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WELL-POSEDNESS AND EXPONENTIAL STABILITY FOR A
LINEAR DAMPED TIMOSHENKO SYSTEM WITH SECOND

SOUND AND INTERNAL DISTRIBUTED DELAY

TIJANI A. APALARA

Abstract. In this article we consider one-dimensional linear thermoelastic

system of Timoshenko type with linear frictional damping and a distributed
delay acting on the displacement equation. The heat flux of the system is

governed by Cattaneo’s law. Under suitable assumption on the weight of the

delay and that of frictional damping, we establish the well-posedness result
and prove that the system is exponentially stable regardless of the speeds of

wave propagation.

1. Introduction

It is well-known that the model using classic Fourier’s law of heat conduction
(which states that the heat flux is proportional to the gradient of temperature)
predicts the physical paradox of infinite speed of heat propagation. In other words,
any thermal disturbance at one point has an instantaneous effect elsewhere in the
body. To overcome this physical paradox but still keeping the essentials of heat
conduction process, many theories have merged. One of which is the advent of the
second sound effects observed experimentally in materials at low temperature. This
theory suggests replacing the classic Fourier’s law βq + θx = 0 by a modified law
of heat conduction called Cattaneo’s law τqt + βq + θx = 0. Consequently, heat is
transported by a wave propagation process instead of the usual diffusion thereby
eliminating the physical paradox of infinite speed of heat propagation. We refer the
reader to [5, 6, 7, 11, 15, 29, 35] and the references therein, for more discussion on
Cattaneo’s law and thermoelasticity with second sound.

In this article we are concerned with the following thermoelastic system of Tim-
oshenko type with a linear frictional damping and an internal distributed delay
acting on the transverse displacement, where the heat flux is given by Cattaneo’s
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law:

ρ1ϕtt − κ(ϕx + ψ)x + µ1ϕt +
∫ τ2

τ1

µ2(s)ϕt(x, t− s)ds = 0 in (0, 1)× (0,∞),

ρ2ψtt − bψxx + κ(ϕx + ψ) + δθx = 0 in (0, 1)× (0,∞),

ρ3θt + qx + δψtx = 0 in (0, 1)× (0,∞),

τqt + βq + θx = 0 in (0, 1)× (0,∞),

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), θ(x, 0) = θ0(x) in (0, 1),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), q(x, 0) = q0(x) in (0, 1),

ϕ(0, t) = ϕ(1, t) = ψx(0, t) = ψx(1, t) = θ(0, t) = θ(1, t) = 0 in (0,∞),

ϕt(x,−t) = f0(x, t) in (0, 1)× (0, τ2).
(1.1)

Here ϕ = ϕ(x, t) is the transverse displacement of the beam, ψ = ψ(x, t) is the
rotation angle, θ = θ(x, t) is the difference temperature, q = q(x, t) is the heat flux,
ϕ0, ϕ1, ψ0, ψ1, θ0, q0 are initial data, and f0 is history function. The coefficients,
ρ1, ρ2, b, κ, δ, β, µ1 are positive constants, and µ2 : [τ1, τ2] → R is a bounded func-
tion, where τ1 and τ2 are two real numbers satisfying 0 ≤ τ1 < τ2. The parameter
τ > 0 is the relaxation time describing the time lag in the response of the heat
flux to a gradient in the temperature. The purpose of this paper is to study the
well-posedness and the asymptotic behavior of the solution of (1.1) regardless of
the speeds of wave propagation.

Delay effects arise in many applications and practical problems (see for instance
[3, 31]) and it has attracted lots of attentions from researchers in diverse fields of
human endeavor such as mathematics, engineering, science, and economics. It has
been established that voluntary introduction of delay can benefit the control (see
[1]). On the other hand, it may not only destabilize a system which is asymptotically
stable in the absence of delay but may also lead to ill-posedness (see [8, 30] and the
references therein). Therefore, the issue of well-posedness and the stability result
of systems with delay are of practical and theoretical importance.

