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NONTRIVIAL SOLUTIONS FOR ASYMMETRIC
PROBLEMS ON RN

RUICHANG PEI, JIHUI ZHANG

Abstract. We consider the elliptic equation

−∆u + V (x)u = f(x, u), x ∈ Rn, u ∈ H1(RN ), N ≥ 2,

where V (x) ∈ C(RN ) and V (x) ≥ V0 > 0 for all x ∈ RN . The nonlinear term
f exhibits an asymmetric growth at +∞ and −∞ in RN (N ≥ 2). Namely,

it is linear at −∞ and superlinear at +∞. However, it need not satisfy the

Ambrosetti-Rabinowitz condition on the positive semiaxis. Some existence
results for nontrivial solution are established by using the minimax methods

combined with the improved Moser-Trudinger inequality.

1. Introduction

In this article we consider the semilinear elliptic equation

−∆u+ V (x)u = f(x, u), x ∈ Rn, u ∈ H1(RN ), N ≥ 2, (1.1)

where V (x) ∈ C(RN ) and V (x) ≥ V0 > 0 for all x ∈ RN . This equation arises from
many physical and chemical problems. By using the variational methods, there
were many papers studying the existence and multiplicity of solutions for problem
(1.1). Most of them treated the superlinear case (see [1, 2, 3]) and some deal with
the asymptotically linear case (see [4, 5, 6, 7, 8, 9]).

The main difficulty in dealing with this class of problem is the lack of compactness
due to the fact that the domain is unbounded. This was overcome in [10] by
assuming that the potential V is coercive. Such condition was generalized in [2] by
assuming

(V1) for every M > 0, µ({x ∈ RN : V (x) ≤ M}) < ∞, with µ denoting the
Lebesgue measure in RN .

Actually, the above hypothesis implies that the eigenvalue problem

−∆u+ V (x)u = λu, x ∈ RN ,
possesses a sequence of positive eigenvalues: 0 < λ1 < λ2 < λ3 · · · < λk < · · · → ∞
with finite multiplicity for each λk. The principal eigenvalue λ1 is simple with
positive eigenfunction ϕ1, and eigenfunction ϕk corresponding to λk (k ≥ 2) is
sign-changing.
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In the present paper, motivated by [11, 12, 13, 14, 15, 16], our main purpose is to
establish existence results of nontrivial solution for problem (1.1) with N ≥ 2 when
the nonlinear term exhibits an asymmetric behavior as t ∈ R approaches +∞ and
−∞. More precisely, we assume that for a.e. x ∈ RN , f(x, .) grows superlinearly
at +∞, while at −∞ it has a linear growth. To our knowledge, this asymmetric
problem is rarely considered by other people.

In case of N ≥ 3, we noticed that almost all of the above mentioned works
involve the nonlinearity term f(x, u) of a subcritical (polynomial) growth, say,
(SCP) There exist positive constants c1 and c2 and q0 ∈ (1, 2∗ − 1) such that

|f(x, t)| ≤ c1 + c2|t|q0 for all t ∈ R and x ∈ RN ,

where 2∗ = 2N/(N − 2) denotes the critical Sobolev exponent.
One of the main reasons to assume this condition (SCP) is that they can use the
Sobolev compact embedding theory.

Over the years, many researchers studied problem (1.1) by trying to drop the
condition (AR) (see [2]), see for instance [5, 6, 7, 8, 9].

In this paper, our first main results will be to study problem (1.1) in the improved
subcritical polynomial growth
(SCPI) For ε > 0, there exists positive constant C(ε) such that

|f(x, t)| ≤ C(ε) + ε|t|2
∗−1 for all t ∈ R and x ∈ RN ,

which is weaker than (SCP).
Note that in this case, we do not have the Sobolev compact embedding anymore.
Our work is to study asymmetric problem (1.1) without the (AR)-condition in the
positive semiaxis. In fact, this condition was studied by Liu and Wang in [17] in
the case of Laplacian by the Nehari manifold approach. However, we will use the
Mountain Pass Theorem and a suitable version of the Mountain Pass Theorem to
get the nontrivial solution to problem (1.1) in the general case N ≥ 3. Our proof
of compactness condition is completely different from those in [14, 15, 16].

