

‖x‖p2 =
[ mT∑
n=1

(un+1 − un, un+1 − un)
]p/2

= (u∗Pu)p/2 ≥ λp/2min‖u‖
p
2,

we have

J(u) ≥ 1
p
γcp1λ

p
min‖u‖

p
2 − αc

p
2

(
2‖u‖22

)p/2
=
(

1
p
γcp1λ

p
min − 2p/2cp2α

)
‖u‖p2.

Take σ =
(

1
pγc

p
1λ
p
min − 2p/2cp2α

)
δp1 . Then

J(u) ≥ σ, ∀u ∈ V ∩ ∂Bδ1 .

Therefore, c0 = supu∈EmT J(u) ≥ σ > 0. At the same time, we have also proved
that there exist constants σ > 0 and δ1 > 0 such that J |∂Bδ1∩V ≥ σ. That is to
say, J satisfies the condition (J1) of the Linking Theorem.

Noting that
∑mT
n=1 γn−1

∣∣∆2un−1

∣∣p = 0, for all u ∈W , we have

J(u) =
1
p

mT∑
n=1

γn−1|∆2un−1|p −
mT∑
n=1

F (n, un+1, un) = −
mT∑
n=1

F (n, un+1, un) ≤ 0.

Thus, the critical point ū of J corresponding to the critical value c0 is a nontrivial
mT -periodic solution of (1.1).

To obtain another nontrivial mT -periodic solution of (1.1) different from ū, we
need to use the conclusion of Lemma 2.1. We have known that J satisfies the (PS)
condition on EmT . In the following, we shall verify the condition (J2).

Take e ∈ ∂B1 ∩ V , for any z ∈W and r ∈ R, let u = re+ z. Then

J(u) =
mT∑
n=1

[1
p
γn|∆2un|p − F (n, un+1, un)

]
≤

mT∑
n=1

[ γ̄
p
rp
∣∣∆2en

∣∣p − F (n, ren+1 + zn+1, ren + zn)
]

≤ γ̄

p
rpcp2

[ mT∑
n=1

(∆en −∆en−1)2
]p/2
−

mT∑
n=1

F (n, ren+1 + zn+1, ren + zn)

≤ γ̄

p
rpcp2(y∗Py)p/2 −

mT∑
n=1

{
β
(√

(ren+1 + zn+1)2 + (ren + zn)2
)p
− ζ ′

}
≤ γ̄

p
rpcp2(y∗Py)p/2 − βcp1

{ mT∑
n=1

[
(ren+1 + zn+1)2 + (ren + zn)2

]}p/2 +mTζ ′

≤ γ̄

p
rpcp2λ

p/2
max‖y‖

p
2 − βc

p
1

[
2
mT∑
n=1

(ren + zn)2
]p/2

+mTζ ′

=
γ̄

p
rpcp2λ

p/2
max‖y‖

p
2 − βc

p
1r
p2p/2 − βcp12p/2‖z‖p2 +mTζ ′,
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where y = (∆e1,∆e2, . . . ,∆emT )∗. Since

‖y‖p2 =
[ mT∑
n=1

(en+1 − en, en+1 − en)
]p/2

= (e∗Pe)p/2 ≤ λp/2max,

we have

J(u) ≤
( γ̄
p
cp2λ

p
max − βc

p
12p/2

)
rp − βcp12p/2‖z‖p2 +mTζ ′ ≤ −βcp12p/2‖z‖p2 +mTζ ′.

Thus, there exists a positive constant R1 > δ1 such that for any u ∈ ∂Q, J(u) ≤ 0,
where Q = (B̄R1 ∩W )⊕ {re : 0 < r < R1}. By the Linking Theorem, J possesses
a critical value c ≥ σ > 0, where

c = inf
h∈Γ

sup
u∈Q

J(h(u)),

and Γ = {h ∈ C(Q̄, EmT ) | h|∂Q = id}.
Let ũ ∈ EmT be a critical point associated to the critical value c of J , i.e.,

J(ũ) = c. If ũ 6= ū, then the conclusion of Theorem 1.1 holds. Otherwise, ũ = ū.
Then c0 = J(ū) = J(ũ) = c; that is, supu∈EmT J(u) = infh∈Γ supu∈Q J(h(u)).
Choosing h = id, we have supu∈Q J(u) = c0. Since the choice of e ∈ ∂B1 ∩ V is
arbitrary, we can take −e ∈ ∂B1 ∩ V . Similarly, there exists a positive number
R2 > δ1, for any u ∈ ∂Q1, J(u) ≤ 0, where Q1 = (B̄R2 ∩W )⊕ {−re|0 < r < R2}.

Again, by the Linking Theorem, J possesses a critical value c′ ≥ σ > 0, where

c′ = inf
h∈Γ1

sup
u∈Q1

J(h(u)),

and Γ1 = {h ∈ C(Q̄1, EmT ) | h|∂Q1 = id}.
If c′ 6= c0, then the proof is finished. If c′ = c0, then supu∈Q1

J(u) = c0. Due
to the fact J |∂Q ≤ 0 and J |∂Q1 ≤ 0, J attains its maximum at some points in the
interior of sets Q and Q1. However, Q ∩ Q1 ⊂ W and J(u) ≤ 0 for any u ∈ W .
Therefore, there must be a point u′ ∈ EmT , u′ 6= ũ and J(u′) = c′ = c0. The proof
is complete. �

Similarly to above argument, we can also prove Theorems 1.5 and 1.7, so their
proofs are omitted. Due to Theorems 1.1, 1.5 and 1.7, the conclusion of Corollaries
1.3, 1.6 and 1.8 are obviously true.

4. Example

As an application of Theorem 1.1, we give an example to illustrate our main
result.

Example 4.1. Assume that for all n ∈ Z,

∆2
(
γn−2ϕp(∆2un−2)

)
= µun

[(
3 + sin2(πn/T )

)
(u2
n+1 + u2

n)
µ
2−1

+
(

3 + sin2
(
π(n− 1)/T

))
(u2
n + u2

n−1)
µ
2−1
]
,

(4.1)
where γn is real valued for each n ∈ Z and γn+T = γn > 0, 1 < p < +∞, µ > p, T
is a given positive integer. We have

f(n, v1, v2, v3) = µv2

[(
3 + sin2(πn/T )

)
(v2

1 + v2
2)

µ
2−1

+
(

3 + sin2
(
π(n− 1)/T

))
(v2

2 + v2
3)

µ
2−1
]
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and
F (n, v1, v2) = [3 + sin2(πn/T )](v2

1 + v2
2)

µ
2 .

Then
∂F (n− 1, v2, v3)

∂v2
+
∂F (n, v1, v2)

∂v2

= µv2

[(
3 + sin2(πn/T )

)
(v2

1 + v2
2)

µ
2−1 +

(
3 + sin2

(
π(n− 1)/T

))
(v2

2 + v2
3)

µ
2−1
]
.

It is easy to verify all the assumptions of Theorem 1.1 are satisfied. Consequently,
for any given positive integer m > 0, (4.1) has at least three mT -periodic solutions.
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