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SEMICLASSICAL SOLUTIONS FOR LINEARLY COUPLED
SCHRÖDINGER EQUATIONS

SITONG CHEN, XIANHUA TANG

Abstract. We consider the system of coupled nonlinear Schrödinger equa-

tions

−ε2∆u+ a(x)u = Hu(x, u, v) + µ(x)v, x ∈ RN ,

−ε2∆v + b(x)v = Hv(x, u, v) + µ(x)u, x ∈ RN ,

u, v ∈ H1(RN ),

where N ≥ 3, a, b, µ ∈ C(RN ) and Hu, Hv ∈ C(RN ×R2,R). Under conditions
that a0 = inf a = 0 or b0 = inf b = 0 and |µ(x)|2 ≤ θa(x)b(x) with θ ∈ (0, 1)

and some mild assumptions on H, we show that the system has at least one

nontrivial solution provided that 0 < ε ≤ ε0, where the bound ε0 is formulated
in terms of N, a, b and H.

1. Introduction

In this article, we study the existence of semiclassical solutions of the system of
coupled nonlinear Schrödinger equations

−ε2∆u+ a(x)u = Hu(x, u, v) + µ(x)v, x ∈ RN ,

−ε2∆v + b(x)v = Hv(x, u, v) + µ(x)u, x ∈ RN ,

u, v ∈ H1(RN ),

(1.1)

where z := (u, v) ∈ R2, N ≥ 3, a, b, µ ∈ C(RN ,R) and H,Hu, Hv ∈ C(RN ×R2,R).
Systems of this type arise in nonlinear optics [1].

In the past several years, there are many papers about the semiclassical solutions
of the nonlinear perturbed Schrödinger equation

−ε2∆u+ V (x)u = f(x, u), u ∈ H1(RN )

under various hypotheses on the potential and the nonlinearity (see [2, 6, 7, 12, 13,
14, 16, 19, 22, 25]).

However, by Kaminow [17], we know that single-mode optical fibers are not really
“single-mode”, but actually bimodal due to the presence of birefringence. And
recently, different authors focused their attention on coupled nonlinear Schrödinger

2000 Mathematics Subject Classification. 35J20, 58E50.
Key words and phrases. Nonlinear Schrödinger equation; semiclassical solution;

coupled system.
c©2014 Texas State University - San Marcos.

Submitted October 23, 2014. Published December 1, 2014.

1



2 S. CHEN, X. H. TANG EJDE-2014/251

systems (see [3, 4, 8, 9, 10, 11, 18]) which describe physical phenomena (see, e.g.,
[1, 5, 15]).

In a recent article, [8], Chen and Zou studied the system of nonlinear Schrödinger
equations

−ε2∆u+ a(x)u = f(u) + µv, x ∈ RN ,

−ε2∆v + b(x)v = g(v) + µu, x ∈ RN ,

u, v > 0 in RN , u, v ∈ H1(RN ),

(1.2)

where N, a and b are the same as in (1.1). Under the assumptions
(i) there exists a constant a0 > 0 such that a(x), b(x) ≥ a0 and 0 ≤ µ < a0;

(ii) f, g ∈ C(RN ,R) and lims→0
f(s)
s = g(s)

s = 0;
(iii) there exists a constant p0 ∈ (1, 2∗ − 1) such that

lim sup
s→+∞

f(s)
sp0

< +∞, lim sup
s→+∞

g(s)
sp0

< +∞;

(iv) either lim sups→+∞

R s
0 f(t) dt

s2 = +∞ or lim sups→+∞

R s
0 g(t) dt

s2 = +∞.
They proved that (1.2) has a positive solution for sufficiently small ε > 0 and all
µ ∈ (0, µ1] for some µ1 ∈ (0, a0).

Obviously, if a0 = 0, their arguments become invalid due to the fact that 0 ≤ µ <
a0 can not be satisfied. To the best of our knowledge, the existence of semiclassical
solutions to system (1.1), under the assumption of a0 = inf a = 0 or b0 = inf b = 0,
has not ever been studied by variational methods. In addition, as the nonlinearity is
non-autonomous and dependent on u and v, the problem will become more complex.

Motivated by [8, 20, 24, 26], we shall choose the case a0 = inf a = 0 or b0 =
inf b = 0 as the objective of the present paper.