Let us now state our main results: Suppose that f(x, t) ∈ C(RN × R) and
satisfies:

(H1) limt→0
f(x,t)
t = f0 uniformly for a.e. x ∈ RN , where f0 ∈ [0,+∞);

(H2) limt→−∞
f(x,t)
t = l uniformly for a.e. x ∈ RN , where l ∈ [0,+∞];

(H3) limt→+∞
f(x,t)
t = +∞ uniformly for a.e. x ∈ RN ;

(H4) f(x,t)
t is non-increasing with respect to t ≤ 0, for a.e. x ∈ RN .

Let H := H1(RN ) be the Sobolev space with the norm

‖u‖H :=
(∫

RN

(|∇u|2 + u2) dx
)1/2

.

In our problem, the work space E is defined by

E :=
{
u ∈ H :

∫
RN

(|∇u|2 + V (x)u2) dx <∞
}
.

Thus, E is a Hilbert space with the inner product

(u, v)E :=
∫

RN

(∇u∇v + V (x)uv) dx

and is defined by ‖ · ‖ the associated norm.
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We denote by | · |p the usual Lp-norm. The condition (V1) and the Sobolev Em-
bedding Theorem imply that the immersion E ↪→ Ls(RN ,R) (N ≥ 3) is continuous
for 2 ≤ s ≤ 2∗. Actually it is proved in [2] that this embedding is compact for
2 ≤ s < 2∗.

Recall that a function u ∈ E is called a weak solution of (1.1) if∫
RN

(∇u∇v + V (x)uv) dx =
∫

RN

f(x, u)v dx, ∀v ∈ E.

Seeking a weak solution of problem (1.1) is equivalent to finding a critical point
u∗ of C1 functional

I(u) :=
1
2
‖u‖2 −

∫
RN

F (x, u) dx, ∀u ∈ E, (1.2)

where F (x, u) =
∫ u

0
f(x, s)ds. Then

〈I ′(u∗), v〉 =
∫

RN

(∇u∗∇v + V (x)u∗v) dx−
∫

RN

f(x, u∗)v dx = 0, ∀v ∈ E.

Definition 1.1. Let (E, ‖ · ‖E) be a real Banach space with its dual space (E∗, ‖ ·
‖E∗) and I ∈ C1(E,R). For c ∈ R, we say that I satisfies the (PS)c condition if
for any sequence {xn} ⊂ E with

I(xn)→ c, DI(xn)→ 0 in E∗,

there is a subsequence {xnk
} such that {xnk

} converges strongly in E. Also, we
say that I satisfies the (C)c condition if for any sequence {xn} ⊂ E with

I(xn)→ c, ‖DI(xn)‖E∗(1 + ‖xn‖E)→ 0,

there is subsequence {xnk
} such that {xnk

} converges strongly in E.

We have the following version of the Mountain Pass Theorem (see [18, 19]).

Proposition 1.2. Let E be a real Banach space and suppose that I ∈ C1(E,R)
satisfies the condition

max{I(0), I(u1)} ≤ α < β ≤ inf
‖u‖=ρ

I(u),

for some α < β, ρ > 0 and u1 ∈ E with ‖u1‖ > ρ. Let c ≥ β be characterized by

c = inf
γ∈Γ

max
0≤t≤1

I(γ(t)),

where Γ = {γ ∈ C([0, 1], E), γ(0) = 0, γ(1) = u1} is the set of continuous paths
joining 0 and u1. Then, there exists a sequence {un} ⊂ E such that

I(un)→ c ≥ β and (1 + ‖un‖)‖I ′(un)‖E∗ → 0 as n→∞.
Theorem 1.3. Let N ≥ 3 and assume that f has the improved subcritical polyno-
mial growth on RN (condition (SCPI)) and satisfies (H1)–(H3). If f0 < λ1 < l <
∞, then problem (1.1) has at least one nontrivial solution.

Remark 1.4. In view of conditions (SCPI), (H2) and (H3), problem (1.1) with
the improved subcritical polynomial growth is called asymmetric. Hence, Theorem
1.3 is completely different from results contained in [4, 5, 6, 7, 8, 9].