Nicaise and Pignotti [24] considered wave equation with linear frictional damping
and internal distributed delay

utt −∆u+ µ1ut + a(x)
∫ τ2

τ1

µ2(s)ut(t− s)ds = 0

in Ω×(0,∞), with initial and mixed Dirichlet-Neumann boundary conditions and a
is a function chosen in an appropriate space. They established exponential stability
of the solution under the assumption that

‖a‖∞
∫ τ2

τ1

µ2(s)ds < µ1. (1.2)

The authors also obtained the same result when the distributed delay acted on the
part of the boundary. Recently, Mustafa and Kafini [21] considered a thermoelastic
system with internal distributed delay

autt − duxx + βθx = 0

bθt − µ1θxx −
∫ τ2

τ1

µ2(s)θxx(t− s)ds+ βuxt = 0
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in (0, L)× (0,∞), and proved that the damping effect via heat conduction is strong
enough to exponentially stabilize the system provided (1.2) (with a = 1) holds. See
[22] for similar result concerning boundary distributed delay. Interested reader is
referred to [2, 12, 13, 17, 19, 20, 23, 25, 26, 28, 32, 33], for more results concerning
other types of delay (constant or time-varying delay).

In the absence of delay (µ2 ≡ 0), Messaoudi et al [16] considered (1.1) for both
linear and nonlinear case and proved that the system is exponentially stable without
any restriction on the coefficients. Whereas, in the absence of both the frictional
damping (µ1 = 0) and delay, Fernández Sare and Racke [9] proved that the system
is no longer exponentially stable even in the presence of viscoelastic damping term
of the form

∫∞
0
g(s)ϕxx(t − s)ds in the second equation of (1.1). The results of

[9] were generalized by Guesmia et al [10] to the case where g does not converge
exponentially to zero. On the other hand, if the infinite memory is considered in
the first equation, then it was proved in [10] that the uniform stability (exponential,
polynomial or others depending on the growth of g at infinity) holds without any
restriction on the parameters. Very recently, Santos et al [34] improved the result
of [9] (for g = 0) by introducing a new stability number

χ =
(
τ − ρ1

κρ3

)(
ρ2 −

bρ1

κ

)
− τρ1δ

2

κρ3

and proved that the corresponding semigroup associated to the system is exponen-
tially stable if and only if χ = 0, otherwise there is a lack of exponential stability.
In addition to the absence of frictional damping and delay, if τ = 0 (classical ther-
moelasticity) then Rivera and Racke [18] proved that (1.1) is exponentially stable
if the propagation speeds are equal i.e. κ

ρ1
= b

ρ2
, otherwise a weaker rate of decay

is obtained for strong solutions.
In this present work we consider (1.1) and prove the well-posedness and establish

exponential stability results regardless of the speeds of wave propagation. Our work
extends the stability results in [16] to Timoshenko systems with distributed delay
acting on the displacement equation.

The rest of this article is organized as follows. In section 2, we introduce some
transformations and state the assumption needed in our work. In section 3, we
use the semigroup method to prove the well-posedness of our problem. In the last
section, we state and prove our stability result. We use c throughout this paper to
denote a generic positive constant.

2. Preliminaries

As in [24], we introduce the new variable

z(x, ρ, s, t) = ϕt(x, t− ρs) in (0, 1)× (0, 1)× (τ1, τ2)× (0,∞). (2.1)

It is straight forward to check that z satisfies

szt(x, ρ, s, t) + zρ(x, ρ, s, t) = 0 in (0, 1)× (0, 1)× (τ1, τ2)× (0,∞).

Consequently, problem (1.1) is equivalent to

ρ1ϕtt − κ(ϕx + ψ)x + µ1ϕt +
∫ τ2

τ1

µ2(s)z(x, 1, s, t)ds = 0 in (0, 1)× (0,∞),

ρ2ψtt − bψxx + κ(ϕx + ψ) + δθx = 0 in (0, 1)× (0,∞),

ρ3θt + qx + δψtx = 0 in (0, 1)× (0,∞),
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τqt + βq + θx = 0 in (0, 1)× (0,∞),

szt(x, ρ, s, t) + zρ(x, ρ, s, t) = 0 in (0, 1)× (0, 1)× (τ1, τ2)× (0,∞),

z(x, 0, s, t) = ϕt in (0, 1)× (τ1, τ2)× (0,∞)

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), θ(x, 0) = θ0(x) in (0, 1),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), q(x, 0) = q0(x) in (0, 1),

