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GROUND STATES FOR SCHRÖDINGER-POISSON SYSTEMS
WITH THREE GROWTH TERMS

HUI ZHANG, FUBAO ZHANG, JUNXIANG XU

Abstract. In this article we study the existence and nonexistence of ground
states of the Schrödinger-Poisson system

−∆u+ V (x)u+K(x)φu = Q(x)u3, x ∈ R3,

−∆φ = K(x)u2, x ∈ R3,

where V , K, and Q are asymptotically periodic in the variable x. The proof

is based on the the method of Nehari manifold and concentration compact-
ness principle. In particular, we develop the method of Nehari manifold for

Schrödinger-Poisson systems with three times growth.

1. Introduction and statement of the main result

The Schrödinger-Poisson system

−∆u+ V (x)u+K(x)φu = f(x, u), x ∈ R3,

−∆φ = K(x)u2, x ∈ R3,
(1.1)

has great importance for describing the interaction of a charged particle with an
electromagnetic field. For more information on the physical aspects about system
(1.1) we refer the reader to [6].

There are many existence and nonexistence results about nontrivial solutions,
radial and nonradial solutions, ground states, multiplicity of solutions and concen-
tration of solutions for system (1.1) and similar problems. See the references in
this article. Especially, the study of ground states has made great progress and
attracted many authors attention for its great physical interests. Many results are
focus on the case that (1.1) with more than three times growth. As we know, the
first result on the existence of ground states of (1.1) was obtained by Azzollini and
Pomponio [5], they treated (1.1) with f(x, u) = |u|q−2u and f(x, u) = u5 + |u|q−2u
(4 < q < 6) respectively and obtained ground states when V is constant or non-
constant, possibly unbounded below. Later, Cerami and Vaira [7] obtained positive
ground states of (1.1) with V (x) = 1, f(x, u) = a(x)|u|p−1u, 3 < p < 5, and
a,K have the limit at infinity. Alves et al [1] studied (1.1) with K(x) = 1 and
f(x, u) = f(u) continuous and discussed the existence of ground states when V is
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periodic and asymptotically periodic in the meaning that there exists a periodic
function Vp such that lim|x|→∞ |V (x)− Vp(x)| = 0. More recently, in some weaker
asymptotically periodic sense, assuming that V , K and f are all asymptotically
periodic in x, we [26] showed that (1.1) possesses ground states.

Comparing with the above case, the case that f is with less than or equal to
three times growth, there is no higher-order term in the nonlinearity. Then there is
no Mountain-Pass structure and the standard variational methods can not be used.
So there needs some techniques or new variational framework. In [15, 27], with the
help of some parameters, the compactness of the PS sequence was recovered, and
then the authors deduced that the existence of nontrivial solutions.

By the motivation of above works, without use of parameters, we try to show the
existence of ground states for (1.1) with three times growth. Moreover, we want to
know when there is no ground state.

In this article we study the system

−∆u+ V (x)u+K(x)φu = Q(x)u3, x ∈ R3,

−∆φ = K(x)u2, x ∈ R3.
(1.2)

Letting F be the class of functions h̃ ∈ L∞(R3) such that, for every ε > 0 the
set {x ∈ R3 : |h̃(x)| ≥ ε} has finite Lebesgue measure, we assume that:

(H1) V,K,Q ∈ L∞(R3), and there exist functions Vp,Kp, Qp ∈ L∞(R3), are
1-periodic in xi, 1 ≤ i ≤ 3, such that V − Vp,K −Kp, Q−Qp ∈ F ;

(H2) there exist positive constants a0, b0 and q0 such that a0 < V ≤ Vp, b0 <
K ≤ Kp, Q ≥ Qp > q0, where Vp,Kp, Qp are given in (H1);

(H2’) there exist positive constants a0, b0 and q0 such that a0 < Vp ≤ V , b0 <
Kp ≤ K, Qp ≥ Q > q0, where Vp,Kp, Qp are given in (H1).