Theorem 1.5. Let N ≥ 3 and assume that f has the improved subcritical polyno-
mial growth on RN (condition (SCPI)) and satisfies (H1)–(H3). If f0 < λ1 = l and
limt→−∞[f(x, t)t− 2F (x, t)] = −∞ uniformly for a.e. x ∈ RN , then problem (1.1)
has at least one nontrivial solution.
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Remark 1.6. When l = λ1, problem (1.1) is called resonant at negative infinity.
This case is completely new. Here, we also give an example for f(x, t). It satisfies
our conditions (H1)–(H3) and (SCPI).

Example Define

f(x, t) =

{
g(t)t, t ≤ 0,
g(t)t+ h(t), t > 0,

where g(t) ∈ C(R), g(0) = 0; g(t) ≥ 0, t ∈ R; h(t) ∈ C[0,+∞); limt→+0
h(t)
t = 0;

limt→+∞
h(t)
t2∗−1 = 0; limt→+∞

h(t)
t = +∞. Moreover, there exists t0 > 0 such that

g(t) ≡ λ1 for all |t| ≥ t0.

Theorem 1.7. Let N ≥ 3 and assume that f has the improved subcritical poly-
nomial growth on RN (condition (SCPI)) and satisfies (H1)–(H4). If f0 < λ1 and
l = +∞, then problem (1.1) has at least one nontrivial solution.

Remark 1.8. When l = +∞, problem (1.1) is generalized superlinearity at negative
infinity.

In the case N = 2, we have 2∗ = +∞. In this case, every polynomial growth is
admitted. Hence, one is led to look for a function g(s) : R → R+ with maximal
growth such that

sup
u∈H,‖u‖H≤1

∫
RN

g(u) dx <∞.

It was shown by Trudinger [20], Moser [21] and Ruf [22] that the maximal growth
is of exponential type. So, we must redefine the subcritical (exponential) growth in
this case as follows:

(SCE): f has subcritical (exponential) growth on RN , i.e., For ε > 0, there exists
positive constant C∗(ε) such that

|f(x, t)| ≤ C∗(ε) + ε exp(α|t|2) for all t ∈ R, x ∈ RN and α > 0.

When N = 2 and f has the subcritical (exponential) growth (SCE), our work is
still to study asymmetric problem (1.1) without the (AR)-condition in the positive
semiaxis. To our knowledge, this problem is rarely studied by other people. Hence,
our results are completely new and our methods are skillful since we skillfully com-
bined Mountain Pass Theorem with Moser-Trudinger inequality. Our results are as
follows:

Theorem 1.9. Let N = 2 and assume that f has the subcritical exponential growth
on RN (condition (SCE)) and satisfies (H1)–(H3). If f0 < λ1 < l < ∞, then
problem (1.1) has at least one nontrivial solution.

Remark 1.10. In view of the conditions (H2), (H3) and (SCE), problem (1.1) is
called asymmetric subcritical exponential problem. Hence, Theorem 1.9 is com-
pletely different from results contained in [1, 2, 3, 4, 5, 6, 7, 8, 9].

Theorem 1.11. Let N = 2 and assume that f has the subcritical exponential
growth on RN (condition (SCE)) and satisfies (H1)–(H3). If f0 < λ1 = l and
limt→−∞[f(x, t)t−2F (x, t)] = −∞ uniformly for a. e. x ∈ RN , then problem (1.1)
has at least one nontrivial solution.

Remark 1.12. When l = λ1, problem (1.1) is called resonant at negative infinity.
This case is completely new.
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Theorem 1.13. Let N = 2 and assume that f has the subcritical exponential
growth on RN (condition (SCE)) and satisfies (H1)–(H4). If f0 < λ1 and l = +∞,
then problem (1.1) has at least one nontrivial solution.

2. Preliminaries

Lemma 2.1. Let N ≥ 3 and ϕ1 > 0 be a λ1-eigenfunction with ‖ϕ1‖ = 1 and
assume that (H1)–(H3) and (SCPI) hold. If f0 < λ1 < l ≤ +∞, then

(i) There exist ρ, α > 0 such that I(u) ≥ α for all u ∈ E with ‖u‖ = ρ,
(ii) I(tϕ1)→ −∞ as t→ +∞.