Before presenting the main results, we introduce the following assumptions.
(A0) a(x) ≥ a(0) = 0, b(x) ≥ 0 and there exist a0, b0 > 0 such that the sets

Aa0 := {x ∈ RN : a(x) < a0} and Bb0 := {x ∈ RN : b(x) < b0} have finite
measure;

(A1) there exists a constant θ ∈ (0, 1) such that |µ(x)|2 ≤ θa(x)b(x), for all
x ∈ RN ;

(B0) a(x) ≥ 0, b(x) ≥ b(0) = 0 and there exist a0, b0 > 0 such that the sets
Aa0 := {x ∈ RN : a(x) < a0} and Bb0 := {x ∈ RN : b(x) < b0} have finite
measure;

(H1) there exist constants p ∈ (2, 2∗) and C > 0 such that

|H(x, z)| ≤ C(|z|+ |z|p), ∀(x, z) ∈ RN × R2;

(H2) Hz(x, z) · z = o(|z|2), as |z| → 0, uniformly in x ∈ RN ;
(H3) lim|z|→∞

|H(x,z)|
|z|2 =∞ uniformly in x ∈ RN ;

(H4) there exist c0 > 0, T0 > 0 and q ∈ (2, 2∗) such that

H(x, u, 0) ≥ c0|u|q, ∀x ∈ RN , u ∈ [−T0, T0]

and

u−2h4−N
∫
|x|≤h

H(λ−1/2x, u/h, 0) dx ≥ (N2 + 2)ωN
2N(1− 2−N )2

,

for all h ≥ 1, λ ≥ 1, u ≥ hT0; here and in the sequel, ωN = meas(B1(0)) =
2πN/2/NΓ(N/2);
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(H4’) there exist c0 > 0, T0 > 0 and q ∈ (2, 2∗) such that

H(x, 0, v) ≥ c0|v|q, ∀x ∈ RN , v ∈ [−T0, T0]

and

v−2h4−N
∫
|x|≤h

H(λ−1/2x, 0, v/h) dx ≥ (N2 + 2)ωN
2N(1− 2−N )2

,

for all h ≥ 1, λ ≥ 1, v ≥ hT0;
(H5) H(x, z) := 1

2Hz(x, z) · z −H(x, z) ≥ 0 for all (x, z) ∈ RN × R2, and there
exist c1 > 0 and κ > max{1, N/2} such that

Hz(x, z) · z
|z|2

≥ (1− θ)m0

3
⇒ |Hz(x, z) · z|κ ≤ c1|z|2κH(x, z),

where m0 := min{a0, b0};
(H6’) there exist c0 > 0 and q ∈ (2, 2∗) such that H(x, u, 0) ≥ c0|u|q for all

(x, u) ∈ RN × R;
(H6”) there exist c0 > 0 and q ∈ (2, 2∗) such that H(x, 0, v) ≥ c0|v|q for all

(x, v) ∈ RN × R.

Remark 1.1. It is easy to check that (H6’) and (H6”) imply (H4) and (H4’) with

T0 =
[ N2 + 2
2c0(1− 2−N )2

]1/(q−2)
,

respectively, but (H4), (H4’) can not yield (H6’), (H6”). We give the following
nonlinear example to illustrate it. Let

H(x, u, v) = (|u|2 + |v|2) ln(1 + |u|+ |v|).

Clearly, H satisfies both (H4) and (H4’) with

ln(1 + T0) =
N2 + 2

2
(
1− 2−N

)2 ,
but neither (H6’) nor (H6”).

Example 1.2. Let q ∈ (2, 2∗). Then it is easy to see that following two functions
satisfy (H1)–(H3) and (H6’):

H(x, u, v) = a1|u|q + a2|v|q, H(x, u, v) = ζ(x)
(
|u|2 + |v|2

)q/2
,

where a1, a2 > 0 and ζ ∈ C(RN ) with 0 < infRN ζ ≤ supRN ζ < +∞.