Our main results read as follows.

Theorem 1.1. Let (H1) and (H2) hold. Then (1.2) has a positive ground state.

Theorem 1.2. Let (H1) and (H2’) hold. In addition, if one of the three conditions

V 6≡ Vp K 6≡ Kp, Q 6≡ Qp,

is satisfied, then (1.2) has no ground state.

The outline for the proof : For system (1.2), we do not use the parameters as
in [15, 27, 19], but improve the method of Nehari manifold [22] to prove Theo-
rems 1.1 and 1.2. In the process of using the method of Nehari manifold, since
our problem is lack of higher-order term of nonlinearity, the standard method of
Nehari manifold [22] needs to be re-established. We find that, although the Nehari
manifold is not homeomorphic to the unit sphere, it is homeomorphic to an open
set of the unit sphere. So we can still reduce the problem of looking for a ground
state into that of finding a minimizer of the functional on Nehari manifold. Then
we use concentration compactness principle to deal with the minimizing problem.
Since (1.2) is non-periodic, we cannot use the invariance of the functional under
translation to look for a minimizer. By the periodicity of the limit system and the
relation of the functionals and derivatives of (1.2) and its limit system, we find the
minimizer. In addition, we take advantage of the ground states of the limit system
and the relation of the functionals and derivatives of (1.2) and its limit system to
obtain sufficient conditions for the nonexistence of ground states.
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The article is organized as follows. In Section 2 we give some preliminaries. In
Section 3 we introduce the variational setting. In Section 4 we prove Theorems 1.1
and 1.2.

2. Notation and preliminaries

In this article we use the following notation:∫
R3 h(x) dx will be represented by

∫
h dx. By (H1), (H2) or (H2’), we can define

the scalar product and norm in H1(R3) by

〈u, v〉 =
∫

(∇u · ∇v + V (x)uv) dx, ‖u‖2 = 〈u, u〉.

Moreover,

‖u‖2p =
∫

(|∇u|2 + Vp(x)u2) dx,

is an equivalent norm in H1(R3). D1,2(R3) is the Sobolev space endowed with the
scalar product and norm

(u, v)D1,2 =
∫
∇u · ∇v dx, ‖u‖2D1,2 =

∫
|∇u|2 dx.

S = {u ∈ H1(R3) : ‖u‖2 = 1}. The norm in Lr(R3) (1 ≤ r ≤ ∞) is denoted by
| · |r. For % > 0 and z ∈ R3, B%(z) denotes the ball of radius % centered at z.

The system (1.2) can be easily transformed into a Schrödinger equation with a
nonlocal term. Actually, for all u ∈ H1(R3), considering the linear functional Lu
defined in D1,2(R3) by

Lu(v) =
∫
K(x)u2v dx.

By the Hölder inequality and the Sobolev inequality, we have

|Lu(v)| ≤ |K|∞|u|212/5|v|6 ≤ C|u|
2
12/5‖v‖D1,2 , (2.1)

here and below C may indicate different constants. Hence the Lax-Milgram theorem
implies that there exists a unique φu ∈ D1,2(R3) such that∫

∇φu∇v dx = (φu, v)D1,2 = Lu(v)

=
∫
K(x)u2v dx, ∀ v ∈ D1,2(R3).

(2.2)

Namely, φu is the unique solution of −∆φ = K(x)u2. Moreover, φu can be ex-
pressed as

φu(x) =
∫

K(y)
|x− y|

u2(y) dy.

Substituting φu into the first equation of (1.2), we obtain

−∆u+ V (x)u+K(x)φuu = Q(x)u3. (2.3)

By (2.1) and (2.2) we obtain

‖φu‖D1,2 = ‖Lu‖L(D1,2(R3),R) ≤ C|u|212/5.
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Then we obtain ∣∣∫ K(x)φuu2 dx
∣∣ ≤ |K|∞|φu|6|u|212/5

≤ C|K|∞‖φu‖D1,2 |u|212/5

≤ C0|u|412/5 ≤ C1‖u‖4.