ϕ(0, t) = ϕ(1, t) = ψx(0, t) = ψx(1, t) = θ(0, t) = θ(1, t) = 0 in (0,∞),

z(x, ρ, s, 0) = f0(x, ρs) in (0, 1)× (0, 1)× (0, τ2). (2.2)

Concerning the weight of the delay, we assume that∫ τ2

τ1

|µ2(s)|ds < µ1 (2.3)

and establish the well-posedness as well as the exponential stability results of the
energy E, defined by

E(t) =
1
2

∫ 1

0

[
ρ1ϕ

2
t + ρ2ψ

2
t + bψ2

x + κ(ϕx + ψ)2 + ρ3θ
2 + τq2

]
dx

+
1
2

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2(x, ρ, s, t) ds dρ dx.
(2.4)

Meanwhile, using (2.2)2, (2.2)4, and the boundary conditions, we conclude that

d2

dt2

∫ 1

0

ψ(x, t) +
κ

ρ2

∫ 1

0

ψ(x, t) = 0 and
d

dt

∫ 1

0

q(x, t) +
β

τ

∫ 1

0

q(x, t) = 0. (2.5)

So, by solving (2.5) and using the initial data of ψ and q, we obtain∫ 1

0

ψ(x, t) dx =
(∫ 1

0

ψ0(x) dx
)

cos
√

κ

ρ2
t+
√
ρ2

κ

(∫ 1

0

ψ1(x) dx
)

sin
√

κ

ρ2
t

and ∫ 1

0

q(x, t) dx =
(∫ 1

0

q0(x) dx
)

exp(−β
τ
t).

Consequently, if we let

ψ(x, t) = ψ(x, t)−
(∫ 1

0

ψ0(x) dx
)

cos
√

κ

ρ2
t−
√
ρ2

κ

(∫ 1

0

ψ1(x) dx
)

sin
√

κ

ρ2
t,

q(x, t) = q(x, t)−
(∫ 1

0

q0(x) dx
)

exp(−β
τ
t).

Then it follows that∫ 1

0

ψ(x, t) dx = 0 and
∫ 1

0

q(x, t) dx = 0, ∀t ≥ 0.

Therefore, the use of Poincaré’s inequality for ψ is justified. In addition, simple
substitution shows that (ϕ,ψ, θ, q, z) satisfies system (2.2) with initial data for ψ
and q given as

ψ0(x) = ψ0(x)−
∫ 1

0

ψ0(x) dx, ψ1(x) = ψ1(x)−
∫ 1

0

ψ1(x) dx,

q0(x) = q0(x)−
∫ 1

0

q0(x) dx
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instead of ψ0(x), ψ1(x) for ψ, and q0 for q, respectively. Henceforth, we work with
ψ and q instead of ψ and q but write ψ and q for simplicity of notation.

3. Well-posedness of the problem

In this section, we prove the existence and uniqueness of solutions for (2.2) using
semigroup theory. Introducing the vector function Φ = (ϕ, u, ψ, v, θ, q, z)T , where
u = ϕt and v = ψt, system (2.2) can be written as

Φ′(t) +AΦ(t) = 0, t > 0,

Φ(0) = Φ0 =
(
ϕ0, ϕ1, ψ0, ψ1, θ0, q0, f0

)T
,

(3.1)

where the operator A is defined by

AΦ =



−u
− κ
ρ1

(ϕx + ψ)x + µ1
ρ1
u+ 1

ρ1

∫ τ2
τ1
µ2(s)z(x, 1, s) ds

−v
− b
ρ2
ψxx + κ

ρ2
(ϕx + ψ) + δ

ρ2
θx

1
ρ3
qx + δ

ρ3
vx

β
τ q + 1

τ θx
1
szρ(x, ρ, s)


.

We consider the following spaces

L2
?(0, 1) = {w ∈ L2(0, 1) :

∫ 1

0

w(s) ds = 0}, H1
? (0, 1) = H1(0, 1) ∩ L2

?(0, 1),

H2
? (0, 1) = {w ∈ H2(0, 1) : wx(0) = wx(1) = 0}.