Proof. By (SCPI) and (H1)–(H3), for any ε > 0, there exist A1 = A1(ε), B1 =
B1(ε) such that for all (x, s) ∈ RN × R,

F (x, s) ≤ 1
2

(f0 + ε)|s|2 +A1|s|2
∗
. (2.1)

Choose ε > 0 such that (f0 + ε) < λ1. By (2.1), the continuous imbedding and the
Sobolev inequality: |u|2∗2∗ ≤ K‖u‖2

∗
, we obtain

I(u) ≥ 1
2
‖u‖2 − f0 + ε

2
|u|22 −A1|u|2

∗

2∗

≥ 1
2

(1− f0 + ε

λ1
)‖u‖2 −A1K‖u‖2

∗
.

So, part (i) is proved if we choose ‖u‖ = ρ > 0 small enough.
On the other hand, by the definition of I and (H2) with l > λ1, we have

lim
t→−∞

I(tϕ1)
t2

≤ 1
2

(λ1 − l)|ϕ1|22 < 0.

By a slight modification to the proof above, we can prove (ii) if l = +∞. �

Lemma 2.2 ([20, 21, 22]). Let u ∈ H. Then

sup
u∈H,‖u‖H≤1

∫
RN

(expα|u|2 − 1) dx ≤ C for α ≤ 4π2.

The inequality is sharp: for any α > 4π2 the corresponding supremum is +∞.

Lemma 2.3. Let N = 2 and ϕ1 > 0 be a λ1-eigenfunction with ‖ϕ1‖ = 1 and
assume (H1)–(H3) and (SCE) hold. If f0 < λ1 < l ≤ +∞, then

(i) There exist ρ, α > 0 such that I(u) ≥ α for all u ∈ H with ‖u‖ = ρ,
(ii) I(tϕ1)→ −∞ as t→ +∞.

Proof. By (SCE) and (H1)–(H3), for any ε > 0, there exist A1 = A1(ε), B1 = B1(ε),
κ > 0 and q > 2 such that for all (x, s) ∈ RN × R,

F (x, s) ≤ 1
2

(f0 + ε)|s|2 +A1(exp(κ|s|2)− 1)|s|q. (2.2)

Choose ε > 0 such that (f0 + ε) < λ1. By (2.2), the Holder inequality and the
Moser-Trudinger embedding, we obtain

I(u) ≥ 1
2
‖u‖2 − f0 + ε

2
|u|22 −A1

∫
RN

(exp(κ|u|2)− 1)|u|q dx

≥ 1
2

(1− f0 + ε

λ1
)‖u‖2 −A1

(∫
RN

(exp(κr‖u‖2H(
|u|
‖u‖H

)2 − 1)) dx
)1/r
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×
(∫

Ω

|u|r
′q dx

)1/r′

≥ 1
2

(1− f0 + ε

λ1
)‖u‖2 − C‖u‖q,

where r > 1 sufficiently close to 1, ‖u‖H ≤ σ and κrσ2 < 4π2. So, part (i) is proved
if we choose ‖u‖ = ρ > 0 small enough.

On the other hand, by the definition of I and (H2) with l > λ1, we have

lim
t→−∞

I(tϕ1)
t2

≤ 1
2

(λ1 − l)|ϕ1|22 =
λ1 − l
2λ1

< 0

By a slight modification to the proof above, we can prove (ii) if l = +∞. �

Lemma 2.4. For the functional I defined by (1.2), if un(x) ≤ 0 a.e. x ∈ RN ,
n ∈ N and

〈I ′(un), un〉 → 0 quadas n→∞,
then there exists subsequence, still denoted by {un}, such that

I(tun) ≤ 1 + t2

2n
+ I(un) for all t ≥ 0 and n ∈ N.

Proof. This lemma is essentially due to [7]. For the sake of completeness, we prove
it here. By 〈I ′(un), un〉 → 0 as n→∞, for a suitable subsequence, we may assume
that

− 1
n
< 〈I ′(un), un〉 = ‖un‖2 −

∫
RN

f(x, un(x))un dx <
1
n

for all n. (2.3)

We claim that for any t ≥ 0 and n ∈ N,

I(tun) ≤ t2

2n
+
∫

RN

{1
2
f(x, un(x))un − F (x, un(x))} dx. (2.4)

Indeed, for any t ≥ 0, at fixed x ∈ RN and n ∈ N if we set

h(t) =
1
2
t2f(x, un)un(x)− F (x, tun(x)),

then

h′(t) = tf(x, un)un(x)− f(x, tun)un(x)