(2.4)

In addition, one easily show that the functional

I(u) =
1
2
‖u‖2 +

1
4

∫
K(x)φuu2 dx− 1

4

∫
Q(x)u4 dx

is of class C1 and its critical points are solutions of (2.3). By the above argument,
looking for ground states in H1(R3) × D1,2(R3) for (1.2) is equivalent to seeking
for ground states in H1(R3) for (2.3). A solution ũ ∈ H1(R3) of (2.3) is called a
ground state if

I(ũ) = min{I(u) : u ∈ H1(R3)\{0}, I ′(u) = 0}.

In the process of finding ground states for (1.2), the corresponding periodic
system of (1.2) is very important. The corresponding periodic system is defined by

−∆u+ Vp(x)u+Kp(x)φu = Qp(x)u3, x ∈ R3,

−∆φ = Kp(x)u2, x ∈ R3.
(2.5)

As before this system can be transformed into the equation

−∆u+ Vp(x)u+Kp(x)φ̃uu = Qp(x)u3. (2.6)

Here φ̃u ∈ D1,2(R3) is the unique solution of the equation

−∆φ = Kp(x)u2.

Moreover, the functional for (2.6) is

Ip(u) =
1
2
‖u‖2p +

1
4

∫
Kp(x)φ̃uu2 dx− 1

4

∫
Qp(x)u4 dx.

By [26, Lemmas 2.2, 2.3 and Remark 2.1], we have the following two results.

Lemma 2.1. Let Kp ∈ L∞(R3) be 1-periodic in xi, 1 ≤ i ≤ 3, and infR3 Kp > 0.
If z ∈ Z3 and w̆(x) = w(x+ z) for any w ∈ H1(R3), then∫

Kp(x)φ̃ŭŭv̆ dx =
∫
Kp(x)φ̃uuv dx, u, v ∈ H1(R3).

Lemma 2.2. Let (H1) hold. If (H2) or (H2’) is satisfied, then I ′ and I ′p are weakly
sequentially continuous.

3. Variational setting

In this section we describe the variational framework for our problem. In order
to find ground states, we shall use the method of Nehari manifold [22]. A very
important condition using the method of Nehari manifold is that the functional has
a unique maximum point along the direction u, for any u ∈ H1(R3)\{0}. However,
since our functional I is lack of the higher-order term of the nonlinearity, I(tu)
(t ≥ 0) may not have the maximum, and therefore the standard method of Nehari
manifold cannot be used. Partially inspired by [12], where the authors considered
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the existence of infinitely many nontrivial solutions of quasilinear Schrödinger equa-
tions, we find that if we restrict the functional I(tu) in a set, then the functional
has a unique maximum. In [22], the authors showed that when the functional has
a unique maximum, the Nehari manifold is homeomorphic to the unit sphere. So it
is natural to think that the Nehari manifold is homeomorphic to the intersection of
the above set and the unit sphere. Then we can use the one-to-one correspondence
of the functionals on the manifold and the intersection to improve the method of
Nehari manifold in [22], and therefore find ground states.

First we give the Nehari manifold M corresponding to I,

M = {u ∈ H1(R3)\{0} : 〈I ′(u), u〉 = 0},

where

〈I ′(u), u〉 = ‖u‖2 +
∫
K(x)φuu2 dx−

∫
Q(x)u4 dx,

and the least energy on M is defined by c := infM I.

Lemma 3.1. Let V,K,Q ∈ L∞(R3) be such that infR3 V > 0, infR3 K > 0, and
infR3 Q > 0. Then I is coercive on M .