Let

H := H1
0 (0, 1)× L2(0, 1)×H1

? (0, 1)× L2
?(0, 1)× L2(0, 1)

× L2
?(0, 1)× L2((0, 1)× (0, 1)× (τ1, τ2))

be the Hilbert space equipped with the inner product

(Φ, Φ̃)H = κ

∫ 1

0

(ϕx + ψ)(ϕ̃x + ψ̃) dx+ ρ1

∫ 1

0

uũdx+ b

∫ 1

0

ψxψ̃x dx

+ ρ2

∫ 1

0

vṽ dx+ ρ3

∫ 1

0

θθ̃ dx+ τ

∫ 1

0

qq̃ dx

+
∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z(x, ρ, s)z̃(x, ρ, s) ds dρ dx.

The domain of A is

D(A) =
{

Φ ∈ H : ϕ ∈ H2(0, 1) ∩H1
0 (0, 1), ψ ∈ H2

? (0, 1) ∩H1
? (0, 1),

u, θ ∈ H1
0 (0, 1), v, q ∈ H1

? (0, 1), z(x, 0, s) = u,

z, zρ ∈ L2((0, 1)× (0, 1)× (τ1, τ2))
}

Clearly, D(A) is dense in H.
We have the following existence and uniqueness result.

Theorem 3.1. Let Φ0 ∈ H, then there exists a unique solution Φ ∈ C(R+,H) of
problem (3.1). Moreover, if Φ0 ∈ D(A), then Φ ∈ C(R+, D(A)) ∩ C1(R+,H).
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Proof. The result follows from Lumer-Phillips theorem provided we prove that A
is a maximal monotone operator. In what follows, we prove that A is monotone.
For any Φ ∈ D(A), and using the inner product, we obtain

(AΦ,Φ)H

= β

∫ 1

0

q2dx+
1
2

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2(x, 1, s) ds dx

+ (µ1 −
1
2

∫ τ2

τ1

|µ2(s)|ds)
∫ 1

0

u2dx+
∫ 1

0

u

∫ τ2

τ1

µ2(s)z(x, 1, s) ds dx.

(3.2)

Using Young’s inequality, the last term in (3.2), we have

−
∫ 1

0

u

∫ τ2

τ1

µ2(s)z(x, 1, s) ds dx

≤ 1
2

∫ τ2

τ1

|µ2(s)| ds
∫ 1

0

u2 dx+
1
2

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2(x, 1, s) ds dx.
(3.3)

Substituting (3.3) in (3.2) yields

(AΦ,Φ)H ≥ β
∫ 1

0

q2 dx+
(
µ1 −

∫ τ2

τ1

|µ2(s)| ds
)∫ 1

0

u2 dx.

By (2.3), it follows that (AΦ,Φ)H ≥ 0, which implies that A is monotone. Next, we
prove that the operator I +A is surjective. Given G = (g1, g2, g3, g4, g5, g6, g7)T ∈
H, we prove that there exists Φ ∈ D(A) satisfying

Φ +AΦ = G; (3.4)

that is,

−u+ ϕ = g1 ∈ H1
0 (0, 1)

−κ(ϕx + ψ)x + (ρ1 + µ1)u+
∫ τ2

τ1

µ2(s)z(x, 1, s)ds = ρ1g2 ∈ L2(0, 1)

−v + ψ = g3 ∈ H1
? (0, 1)

−bψxx + κ(ϕx + ψ) + δθx + ρ2v = ρ2g4 ∈ L2
?(0, 1)

qx + δvx + ρ3θ = ρ3g5 ∈ L2(0, 1)

(β + τ)q + θx = τg6 ∈ L2
?(0, 1)

zρ(x, ρ, s) + sz(x, ρ, s) = sg7(x, ρ, s) ∈ L2((0, 1)× (0, 1)× (τ1, τ2)).