= tun(x){f(x, un)− f(x, tun(x))/t}{
≥ 0 for 0 < t ≤ 1
≤ 0 for t ≥ 1

by (H4); hence h(t) ≤ h(1) for all t ≥ 0. Therefore,

I(tun) =
1
2
t2‖un‖2 −

∫
RN

F (x, tun(x)) dx

<
1
2
t2{ 1

n
+
∫

RN

f(x, un(x))un(x) dx} −
∫

RN

F (x, tun(x)) dx

≤ t2

2n
+
∫

RN

{1
2
t2f(x, un(x))un(x)− F (x, tun(x))} dx

≤ t2

2n
+
∫

RN

{1
2
f(x, un(x))un(x)− F (x, un(x))} dx
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and our claim (2.4) is proved.
On the other hand,

I(un) =
1
2
‖un‖2 −

∫
RN

F (x, un(x)) dx

≥ 1
2
{− 1

n
+
∫

RN

f(x, un(x))un(x) dx} −
∫

RN

F (x, un(x)) dx;

that is, ∫
RN

{1
2
f(x, un(x))un(x)− F (x, un(x))} dx ≤ 1

2n
+ I(un). (2.5)

Combining (2.4) and (2.5), we find that

I(tun) ≤ 1 + t2

2n
+ I(un) for all t ≥ 0 and n ∈ N. (2.6)

�

3. Proofs of the main results

We prove only Theorems 1.3, 1.5, 1.7 and 1.9. Others followed from these results.

Proof of Theorem 1.3. By Lemma 2.1, the geometry conditions of Mountain Pass
Theorem hold. So, we only need to verify condition (PS). Let {un} ⊂ E be a (PS)
sequence such that for every n ∈ N,∣∣1

2
‖un‖2 −

∫
RN

F (x, un) dx
∣∣ ≤ c, (3.1)∣∣ ∫

RN

∇un∇v dx+
∫

RN

V (x)unv dx−
∫

RN

f(x, un)v dx
∣∣ ≤ εn‖v‖, v ∈ E, (3.2)

where c > 0 is a positive constant and {εn} ⊂ R+ is a sequence which converges to
zero.

Step 1. To prove that {un} has a convergence subsequence, we first show that
it is a bounded sequence. To do this, we argue by contradiction assuming that for
a subsequence, which we follow denoting by {un}, we have

‖un‖ → +∞ as n→∞.
Without loss of generality, we can assume ‖un‖ > 1 for all n ∈ N and define
zn = un

‖un‖ . Obviously, ‖zn‖ = 1 for all n ∈ N and then, it is possible to extract a
subsequence (denoted also by {zn}) such that

zn ⇀ z0 in E, (3.3)

zn → z0 in L2(RN ), (3.4)

zn(x)→ z0(x) a.e. x ∈ RN , (3.5)

|zn(x)| ≤ q(x) a.e. x ∈ RN , (3.6)

where z0 ∈ E and q ∈ L2(RN ). Dividing both sides of (3.2) by ‖un‖, we obtain

|
∫

RN

∇zn∇v dx+
∫

RN

V (x)znv dx−
∫

RN

f(x, un)
‖un‖

v dx| ≤ εn
‖un‖

‖v‖ for all v ∈ E.

Passing to the limit we deduce from (3.3) that

lim
n→∞

∫
RN

f(x, un)
‖un‖

v dx =
∫

RN

∇z0∇v dx+
∫

RN

V (x)z0v dx (3.7)
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for all v ∈ E.
Now we claim that z0(x) ≤ 0 for a.e. x ∈ RN . To verify this, let us observe that

by choosing v = z+
0 = max{z0, 0} in (3.7) we have

lim
n→∞

∫
Θ

f(x, un)
‖un‖

z0 dx =
∫

Θ

|∇z0|2 dx+
∫

Θ

V (x)|z0|2 dx < +∞, (3.8)

where Θ = {x ∈ RN |z0(x) > 0}. On the other hand, from conditions (SCPI), (H1),
(H2), (H3), (3.5) and (3.6), we have

f(x, un(x))
‖un‖

z0(x) ≥ (−K1)q(x)z0(x), a.e. x ∈ Θ

for some positive constant K1 > 0, and

lim
n→∞

f(x, un(x))
‖un‖

z0(x) = lim
n→∞

f(x, un(x))
un

zn(x)z0(x) = +∞, a.e. x ∈ Θ.