Proof. For all u ∈M , we have

I(u) = I(u)− 1
4
〈I ′(u), u〉 =

1
4
‖u‖2. (3.1)

Then I|M is coercive. �

By the above statement, we need to use a new set to construct the new variational
framework. We define

Θ := {u ∈ H1(R3) :
∫
K(x)φuu2 dx <

∫
Q(x)u4 dx}.

Since K,Q ∈ L∞(R3) by (H1) and infR3 K > 0 and infR3 Q > 0 by (H2) or (H2’),
we claim that Θ 6= ∅. In fact, let u0 ∈ C∞0 (R3, [0, 1]) be such that u0 ≡ 1 in Br(0),
u0 ≡ 0 in R3 \B2r(0), where r is to be determined. Then∫

R3
K(x)φu0u

2
0 dx =

∫
R3

∫
R3

K(x)K(y)
|x− y|

u2
0(x)u2

0(y) dy dx

≤ |K|2∞
∫
|x|≤2r

∫
|y|≤2r

1
|x− y|

dy dx

= |K|2∞
∫
|x|≤2r

∫
|x−z|≤2r

1
|z|
dz dx

≤ |K|2∞
∫
|x|≤2r

∫
|z|≤4r

1
|z|
dz dx.

(3.2)

Using the sphere coordinate transformation method, we have∫
|z|≤4r

1
|z|
dz =

∫ 4r

0

∫ 2π

0

∫ π

0

ρ2 sinϕ
ρ

dϕdθdρ ≤ c1r2,

where z = (z1, z2, z3) = (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ). Inserting the above in-
equality in (3.2), we have∫

R3
K(x)φu0u

2
0 dx ≤ |K|2∞

∫
|x|≤2r

c1r
2 dx ≤ c2r5.
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Moreover, ∫
Q(x)u4

0 dx ≥ inf
R3
Q

∫
|x|≤r

dx = c3r
3.

Choose small r be such that c2r5 < c3r
3, then∫

K(x)φu0u
2
0 dx <

∫
Q(x)u4

0 dx.

Hence, Θ 6= ∅.
Now we consider the function

h(t) := I(tu) =
t2

2
‖u‖2 +

t4

4
[∫

K(x)φuu2 dx−
∫
Q(x)u4 dx

]
.

Lemma 3.2. Under the assumptions of Lemma 3.1, we have:

(i) For all u ∈ Θ, there exists an unique tu > 0 such that h′(t) > 0 for
0 < t < tu, and h′(t) < 0 for t > tu. Moreover, tuu ∈ M and I(tuu) =
maxt>0 I(tu).

(ii) If u 6∈ Θ, then tu 6∈M for any t > 0.
(iii) For each compact subset W of Θ∩S, there exists CW > 0 such that tw ≤ CW

for all w ∈W .

Proof. (i) For each u ∈ Θ, one easily has that h(t) > 0 when t is sufficiently small,
and h(t) < 0 when t is large enough. Then h has a positive maximum point in
(0,∞). Moreover, the maximum point t satisfies that

‖u‖2 = t2
[∫

Q(x)u4 dx−
∫
K(x)φuu2 dx

]
. (3.3)

Then the maximum point is unique, and denoted by tu. Therefore conclusion (i)
holds.

(ii) We argue by contradiction. Assume that there exists t > 0 such that tu ∈
M . Then 〈I ′(tu), tu〉 = 0. So (3.3) holds. Then

∫
K(x)φuu2 dx <

∫
Q(x)u4 dx.

Namely, u ∈ Θ. This contradicts with u 6∈ Θ. So the conclusion (ii) holds.
(iii) Suppose that there exist a compact subset W ⊂ Θ ∩ S and a sequence

wn ∈ W such that twn → ∞. Assume w ∈ W satisfies wn → w in H1(R3). Then
one easily has that∫

K(x)φwnw
2
n dx−

∫
Q(x)w4

n dx→
∫
K(x)φww2 dx−

∫
Q(x)w4 dx < 0.