Since (q − 2)N − 2q < 0, we can let h0 ≥ 1 be such that

(q − 2)ωN
2Nq(qc0)2/(q−2)

{ N2 + 2(N + 2)
(N + 2)(1− 2−N )2

}q/(q−2)

h
[(q−2)N−2q]/(q−2)
0

=
(1− θ)κm(2κ−N)/2

0

3κc1(γ2∗γ0)N
,

(1.3)

where γ0 and γ2∗ are embedding constants, see (2.1) and (2.2). If a and b satisfy
(A0), we can choose λ0 > 1 such that

sup
λ1/2|x|≤2h0

|a(x)| ≤ h−2
0 , ∀λ ≥ λ0, (1.4)
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if a and b satisfy (B0), we can choose λ0 > 1 such that

sup
λ1/2|x|≤2h0

|b(x)| ≤ h−2
0 , ∀λ ≥ λ0. (1.5)

Letting ε−2 = λ, (1.1) is rewritten as

−∆u+ λa(x)u = λHu(x, u, v) + λµ(x)v, x ∈ RN ,

−∆v + λb(x)v = λHv(x, u, v) + λµ(x)u, x ∈ RN ,

u, v ∈ H1(RN ).

(1.6)

Let
Φλ(z) =

1
2

∫
RN

(|∇u|2 + |∇v|2 + λa(x)|u|2 + λb(x)|v|2) dx

− λ
∫

RN

H(x, z) dx− λ
∫

RN

µ(x)uv dx, z = (u, v).
(1.7)

Obviously, the solutions of (1.1) are the critical points of Φε−1/2(z); the solutions
of (1.6) are the critical points of Φλ(z).

We are now in a position to state the main results of this paper.

Theorem 1.3. Assume that a, b, µ and H satisfy (A0), (A1), (H1)–(H5). Then
for 0 < ε ≤ λ−1/2

0 , (1.1) has a solution zε = (uε, vε) such that

0 < Φε−1/2(zε) ≤
(1− θ)κm(2κ−N)/2

0

3κc1(γ2∗γ0)N
εN−2,∫

RN

H(x, zε) dx ≤ (1− θ)κm(2κ−N)/2
0

3κc1(γ2∗γ0)N
εN .

Theorem 1.4. Assume that a, b, µ and H satisfy (A1), (B0), (H1)–(H3), (H4’),
(H5). Then for 0 < ε ≤ λ−1/2

0 , (1.1) has a solution zε = (uε, vε) such that

0 < Φε−1/2(zε) ≤
(1− θ)κm(2κ−N)/2

0

3κc1(γ2∗γ0)N
εN−2,∫

RN

H(x, zε) dx ≤ (1− θ)κm(2κ−N)/2
0

3κc1(γ2∗γ0)N
εN .

Theorem 1.5. Assume that a, b, µ and H satisfy (A0), (A1), (H1)–(H5). Then
for λ ≥ λ0, (1.6) has a solution zλ = (uλ, vλ) such that

0 < Φλ(zλ) ≤ (1− θ)κm(2κ−N)/2
0

3κc1(γ2∗γ0)N
λ1−N/2,∫

RN

H(x, zλ) dx ≤ (1− θ)κm(2κ−N)/2
0

3κc1(γ2∗γ0)N
λ−N/2.

Theorem 1.6. Assume that a, b, µ and H satisfy (A1), (B0), (H1)–(H3), (H4’),
(H5). Then for λ ≥ λ0, (1.6) has a solution zλ = (uλ, vλ) such that

0 < Φλ(zλ) ≤ (1− θ)κm(2κ−N)/2
0

3κc1(γ2∗γ0)N
λ1−N/2,∫

RN

H(x, zλ) dx ≤ (1− θ)κm(2κ−N)/2
0

3κc1(γ2∗γ0)N
λ−N/2.
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The rest of the article is organized as follows. In Section 2, we provide some
preliminaries and lemmas. In Section 3, we give the proofs of Theorems 1.3–1.6.

2. Preliminaries

Let

E =
{

(u, v) ∈ H1(RN )×H1(RN ) :
∫

RN

[a(x)|u|2 + b(x)|v|2] dx < +∞
}
,

‖z‖λ† =
{∫

RN

[|∇u|2 + λa(x)|u|2 + |∇v|2 + λb(x)|v|2] dx
}1/2

, ∀z = (u, v) ∈ E.