Therefore, if |Θ| > 0, by the Fatou’s Lemma, we obtain

lim
n→∞

∫
Θ

f(x, un(x))
‖un‖

z0(x) dx = +∞,

which contradicts (3.8). Thus |Θ| = 0 and the claim is proved.
Clearly, z0(x) 6≡ 0. By (H2), there exists c > 0 such that |f(x,un)|

|un| ≤ c for a.e.
x ∈ RN . By using Lebesgue dominated convergence theorem in (3.7), we have∫

RN

∇z0∇v dx+
∫

RN

V (x)z0v dx−
∫

RN

lz0v dx = 0 (3.9)

for all v ∈ E. This contradicts our assumption, i.e., l > λ1.
Step 2. Now, we prove that {un} has a convergence subsequence. In fact, we

can suppose that

un ⇀ u in E,

un → u in Lq(RN ), ∀1 ≤ q < 2∗,

un(x)→ u(x) a.e. x ∈ RN .

Since f has the subcritical growth on RN , for every ε > 0, we can find a constant
C(ε) > 0 such that

f(x, s) ≤ C(ε) + ε|s|2
∗−1, ∀(x, s) ∈ RN × R,

then we obtain

|
∫

RN

f(x, un)(un − u) dx|

≤ C(ε)
∫

RN

|un − u| dx+ ε

∫
RN

|un − u‖un|2
∗−1 dx

≤ C(ε)
∫

RN

|un − u| dx+ ε
(∫

RN

(|un|2
∗−1)

2∗
2∗−1 dx

) 2∗−1
2∗
(∫

RN

|un − u|2
∗
)1/2∗

≤ C(ε)
∫

RN

|un − u| dx+ εC.
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Similarly, since un ⇀ u in E,
∫

RN |un − u| dx→ 0. Since ε > 0 is arbitrary, we can
conclude that ∫

RN

(f(x, un)− f(x, u))(un − u) dx→ 0 as n→∞. (3.10)

By (3.2), we have

〈I ′(un)− I ′(u), (un − u)〉 → 0 as n→∞. (3.11)

From (3.10) and (3.11), we obtain∫
RN

(∇un −∇u)(∇un −∇u) +
∫

RN

V (x)|un − u|2 dx→ 0 as n→∞. (3.12)

We have un → u in E which means that I satisfies (PS). �

Proof of Theorem 1.5. Since l = λ1, obviously, Lemma 2.1 (i) holds. We only need
to show that Lemma 2.1 (ii) holds. Let u = −tϕ1, then

I(−tϕ1) =
1
2
t2
∫

RN

(|∇ϕ1|2 + V (x)|ϕ1|2) dx−
∫

RN

F (x,−tϕ1) dx

=
1
2
t2
∫

RN

(|∇ϕ1|2 + V (x)|ϕ1|2) dx− 1
2

∫
RN

f(x,−tϕ1)(−tϕ1) dx

−
∫

RN

{F (x,−tϕ1) +
f(x,−tϕ1)tϕ1

2
} dx.

Since f(x, s) = λ1s+ ◦(s) as s→ −∞, we have

I(−tϕ1)→ −∞ as t→ +∞
and the claim is proved. By Proposition 1.2, there exists a sequence {un} ⊂ E such
that

I(un) =
1
2
‖un‖2 −

∫
RN

F (x, un) dx = c+ ◦(1), (3.13)

(1 + ‖un‖)‖I ′(un)‖E∗ → 0 as n→∞. (3.14)

Clearly, (3.14) implies

〈I ′(un), un〉 = ‖un‖2 −
∫

RN

f(x, un(x))un dx = ◦(1). (3.15)

To complete our proof, we need to verify that {un} is bounded in E. Similar to the
proof of Theorem 1.3, we have z0(x) ≤ 0, x ∈ Ω, z0(x) 6≡ 0 and∫

RN

(∇z0∇v + V (x)z0v) dx−
∫

RN

lz0v dx = 0

for all v ∈ E. By the maximum principle, z0 < 0 is an eigenfunction of λ1 then
|un(x)| → ∞ for a.e. x ∈ RN . By our assumptions, we have

lim
n→∞

(f(x, un(x))un(x)− 2F (x, un(x))) = −∞

uniformly in x ∈ RN , which implies that∫
RN

(f(x, un(x))un(x)− 2F (x, un(x))) dx→ −∞ as n→∞. (3.16)