So

I(twnwn)
t2wn

=
1
2

+
t2wn
4

[ ∫
K(x)φwnw

2
n dx−

∫
Q(x)w4

n dx
]
→ −∞. (3.4)

However, by (3.1), we know that I(twnwn) ≥ 0. This is a contradiction. This
completes the proof. �

Lemma 3.3. Under the assumptions of Lemma 3.1, we have:

(1) there exists ρ > 0 such that infSρ I > 0 and then c = infM I ≥ infSρ I > 0,
where Sρ = {u ∈ H1(R3) : ‖u‖2 = ρ};

(2) ‖u‖2 ≥ 4c for all u ∈M .



EJDE-2014/253 GROUND STATES FOR SCHRÖDINGER-POISSON SYSTEMS 7

Proof. By (2.4), one easily has that there exists ρ > 0 such that infSρ I > 0. As a
consequence of Lemma 3.2(i), for any u ∈M , there is t > 0 such that tu ∈ Sρ. Note
that I(u) ≥ I(tu), then infSρ I ≤ infM I = c. Hence c > 0. Then the conclusion
(1) holds. By (3.1), the conclusion (ii) easily follows. �

From Lemma 3.1(1), we define the mapping m̂ : Θ → M by m̂(u) = tuu. In
addition, for all v ∈ R+u we have m̂(v) = m̂(u). Let U := Θ ∩ S, we easily infer
that U is an open subset of S. Define m := m̂|U . Then m is a bijection from U to
M . Moreover, by Lemmas 3.2 and 3.9, as in the proof of [22, Proposition 3.1], we
have:

Lemma 3.4. Under the assumptions of Lemma 3.1, the mapping m is a homeo-
morphism between U and M , and the inverse of m is given by m−1(u) = u

‖u‖ .

We consider the functional Ψ : U → R given by Ψ(w) := I(m(w)), and we easily
deduce that:

Lemma 3.5. Under the assumptions of Lemma 3.1, the following results hold:
(1) If {wn} is a PS sequence for Ψ, then {m(wn)} is a PS sequence for I.

If {un} ⊂ M is a bounded PS sequence for I, then {m−1(un)} is a PS
sequence for Ψ.

(2) w is a critical point of Ψ if and only if m(w) is a nontrivial critical point
of I. Moreover, infM I = infU Ψ;

(3) A minimizer of I on M is a ground state of (2.3).

From Lemma 3.5 (3), we know that the problem of seeking for a ground state
for (2.3) can be reduced into that of finding a minimizer of I|M . In the process of
finding the minimizer, since (2.3) is non-periodic, we cannot use the invariance of
the functional under translation to look for a minimizer. However, the approached
equation of (2.3) as |x| → ∞ (i.e. the equation (1.2)′p) is periodic, we shall take
advantage of the periodicity of the equation (1.2)′p and the relation of the functionals
and derivatives of (2.3) and (1.2)′p to find the minimizer.

Below we give some lemmas for studying the relation of the functionals and
derivatives of (2.3) and (1.2)′p. By (H2), one easily has the following lemma.

Lemma 3.6. Let (H2) hold. Then I(u) ≤ Ip(u), for all u ∈ H1(R3).

The following lemma is obtained in [26], we give it for reader’s convenience.

Lemma 3.7. Let (H1) hold. Assume that un ⇀ 0 in H1(R3) and {ϕn} is a bounded
sequence in H1(R3). Then∫

[V (x)− Vp(x)]unϕn dx→ 0,∫
[K(x)φununϕn −Kp(x)φ̃ununϕn] dx→ 0,∫

(Q(x)−Qp(x))u3
nϕn dx→ 0.

To show the nonexistence of ground states, we still need the following results.