(3.5)

We note that the last equation in (3.5) with z(x, 0, s) = u, has a unique solution

z(x, ρ, s) = e−sρu+ se−sρ
∫ ρ

0

esτg7(x, τ, s) dτ. (3.6)

From the sixth equation in (3.5), we define

θ = τ

∫ x

0

g6 dx− (β + τ)
∫ x

0

q dx, (3.7)
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then θ(0) = θ(1) = 0. Inserting u = ϕ− g1, v = ψ − g3, and (3.7) in (3.5)2, (3.5)4,
and (3.5)5, we obtain

−κ(ϕx + ψ)x + µϕ = h1 ∈ L2(0, 1)

−bψxx + κ(ϕx + ψ) + ρ2ψ − (β + τ)δq = h2 ∈ L2
?(0, 1)

−qx + (β + τ)ρ3

∫ x

0

q(y)dy − δψx = h3 ∈ L2(0, 1),

(3.8)

where

µ = µ1 + ρ1 +
∫ τ2

τ1

µ2(s)e−sds

h1 = µg1 + ρ1g2 −
∫ τ2

τ1

sµ2(s)e−s
∫ 1

0

esτg5(x, τ, s)dτds

h2 = ρ2(g3 + g4)− τδg6

h3 = −δg3x − ρ3

(
g5 − τ

∫ x

0

g6(y)dy
)
.

(3.9)

To solve (3.8) we consider

B
(
(ϕ,ψ, q), (ϕ̃, ψ̃, q̃)

)
= F

(
ϕ̃, ψ̃, q̃

)
, (3.10)

where B :
[
H1

0 (0, 1)×H1
? (0, 1)× L2

?(0, 1)
]2 → R is the bilinear form

B
(
(ϕ,ψ, q), (ϕ̃, ψ̃, q̃)

)
= κ

∫ 1

0

(ϕx + ψ)(ϕ̃x + ψ̃) dx+ (β + τ)
∫ 1

0

qq̃ dx

+ b

∫ 1

0

ψxψ̃x dx+ ρ2

∫ 1

0

ψψ̃ dx− δ(β + τ)
∫ 1

0

qψ̃ dx

+ µ

∫ 1

0

ϕϕ̃ dx+ δ(β + τ)
∫ 1

0

ψq̃ dx

+ ρ3(β + τ)2
∫ 1

0

(∫ x

0

q(y)dy
∫ x

0

q̃(y)dy
)
dx

and F :
[
H1

0 (0, 1)×H1
? (0, 1)× L2

?(0, 1)
]
→ R is the linear form

F (ϕ̃, ψ̃, q̃) =
∫ 1

0

h1ϕ̃ dx+
∫ 1

0

h2ψ̃ dx+
∫ 1

0

h3

∫ x

0

q̃(y) dy dx.

Now, for V = H1
0 (0, 1)×H1

? (0, 1)× L2
?(0, 1) equipped with the norm

‖(ϕ,ψ, q)‖V = ‖(ϕx + ψ)‖22 + ‖ϕ‖22 + ‖ψx‖22 + ‖q‖22,
one can easily see that B and F are bounded. Furthermore, using integration by
parts, we obtain

B
(
(ϕ,ψ, q), (ϕ,ψ, q)

)
= κ

∫ 1

0

(ϕx + ψ)2 dx+ (β + τ)
∫ 1

0

q2 dx+ b

∫ 1

0

ψ2
x dx

+ ρ2

∫ 1

0

ψ2 dx+ µ

∫ 1

0

ϕ2 dx+ ρ3(β + τ)2
∫ 1

0

(∫ x

0

q(y) dy
)2

dx

≥ c‖(ϕ,ψ, q)‖2V .
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Thus B is coercive. Consequently, by Lax-Milgram Lemma, system (3.8) has a
unique solution

ϕ ∈ H1
0 (0, 1), ψ ∈ H1

? (0, 1), q ∈ L2
?(0, 1).

Substituting ϕ, ψ, and q in (3.5)1, (3.5)3, and (3.5)6, respectively, we obtain

u ∈ H1
0 (0, 1), v ∈ H1

? (0, 1), θ ∈ H1
0 (0, 1).

Similarly, inserting u in (3.6) and bearing in mind (3.6)7, we obtain

z, zρ ∈ L2((0, 1)× (0, 1)× (τ1, τ2)).

Now, if (ϕ̃, q̃) ≡ (0, 0) ∈ H1
0 (0, 1)× L2

?(0, 1), then (3.10) reduces to

κ

∫ 1

0

(ϕx + ψ)ψ̃ dx+ b

∫ 1

0

ψxψ̃x dx+ ρ2

∫ 1

0

ψψ̃ dx− δ(β + τ)
∫ 1

0

qψ̃ dx

=
∫ 1

0

h2ψ̃ dx, ∀ψ̃ ∈ H1
? (0, 1),

(3.11)

which implies

− bψxx = −(κ+ ρ2)ψ − κϕx + (β + τ)δq + h2 ∈ L2(0, 1). (3.12)

Consequently, by the regularity theory for the linear elliptic equations, it follows
that

ψ ∈ H2(0, 1) ∩H1
? (0, 1).