On the other hand, (3.15) implies that

2I(un)− 〈I ′(un), un〉 → 2c as n→∞.
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Thus ∫
RN

(f(x, un)un − 2F (x, un)) dx→ 2c as n→∞,

which contradicts (3.16). Hence {un} is bounded. According to the Step 2 proof
of Theorem 1.3, we have un → u in E which means that I satisfies (C)c. �

Proof. Proof of Theorem 1.7] By Lemma 2.1 and Proposition 1.2 (3.13)-(3.15) hold.
We still can prove that {un} is bounded in E. Assume ‖un‖ → +∞ as n → ∞.
Similar to the proof of Theorem 1.3, we have z0(x) ≤ 0 and when z0(x) < 0,
un = zn‖un‖ → −∞ as n→∞. Let

sn =
2
√
c

‖un‖
, wn = snun =

2
√
cun
‖un‖

. (3.17)

Since {wn} is bounded in E, it is possible to extract a subsequence (denoted also
by {wn}) such that

wn ⇀ w0 in E, (3.18)

wn → w0 in L2(RN ), (3.19)

wn(x)→ w0(x) a.e. x ∈ RN , (3.20)

|wn(x)| ≤ h(x) a.e. x ∈ RN , (3.21)

where w0 ∈ E and h ∈ L2(RN ).
If ‖un‖ → +∞ as n → ∞, then w0(x) ≡ 0. In fact, letting Θ− = {x ∈ Ω :

w0(x) < 0} and noticing l = +∞, from (H3) it follows that

f(x, un)
un

≥M uniformly for all x ∈ Θ−,

where M is a constant, large enough . Therefore, by (3.15) and (3.17), we have

4c = lim
n→∞

‖wn‖2

= lim
n→∞

∫
RN

f(x, un)
un

|wn|2 dx

≥ lim
n→∞

∫
Θ−

f(x, un)
un

|wn|2 dx

≥M
∫

Θ−
|w0|2 dx.

So w0 ≡ 0 for a.e. x ∈ RN . But, if w0 ≡ 0, then
∫

RN F (x,wn) dx→ 0. Hence

I(wn) =
1
2
‖wn‖2 + ◦(1) = 2c+ ◦(1). (3.22)

On the other hand, since ‖un‖ → ∞ as n→∞, we have sn → 0 as n→∞. From
Lemma 2.4 and (3.13), we obtain

I(wn) = I(snun) ≤ 1 + (sn)2

2n
+ I(un) ≤ c, as n→∞.

Obviously, it contradicts (3.22). So {un} is bounded in E. According to the Step 2
proof of Theorem 1.3, we have un → u in E which means that I satisfies (C)c. �
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Proof of Theorem 1.9. By Lemma 2.3, the geometry conditions of Mountain Pass
Theorem hold. So, we only need to verify condition (PS). Similar to the Step 1 proof
of Theorem 1.3, we easily know that (PS) sequence {un} is bounded in E. Next,
we prove that {un} has a convergence subsequence. Without loss of generality,
suppose that

‖un‖ ≤ β,
un ⇀ u in E,

un → u in Lq(RN ), ∀q ≥ 1,

un(x)→ u(x) a.e. x ∈ RN .

Now, since f has the subcritical exponential growth (SCE) on RN , we can find a
constant Cβ0 > 0 such that

|f(x, t)| ≤ Cβ0(exp(
αN
2β2

0

|t|2)− 1), ∀(x, t) ∈ RN × R,

where β0 = γβand γ is defined

‖u‖H ≤ γ‖u‖, u ∈ E.
Thus, by the Moser-Trudinger inequality (see Lemma 2.2),

|
∫

RN

f(x, un)(un − u) dx|

≤ C
(∫

RN

(exp(
αN
β2

0

|un|2)− 1) dx
)1/2

|un − u|2

≤ C
(∫

RN

(exp(
αN
β2

0

‖un‖2H |
un
‖un‖H

|2)− 1) dx
)1/2

|un − u|2

≤ C|un − u|2 → 0.

Similar to the proof of Theorem 1.3, we have un → u in E which means that I
satisfies (PS). �
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