Lemma 3.8. Let (H2’) hold. If one of the three conditions V 6≡ Vp, K 6≡ Kp,
Q 6≡ Qp is satisfied, then Ip(u) < I(u), for all u > 0 in H1(R3).
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Lemma 3.9. Let (H1) hold. Assume un(x) = u0(x− yn), where u0 ∈ H1(R3) and
yn ∈ Z3. If |yn| → ∞, then∫

[V (x)u2
n − Vp(x)u2

0] dx→ 0, (3.5)∫
[K(x)φunu

2
n −Kp(x)φ̃u0u

2
0] dx→ 0, (3.6)∫

[Q(x)u4
n −Qp(x)u4

0] dx→ 0 . (3.7)

Proof. Noting that un(x) = u0(x− yn) with |yn| → ∞, then it is easy to show that
un ⇀ 0 in H1(R3). Replacing ϕn by un, from Lemma 3.4 it follows that∫

[V (x)− Vp(x)]u2
n dx→ 0,∫

[K(x)φunu
2
n −Kp(x)φ̃unu

2
n] dx→ 0,∫

(Q(x)−Qp(x))u4
n dx→ 0.

By yn ∈ Z3 and the periodicity of Vp, Kp, Qp, (3.5), (3.6) and (3.7) yield. The
proof is complete. �

4. Proof of main results

Proof of Theorem 1.1. By the statement in Section 3, it suffices to show that c is
attained.

Assume that wn ∈ U satisfies that Ψ(wn)→ infU Ψ. By the Ekeland variational
principle, we may suppose that Ψ′(wn) → 0. Then from Lemma 3.5 (1) it follows
that I ′(un) → 0, where un = m(wn) ∈ M . By Lemma 3.5 (2), we have I(un) =
Ψ(wn) → c. By Lemma 3.1, we obtain that {un} is bounded in H1(R3). Up to a
subsequence, we assume that un ⇀ ũ in H1(R3), un → ũ in L2

loc(R3) and un → ũ
a.e. on R3. Using Lemma 2.2, we have I ′(ũ) = 0. We discuss for two cases that
ũ 6= 0 and ũ = 0.

Case 1: ũ 6= 0. Then ũ ∈M . By (3.1) we obtain

c+ on(1) = I(un)− 1
4
〈I ′(un), un〉 =

1
4
‖un‖2

≥ 1
4
‖ũ‖2 + on(1)

= I(ũ)− 1
4
〈I ′(ũ), ũ〉+ on(1) = I(ũ) + on(1),

(4.1)

where the inequality of (4.1) follows from Fatou Lemma. Then I(ũ) ≤ c. Since
ũ ∈M , we have I(ũ) ≥ c. Hence I(ũ) = c.

Case 2: ũ = 0. This case is more complicated than the previous case. We
study when {un} is vanishing or non-vanishing. It is easy to see that the case of
vanishing does not happen since the energy c > 0 by Lemma 3.3 (1). In the case
of non-vanishing, we can follow the similar idea in [20] to construct a minimizer.
However, since our equation (2.3) has a Poisson term, the process is somewhat
different from [20].
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Suppose {un} is vanishing. Namely

lim
n→∞

sup
y∈R3

∫
B1(y)

u2
n(x) dx = 0.

Then Lions Compactness Lemma implies that un → 0 in L4(R3) and un → 0 in
L

12
5 (R3). Then by (2.4) we obtain∫

K(x)φunu
2
n dx→ 0,

∫
Q(x)|un|4 dx→ 0. (4.2)

Note that
I(un)→ c, 〈I ′(un), un〉 → 0.

Namely

c =
1
2
‖un‖2 +

1
4

∫
K(x)φunu

2
n dx−

1
4

∫
Q(x)|un|4 dx+ on(1),

‖un‖2 +
∫
K(x)φunu

2
n dx =

∫
Q(x)|un|4 dx+ on(1).

Combining with (4.2) we easily have c = 0. However, from Lemma 3.3 (1) we
obtain c > 0. This is a contradiction.