Moreover, (3.11) is also true for any φ ∈ C1([0, 1]) ⊂ H1
? (0, 1). Hence, we have

b

∫ 1

0

ψxφxdx+
∫ 1

0

(
κ(ϕx + ψ) + ρ2ψ − δ(β + τ)q − h2

)
φdx = 0

for all φ ∈ C1([0, 1]). Thus, using integration by parts and bearing in mind (3.12),
we obtain

ψx(1)φ(1)− ψx(0)φ(0) = 0, ∀φ ∈ C1([0, 1]).

Therefore, ψx(0) = ψx(1) = 0. Consequently, we obtain

ψ ∈ H2
? (0, 1) ∩H1

? (0, 1).

Similarly, we obtain

−κϕxx = −µϕ− κψx + h1 ∈ L2(0, 1)

−qx = δψx − (β + τ)ρ3

∫ x

0

q(y) dy + h3 ∈ L2(0, 1);

thus, we have

ϕ ∈ H2(0, 1) ∩H1
0 (0, 1), q ∈ H1

? (0, 1).

Finally, the application of the regularity theory for the linear elliptic equations
guarantees the existence of unique Φ ∈ D(A) such that (3.4) is satisfied. Conse-
quently, A is a maximal operator. Hence, the result of Theorem 3.1 follows from
Lumer-Phillips theorem (see [14, 27]). �
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4. Exponential Stability

In this section, we state and prove our stability result for the energy of the
solution of system (2.2), using the multiplier technique. To achieve our goal, we
need the following lemmas.

Lemma 4.1. Let (ϕ,ψ, θ, q, z) be the solution of (2.2) and assume (2.3) holds.
Then the energy functional, defined by (2.4) satisfies

E′(t) ≤ −m0

∫ 1

0

ϕ2
tdx− β

∫ 1

0

q2dx ≤ 0, ∀t ≥ 0, (4.1)

for some positive constant m0.

Proof. Multiplying (2.2)1, (2.2)2, (2.2)3, and (2.2)4 by ϕt, ψt, θ, and q, respectively,
and integrating over (0, 1), using integration by parts and the boundary conditions,
we obtain

1
2
d

dt

∫ 1

0

[
ρ1ϕ

2
t + ρ2ψ

2
t + bψ2

x + κ(ϕx + ψ)2 + ρ3θ
2 + τq2

]
dx

= −µ1

∫ 1

0

ϕ2
t dx− β

∫ 1

0

q2dx−
∫ 1

0

ϕt

∫ τ2

τ1

µ2(s)z(x, 1, s, t) ds dx.
(4.2)

Multiplying (2.2)3 by |µ2(s)|z, integrating the product over (0, 1)× (0, 1)× (τ1, τ2),
and recall that z(x, 0, s, t) = ϕt, yield

1
2
d

dt

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2(x, ρ, s, t) ds dρ dx

= −1
2

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2(x, 1, s, t) ds dx+
1
2

∫ 1

0

ϕ2
t

∫ τ2

τ1

|µ2(s)| ds dx.
(4.3)

A combination of (4.2) and (4.3) gives

E′(t) = −
(
µ1 −

1
2

∫ τ2

τ1

|µ2(s)|ds
)∫ 1

0

ϕ2
tdx− β

∫ 1

0

q2dx

−
∫ 1

0

ϕt

∫ τ2

τ1

µ2(s)z(x, 1, s, t) ds dx− 1
2

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2(x, 1, s, t) ds dx.