Analogous to the proof of [23, Lemma 1], by using (A0) or (B0) and the Sobolev
inequality, one can show that there exists a constant γ0 > 0 independent of λ such
that

‖z‖H1(RN ) ≤ γ0‖z‖λ†, ∀z ∈ E, λ ≥ 1. (2.1)

This shows that (E, ‖ · ‖λ†) is a Banach space for λ ≥ 1. Furthermore, by the
Sobolev embedding theorem, we have

‖z‖s ≤ γs‖z‖H1(RN ) ≤ γsγ0‖z‖λ†, ∀z ∈ E, λ ≥ 1, 2 ≤ s ≤ 2∗, (2.2)

here and in the sequel, we denote by ‖ · ‖s the usual norm in space Ls(RN ).
In view of the definition of the norm ‖ · ‖λ†, we can re-write Φλ in the form

Φλ(z) =
1
2
‖z‖2λ† − λ

∫
RN

H(x, z) dx− λ
∫

RN

µ(x)uv dx, ∀z ∈ E. (2.3)

It is easy to see that Φλ ∈ C1(E,R) and

〈Φ′λ(z), z̃〉 =
∫

RN

[∇u · ∇ũ+∇v · ∇ṽ + λa(x)uũ+ λb(x)vṽ] dx

− λ
∫

RN

[Hu(x, z)ũ+Hv(x, z)ṽ] dx

− λ
∫

RN

µ(x)(uṽ + vũ)] dx, ∀z = (u, v), z̃ = (ũ, ṽ) ∈ E.

(2.4)

As in [20], we let

ϑ(x) :=


1
h0
, |x| ≤ h0,

hN−1
0

1−2−N [|x|−N − (2h0)−N ], h0 < |x| ≤ 2h0,

0, |x| > 2h0.

(2.5)

Then ϑ ∈ H1(RN ), moreover,

‖∇ϑ‖22 =
∫

RN

|∇ϑ(x)|2 dx ≤ N2ωN
(N + 2)(1− 2−N )2

hN−4
0 , (2.6)

‖ϑ‖22 =
∫

RN

|ϑ(x)|2 dx ≤ 2ωN
(1− 2−N )2N

hN−2
0 . (2.7)

Let eλ(x) = ϑ(λ1/2x). Then we can prove the following lemma which is used for
our proofs.
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Lemma 2.1. Let H(x, z) ≥ 0, for all (x, z) ∈ RN × R2. Suppose that (A0), (A1),
(H1)–(H4) are satisfied. Then

sup{Φλ(seλ, 0) : s ≥ 0} ≤ (1− θ)κm(2κ−N)/2
0

3κc1(γ2∗γ0)N
λ1−N/2, ∀λ ≥ λ0. (2.8)

Proof. From (H4), (1.3), (1.4) ,(1.7), (2.5), (2.6) and (2.7), we obtain

Φλ(seλ, 0)

=
s2

2

∫
RN

(|∇eλ|2 + λa(x)|eλ|2) dx− λ
∫

RN

H(x, seλ, 0) dx

= λ1−N/2
[s2

2

∫
RN

(|∇ϑ|2 + a(λ−1/2x)|ϑ|2) dx−
∫

RN

H(λ−1/2x, sϑ, 0) dx
]

≤ λ1−N/2
[s2

2

(
‖∇ϑ‖22 + ‖ϑ‖22 sup

|x|≤2h0

|a(λ−1/2x)|
)

−
∫
|x|≤h0

H(λ−1/2x, s/h0, 0) dx
]

≤ λ1−N/2
[s2

2
(‖∇ϑ‖22 + h−2

0 ‖ϑ‖22)−
∫
|x|≤h0

H(λ−1/2x, s/h0, 0) dx
]
,

∀s ≥ 0, λ ≥ λ0,

(2.9)

s2

2
(‖∇ϑ‖22 + h−2

0 ‖ϑ‖22)−
∫
|x|≤h0

H(λ−1/2x, s/h0, 0) dx

≤ s2

2
[‖∇ϑ‖22 + h−2

0 ‖ϑ‖22 −
(N2 + 2)ωN
N(1− 2−N )2

hN−4
0 ] ≤ 0, ∀s ≥ h0T0, λ ≥ λ0

(2.10)

and

s2

2
(‖∇ϑ‖22 + h−2

0 ‖ϑ‖22)−
∫
|x|≤h0

H(λ−1/2x, s/h0, 0) dx

≤ s2

2
(‖∇ϑ‖22 + h−2

0 ‖ϑ‖22)− c0ωN
N

sqhN−q0

≤ (q − 2)(‖∇ϑ‖22 + h−2
0 ‖ϑ‖22)q/(q−2)

2q( qc0ωN

N hN−q0 )2/(q−2)

≤ (q − 2)ωN
2Nq(qc0)2/(q−2)

{ N2 + 2(N + 2)
(N + 2)(1− 2−N )2

}q/(q−2)

h
[(q−2)N−2q]/(q−2)
0

=
(1− θ)κm(2κ−N)/2

0

3κc1(γ2∗γ0)N
, ∀0 ≤ s ≤ h0T0, λ ≥ λ0.