Hence {un} is non-vanishing. Then there exists xn ∈ R3 and δ0 > 0 such that∫
B1(xn)

u2
n(x) dx > δ0. (4.3)

Without loss of generality, we assume that xn ∈ Z3. Since un → ũ in L2
loc(R3)

and ũ = 0, we may suppose that |xn| → ∞ up to a subsequence. Denote ūn by
ūn(·) = un(·+ xn). Similarly, passing to a subsequence, we assume that ūn ⇀ ū in
H1(R3), ūn → ū in L2

loc(R3), and ūn → ū a.e. on R3. By (4.3) we have∫
B1(0)

ū2
n(x) dx > δ0.

So ū 6= 0.
We first claim that

I ′p(ū) = 0. (4.4)

Indeed, for all ψ ∈ H1(R3), set ψn(·) := ψ(· − xn). From Lemma 3.4, replacing ϕn
by ψn it follows that ∫

[V (x)− Vp(x)]unψn dx→ 0,∫
[K(x)φununψn −Kp(x)φ̃ununψn] dx→ 0,∫

(Q(x)−Qp(x))u3
nψn dx→ 0.

Consequently,
〈I ′(un), ψn〉 − 〈I ′p(un), ψn〉 → 0.

Since I ′(un)→ 0 and ‖ψn‖ = ‖ψ‖, we have 〈I ′(un), ψn〉 → 0. So 〈I ′p(un), ψn〉 → 0.
Moreover, by the fact that xn ∈ Z3, (H1) and Lemma 2.1, we obtain

〈I ′p(ūn), ψ〉 = 〈I ′p(un), ψn〉.
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Then 〈I ′p(ūn), ψ〉 → 0. By the arbitrary of ψ, I ′p(ūn) ⇀ 0 in H−1(R3). Since I ′p is
weakly sequentially continuous by Lemma 2.2, (4.4) holds.

Now we turn to prove that
Ip(ū) ≤ c. (4.5)

Replacing ϕn by un, Lemma 3.4 yields∫
(V (x)− Vp(x))u2

n dx→ 0. (4.6)

Then we infer that

c+ on(1) = I(un)− 1
4
〈I ′(un)un〉 =

1
4

∫
|∇un|2 dx+

1
4

∫
V (x)u2

n dx

=
1
4

∫
|∇un|2 dx+

1
4

∫
Vp(x)u2

n dx+ on(1)

=
1
4

∫
|∇ūn|2 dx+

1
4

∫
Vp(x)ū2

n dx+ on(1)

≥ 1
4

∫
|∇ū|2 dx+

1
4

∫
Vp(x)ū2 dx+ on(1)

= Ip(ū)− 1
4
〈I ′p(ū), ū〉+ on(1) = Ip(ū) + on(1),

where we have used Fatou’s Lemma and (4.4). So we have Ip(ū) ≤ c.
We shall verify that maxt>0 Ip(tū) = Ip(ū). Indeed, let χ(t) = Ip(tū), t > 0.

Then

χ′(t) = t3
( 1
t2
‖ū‖2p +

∫
Kp(x)φ̃ūū2 dx−

∫
Qp(x)ū4 dx

)
:= t3Ã(t).

Since I ′p(ū) = 0 by (4.4), Ã(1) = 0. Noting that Ã is decreasing in (0,∞), then
Ã(t) > 0 when 0 < t < 1 and Ã(t) < 0 when t > 1. Hence χ′(t) > 0 when 0 < t < 1
and χ′(t) < 0 when t > 1. Therefore, maxt>0 Ip(tū) = Ip(ū).

Note that I ′p(ū) = 0, then∫
Kp(x)φ̃ūū2 dx <

∫
Qp(x)ū4 dx.

By the condition that K ≤ Kp and Q ≥ Qp, we obtain∫
K(x)φūū2 dx <

∫
Q(x)ū4 dx.

Then ū ∈ Θ. Using Lemma 3.2 (i), there exists tū > 0 such that tūū ∈ M . Then
by Lemma 3.6 we infer

I(tūū) ≤ Ip(tūū) ≤ max
t>0

Ip(tū) = Ip(ū).