(4.4)
Meanwhile, using Young’s inequality, we have

−
∫ 1

0

ϕt

∫ τ2

τ1

µ2(s)z(x, 1, s, t) ds dx

≤ 1
2

∫ τ2

τ1

|µ2(s)|ds
∫ 1

0

ϕ2
tdx+

1
2

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2(x, 1, s, t) ds dx.
(4.5)

Simple substitution of (4.5) into (4.4) and using (2.3) give (4.1), which concludes
the proof. �

Lemma 4.2. Let (ϕ,ψ, θ, q, z) be the solution of (2.2). Then the functional

F1(t) := ρ2

∫ 1

0

ψψt dx
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satisfies, the estimate

F ′1(t) ≤ − b
2

∫ 1

0

ψ2
xdx+ ρ2

∫ 1

0

ψ2
t dx+ c

∫ 1

0

(ϕx + ψ)2dx+ c

∫ 1

0

θ2dx. (4.6)

Proof. A simple differentiation of F1, using (2.2)2, gives

F ′1(t) = −b
∫ 1

0

ψ2
xdx+ ρ2

∫ 1

0

ψ2
t dx+ δ

∫ 1

0

θψxdx− κ
∫ 1

0

ψ(ϕx + ψ)dx.

Using Young’s and Poincaré inequalities, estimate (4.6) is established. �

Lemma 4.3. Let (ϕ,ψ, θ, q, z) be the solution of (2.2). Then the functional

F2(t) := −ρ2ρ3

δ

∫ 1

0

θ

∫ x

0

ψt(y) dy dx

satisfies, for any ε1 > 0, the estimate

F ′2(t) ≤ −ρ2

2

∫ 1

0

ψ2
t dx+ ε1

∫ 1

0

ψ2
xdx+ c

∫ 1

0

q2dx

+ c
(
1 +

1
ε1

) ∫ 1

0

θ2dx+ c

∫ 1

0

(ϕx + ψ)2dx.
(4.7)

Proof. By differentiating F2, then exploiting the second and the third equations in
(2.2), and integrating by parts, we obtain

F ′2(t) = −ρ2

∫ 1

0

ψ2
t dx−

ρ2

δ

∫ 1

0

qψtdx−
bρ3

δ

∫ 1

0

θψxdx

+ ρ3

∫ 1

0

θ2dx+
ρ3κ

δ

∫ 1

0

θ
(
ϕ+

∫ x

0

ψ(y)dy
)
dx.

Using Poincaré and Young’s inequalities with ε1 > 0, we obtain estimate (4.7). �

Lemma 4.4. Let (ϕ,ψ, θ, q, z) be the solution of (2.2). Then the functional

F3(t) := ρ1

∫ 1

0

ϕt

(
ϕ+

∫ x

0

ψ(y)dy
)
dx

satisfies, for any ε2 > 0, the estimate

F ′3(t) ≤ −κ
2

∫ 1

0

(ϕx + ψ)2dx+ ε2

∫ 1

0

ψ2
t dx

+ c
(
1 +

1
ε2

) ∫ 1

0

ϕ2
tdx+ c

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2(x, 1, s, t) ds dx.
(4.8)

Proof. Taking the derivative of F3, using (2.2)2 and integration by parts, we obtain

F ′3(t) = ρ1

∫ 1

0

ϕt

∫ x

0

ψt(y) dy dx−
∫ 1

0

(
ϕ+

∫ x

0

ψ(y)dy
)∫ τ2

τ1

µ2(s)z(x, 1, s, t) ds dx

− κ
∫ 1

0

(ϕx + ψ)2dx+ ρ1

∫ 1

0

ϕ2
tdx− µ1

∫ 1

0

ϕt

(
ϕ+

∫ x

0

ψ(y)dy
)
dx.

(4.9)
Now, we estimate the terms in the right hand side of (4.9) using Young’s, Poincaré,
and Cauchy-Schwarz inequalities

ρ1

∫ 1

0

ϕt

∫ x

0

ψt(y)dy) dy ≤ ε2
∫ 1

0

ψ2
t dx+

c

ε2

∫ 1

0

ϕ2
tdx, (4.10)
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where ε2 > 0, and

−
∫ 1

0

(
ϕ+

∫ x

0

ψ(y)dy
)∫ τ2

τ1

µ2(s)z(x, 1, s, t) ds dx

≤ κ

4

∫ 1

0

(
ϕ+

∫ x

0

ψ(y)dy
)2

dx+
1
κ

∫ 1

0

(∫ τ2

τ1

µ2(s)z(x, 1, s, t)ds
)2

dx

≤ κ

4

∫ 1

0

(ϕx + ψ)2dx+
1
κ

∫ τ2

τ1

|µ2(s)|ds︸ ︷︷ ︸
< µ1

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2(x, 1, s, t) ds dx.