(2.11)

The conclusion of Lemma 2.1 follows from (2.9), (2.10) and (2.11). �

We can prove the following lemma in the same way as Lemma 2.1.

Lemma 2.2. Let H(x, z) ≥ 0 for all (x, z) ∈ RN × R2. Suppose that (A1), (B0),
(H1)–(H3), (H4’) are satisfied. Then

sup{Φλ(0, seλ) : s ≥ 0} ≤ (1− θ)κm(2κ−N)/2
0

3κc1(γ2∗γ0)N
λ1−N/2, ∀λ ≥ λ0. (2.12)
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Applying the mountain-pass lemma without the (PS) condition, by standard
arguments, we can prove the following two lemmas.

Lemma 2.3. Let H(x, z) ≥ 0 for all (x, z) ∈ RN × R2. Suppose that (A0), (A1),
(H1)–(H4) are satisfied. Then there exist a constant dλ ∈ (0, sups≥0 Φλ(seλ, 0)] and
a sequence {zn} ⊂ E satisfying

Φλ(zn)→ dλ, ‖Φ′λ(zn)‖E∗(1 + ‖zn‖λ†)→ 0. (2.13)

Lemma 2.4. Let H(x, z) ≥ 0 for all (x, z) ∈ RN ×R2. Suppose (A1), (B0), (H1)–
(H3), (H4’) are satisfied. Then there exist a constant dλ ∈ (0, sups≥0 Φλ(0, seλ)]
and a sequence {zn} ⊂ E satisfying

Φλ(zn)→ dλ, ‖Φ′λ(zn)‖E∗(1 + ‖zn‖λ†)→ 0. (2.14)

Lemma 2.5. Suppose that (A0), (A1), (H1)–(H5) are satisfied. Then any sequence
{zn} ⊂ E satisfying (2.13) is bounded in E.

Proof. We argue by contradiction for proving boundedness of {zn}. Suppose that
‖zn‖λ† → ∞. Let z̃n = zn/‖zn‖λ† := (ũn, ṽn). Then ‖z̃n‖λ† = 1. In view of (A1),
we obtain

2λ
∫

RN

µ(x)ũnṽn dx ≤ 2θλ
∫

RN

√
a(x)b(x)|ũnṽn|dx

≤ θλ
∫

RN

[a(x)ũ2
n + b(x)ṽ2

n] dx ≤ θ.
(2.15)

If

δ := lim sup
n→∞

sup
y∈RN

∫
B(y,1)

|z̃n|2 dx = 0,

then by Lions’ concentration compactness principle [21] or [27, Lemma 1.21], z̃n →
(0, 0) in Ls(RN ) for 2 < s < 2∗. Set

Ωn :=
{
x ∈ RN :

zn ·Hz(x, zn)
|zn|2

≤ (1− θ)m0

3
}
, D := Aa0 ∪ Bb0 .

Hence, from (A0) and the Hölder inequality it follows that

λ

∫
Ωn

|Hz(x, zn) · zn|
‖zn‖2λ†

dx

= λ

∫
Ωn

|Hz(x, zn) · zn|
|zn|2

|z̃n|2 dx

≤ (1− θ)λm0

3

∫
Ωn

|z̃n|2 dx

≤ (1− θ)λm0

3

∫
RN\D

|z̃n|2 dx+
(1− θ)λm0

3

∫
D
|z̃n|2 dx

≤ 1− θ
3
‖z̃n‖2λ† +

(1− θ)λm0[meas(D)]1/(N+1)

3

×
(∫
D
|z̃n|2(N+1)/N dx

)N/(N+1)

=
1− θ

3
+ o(1).