With the use of (4.5), we have I(tūū) ≤ c. Noting that tūū ∈ M , we obtain
I(tūū) ≥ c. Then I(tūū) = c.

In a word, we deduce that c is attained and the corresponding minimizer is a
ground state of (2.3). Below we shall look for a positive ground state for (2.3).
Assume that the ground state we found is u0. Then u0 ∈ M and I(u0) = c. By
Lemma 3.2 (ii), we have that u0 ∈ Θ. Then |u0| ∈ Θ. By Lemma 3.2 (i) there exists
t0 > 0 such that t0|u0| ∈ M . Then I(t0|u0|) ≥ c. Noting that I(t0|u0|) ≤ I(t0u0)
and I(t0u0) ≤ I(u0), we obtain I(t0|u0|) ≤ c. So I(t0|u0|) = c. Then t0|u0| is also
a ground state of (2.3). Applying the maximum principle to (2.3), we easily infer
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that t0|u0| > 0. Namely, we find a positive ground state for (2.3). This completes
the proof. �

Proof of Theorem 1.2. We argue by contradiction. Suppose that û is a ground state
of (2.3). Then û ∈M and I(û) = c. As the last paragraph in the proof of Theorem
1.1, we may assume that û > 0. Define

Mp = {u ∈ H1(R3)\{0} : 〈I ′p(u), u〉 = 0}, cp = inf
Mp

Ip,

Θp = {u ∈ H1(R3) :
∫
Kp(x)φ̃uu2 dx <

∫
Qp(x)u4 dx}.

Below we claim that
c ≤ cp. (4.7)

Indeed, by Theorem 1.1, we know that (2.6) has a ground state and denoted by u0.
Then u0 ∈Mp and Ip(u0) = cp. Letting un(·) = u0(· − yn), yn ∈ Z3 and |yn| → ∞.
Since u0 ∈Mp, u0 satisfies that

‖u0‖2p +
∫
Kp(x)φ̃u0u

2
0 dx =

∫
Qp(x)u4

0 dx. (4.8)

By Lemma 3.9 we infer that

‖u0‖2p +
∫
K(x)φunu

2
n dx =

∫
Q(x)u4

n dx+ on(1).

Therefore, un ∈ Θ since u0 6= 0. By Lemma 3.2 (i), we have that there exists tn > 0
such that tnun ∈M . Then tn satisfies

1
t2n
‖un‖2 +

∫
K(x)φunu

2
n dx =

∫
Q(x)u4

n dx.

Using Lemma 3.9 again, we have
1
t2n
‖u0‖2p +

∫
Kp(x)φ̃u0u

2
0 dx =

∫
Qp(x)u4

0 dx+ on(1).

Combining this with (4.2) we obtain that tn → 1. Then Lemma 3.9 implies that

c ≤ I(tnun) =
t2n
2
‖un‖2 +

t4n
4

[ ∫
K(x)φunu

2
n dx−

∫
Q(x)u4

n dx
]

=
1
2
‖u0‖2p +

1
4

[
∫
Kp(x)φ̃u0u

2
0 dx−

∫
Qp(x)u4

0 dx] + on(1)

= Ip(u0) + on(1) = cp + on(1).

Then (4.7) holds.
Note that û ∈ M , then one easily has that û ∈ Θ and then û ∈ Θp since

K ≥ Kp and Q ≤ Qp by (H2)′. Similar to Lemma 3.2 (i), we infer that there exists
t0 > 0 such that t0û ∈ Mp and Ip(t0û) = maxt≥0 Ip(tû). By Lemma 3.6, we have
Ip(t0û) < I(t0û). Then

cp ≤ Ip(t0û) < I(t0û) ≤ I(û) = c.

This contradicts with (4.7). So the equation (2.3) has no ground state. The proof
is complete. �
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