(2.16)
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From (2.3), (2.4) and (2.13), there holds

dλ + o(1) = λ

∫
RN

H(x, zn) dx. (2.17)

Let κ′ = κ/(κ− 1), then 2 < 2κ′ < 2∗. By (H5), (2.17) and the Hölder inequality,
one obtains

λ

∫
RN\Ωn

|Hz(x, zn) · zn|
‖zn‖2λ†

dx

= λ

∫
RN\Ωn

|Hz(x, zn) · zn|
|zn|2

|z̃n|2 dx

≤ λ
[ ∫

RN\Ωn

( |Hz(x, zn) · zn|
|zn|2

)κ
dx
]1/κ(∫

RN\Ωn

|z̃n|2κ
′
dx
)1/κ′

≤ λ
(
c1

∫
RN\Ωn

H(x, zn) dx
)1/κ(∫

RN

|z̃n|2κ
′
dx
)1/κ′

≤ λ1−1/κ[c1dλ + o(1)]1/κ‖z̃n‖22κ′ = o(1).

(2.18)

Combining (2.17) with (2.18) and using (2.4), (2.13) and (2.15), we have

1 + o(1) ≤
‖zn‖2λ† − 〈Φ′λ(zn), zn〉

‖zn‖2λ†

= λ

∫
RN

|Hz(x, zn) · zn|
‖zn‖2λ†

+ 2λ
∫

RN

µ(x)ũnṽn dx

≤ λ
∫

Ωn

|Hz(x, zn) · zn|
‖zn‖2λ†

dx+ λ

∫
RN\Ωn

|Hz(x, zn) · zn|
‖zn‖2λ†

dx+ θ

≤ 1 + 2θ
3

+ o(1).

(2.19)

This contradiction shows that δ > 0.
Going to a subsequence if necessary, we assume the existence of kn ∈ ZN such

that
∫
B1+

√
N (kn)

|z̃n|2dx > δ
2 . Let wn(x) = z̃n(x+ kn); then∫

B1+
√

N (0)

|wn|2dx >
δ

2
. (2.20)

Now we define ẑn(x) = zn(x + kn), then ẑn/‖zn‖λ† = wn and ‖wn‖2H1(RN ) =
‖z̃n‖2H1(RN ). Passing to a subsequence, we have wn ⇀ w in H1(RN ), wn → w in
Lsloc(RN ), 2 ≤ s < 2∗ and wn → w a.e. on RN . Obviously, (2.20) implies that
w 6= (0, 0). For a.e. x ∈ {z ∈ RN : w(z) 6= (0, 0)}, we have limn→∞ |ẑn(x)| = ∞.
Hence, it follows from (H3), (2.3), (2.13), (2.15) and Fatou’s lemma that

0 = lim
n→∞

dλ + o(1)
‖zn‖2λ†

= lim
n→∞

Φλ(zn)
‖zn‖2λ†

= lim
n→∞

[1
2
‖z̃n‖2λ† − λ

∫
RN

H(x+ kn, ẑn)
|ẑn|2

|wn|2 dx− λ
∫

RN

µ(x)ũnṽn dx
]

≤ 1 + θ

2
− λ

∫
RN

lim inf
n→∞

H(x+ kn, ẑn)
|ẑn|2

|wn|2 dx = −∞.

This contradiction shows that {‖zn‖λ†} is bounded. �
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We can prove the following lemma in the same way as Lemma 2.5.

Lemma 2.6. Suppose that (A1), (B0), (H1)–(H3), (H4’), (H5) are satisfied. Then
any sequence {zn} ⊂ E satisfying (2.14) is bounded in E.

3. Proofs of main results

In this section, we give the proofs of Theorems 1.3–1.6.

Proof of Theorem 1.5. Applying Lemmas 2.1, 2.3 and 2.5, we deduce that there
exists a bounded sequence {zn} ⊂ E satisfying (2.13) with

dλ ≤
(1− θ)κm(2κ−N)/2

0

3κc1(γ2∗γ0)N
λ1−N/2, ∀λ ≥ λ0. (3.1)

Going to a subsequence, if necessary, we can assume that zn ⇀ zλ in (E, ‖ · ‖λ†)
and Φ′λ(zn)→ 0. Next, we prove that zλ 6= (0, 0).

Arguing by contradiction, suppose that zλ = (0, 0), i.e. zn ⇀ (0, 0) in E, and so
zn → (0, 0) in Lsloc(RN ), 2 ≤ s < 2∗ and zn → (0, 0) a.e. on RN . Since D is a set
of finite measure, there holds

‖zn‖22 =
∫

RN\D
|zn|2 dx+

∫
D
|zn|2 dx ≤ 1

λm0
‖zn‖2λ† + o(1). (3.2)

For s ∈ (2, 2∗), it follows from (2.2), (3.2) and the Hölder inequality that

‖zn‖ss ≤ ‖zn‖
2(2∗−s)/(2∗−2)
2 ‖zn‖2

∗(s−2)/(2∗−2)
2∗

≤ (γ2∗γ0)2∗(s−2)/(2∗−2)(λm0)−(2∗−s)/(2∗−2)‖zn‖sλ† + o(1).
(3.3)

According to (3.2), one can obtain that

λ

∫
Ωn

Hz(x, zn) · zn dx = λ

∫
Ωn

Hz(x, zn) · zn
|zn|2

|zn|2 dx

≤ (1− θ)λm0

3
‖zn‖22 ≤

1− θ
3
‖zn‖2λ† + o(1).

(3.4)

By (2.3), (2.4) and (2.13), we have

Φλ(zn)− 1
2
〈Φ′λ(zn), zn〉 = λ

∫
RN

H(x, zn) dx = dλ + o(1). (3.5)
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Using (H5), (3.1), (3.3) with s = 2κ/(κ− 1) and (3.5), we obtain

λ

∫
RN\Ωn

Hz(x, zn) · zn dx

≤ λ
(∫

RN\Ωn

( |Hz(x, zn) · zn|
|zn|2

)κ
dx
)1/κ

‖zn‖2s

≤ (γ2∗γ0)2·2∗(s−2)/s(2∗−2)λ
(
c1

∫
RN\Ωn

H(x, zn) dx
)1/κ

× (λm0)−2(2∗−s)/s(2∗−2)‖zn‖2λ† + o(1)

≤ c1/κ1 (γ2∗γ0)N/κλ1−1/κd
1/κ
λ (λm0)−2(2∗−s)/s(2∗−2)‖zn‖2λ† + o(1)

=
c
1/κ
1 (γ2∗γ0)N/κ

m
(2κ−N)/2κ
0

[
λ(N−2)/2dλ

]1/κ‖zn‖2λ† + o(1)

≤ c
1/κ
1 (γ2∗γ0)N/κ

m
(2κ−N)/2κ
0

[ (1− θ)κm(2κ−N)/2
0

3κc1(γ2∗γ0)N
]1/κ‖zn‖2λ† + o(1)

=
1− θ

3
‖zn‖2λ† + o(1),

(3.6)

which, together with (2.4), (2.13) and (3.4), yields

o(1) = 〈Φ′λ(zn), zn〉

= ‖zn‖2λ† − λ
∫

RN

Hz(x, zn) · zn dx− 2λ
∫

RN

µ(x)unvn dx

≥ (1− θ)‖zn‖2λ† − λ
∫

Ωn

Hz(x, zn) · zn dx− λ
∫

RN\Ωn

Hz(x, zn) · zn dx

≥ 1− θ
3
‖zn‖2λ† + o(1).

(3.7)

Consequently, it follows from (2.3) and (2.13) that

0 < dλ = lim
n→∞

Φλ(zn) ≤ 1 + θ

2
lim
n→∞

‖zn‖2λ† = 0,

since H(x, z) ≥ 0, ∀(x, z) ∈ RN × R2. This contradiction shows zλ 6= (0, 0). By a
standard argument, we easily certify that Φ′λ(zλ) = 0 and Φλ(zλ) ≤ dλ. Then zλ
is a nontrivial solution of (1.7), moreover

dλ ≥ Φλ(zλ) = Φλ(zλ)− 1
2
〈Φ′λ(zλ), zλ〉 = λ

∫
RN

H(x, zλ) dx. (3.8)

�

Proof of Theorem 1.6. Applying Lemmas 2.2, 2.4 and 2.6, we deduce that there
exists a bounded sequence {zn} ⊂ E satisfying (2.14) with

dλ ≤
(1− θ)κm(2κ−N)/2

0

3κc1(γ2∗γ0)N
λ1−N/2, ∀λ ≥ λ0.

The rest of the proof is the same as Theorem 1.5, so we omit it. �

Theorem 1.3 and 1.4 are direct consequences of Theorem 1.5 and 1.6, respectively.
We omit their proofs.
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