(4.11)

−µ1

∫ 1

0

ϕt

(
ϕ+

∫ x

0

ψ(y)dy
)
dx ≤ κ

4

∫ 1

0

(
ϕ+

∫ x

0

ψ(y)dy
)2

dx+
µ2

1

κ

∫ 1

0

ϕ2
tdx

≤ κ

4

∫ 1

0

(ϕx + ψ)2dx+ c

∫ 1

0

ϕ2
tdx,

(4.12)
Estimate (4.8) follows by substituting (4.10)–(4.12) into (4.9). �

Lemma 4.5. Let (ϕ,ψ, θ, q, z) be the solution of (2.2). Then the functional

F4(t) := τρ3

∫ 1

0

θ

∫ x

0

q(y) dy dx

satisfies, for any ε2 > 0, the estimate

F ′4(t) ≤ −ρ3

2

∫ 1

0

θ2dx+ ε2

∫ 1

0

ψ2
t dx+ c

(
1 +

1
ε2

) ∫ 1

0

q2dx. (4.13)

Proof. Taking the derivative of F4, using the third and the fourth equations in (2.2)
and integration by parts, we obtain

F ′4(t) = −ρ3

∫ 1

0

θ2dx+ τβ

∫ 1

0

q2dx+ τδ

∫ 1

0

qψtdx− βρ3

∫ 1

0

θ

∫ x

0

q(y) dy dx.

(4.14)
We now use Cauchy-Schwarz and Young’s inequalities with ε2 > 0 on (4.14) to
obtain (4.13). �

Lemma 4.6. Let (ϕ,ψ, θ, q, z) be the solution of (2.2). Then the functional

F5(t) :=
∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρ|µ2(s)|z2(x, ρ, s, t) ds dρ dx

satisfies, for some positive constant m1, the following estimate

F ′5(t) ≤ −m1

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2(x, ρ, s, t)dsdρdx

−m1

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2(x, 1, s, t) ds dx+ µ1

∫ 1

0

ϕ2
tdx.

(4.15)

Proof. Differentiating F5, and using the fifth equation in (2.2), we obtain

F ′5(t) = −2
∫ 1

0

∫ 1

0

∫ τ2

τ1

e−sρ|µ2(s)|z(x, ρ, s, t)zρ(x, ρ, s, t) ds dρ dx

= − d

dρ

∫ 1

0

∫ 1

0

∫ τ2

τ1

e−sρ|µ2(s)|z2(x, ρ, s, t) ds dρ dx
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−
∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρ|µ2(s)|z2(x, ρ, s, t) ds dρ dx

= −
∫ 1

0

∫ τ2

τ1

|µ2(s)|[e−sz2(x, 1, s, t)− z2(x, 0, s, t)] ds dx

−
∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρ|µ2(s)|z2(x, ρ, s, t) ds dρ dx.

Using the fact that z(x, 0, s, t) = ϕt and e−s ≤ e−sρ ≤ 1, for all ρ ∈ [0, 1], we obtain

F ′5(t) ≤ −
∫ 1

0

∫ τ2

τ1

e−s|µ2(s)|z2(x, 1, s, t) ds dx+
∫ τ2

τ1

|µ2(s)|ds
∫ 1

0

ϕ2
tdx

−
∫ 1

0

∫ 1

0

∫ τ2

τ1

se−s|µ2(s)|z2(x, ρ, s, t) ds dρ dx.

Because −e−s is an increasing function, we have −e−s ≤ −e−τ2 , for all s ∈ [τ1, τ2].
Finally, setting m1 = e−τ2 and recalling (2.3), we obtain (4.15). �

Next, we define a Lyapunov functional L and show that it is equivalent to the
energy functional E.

Lemma 4.7. For N sufficiently large, the functional defined by

L(t) := NE(t) + F1(t) + 4F2(t) +N1(F3(t) + F4(t)) +N2F5(t), (4.16)

where N1 and N2 are positive real numbers to be chosen appropriately later, satisfies

c1E(t) ≤ L(t) ≤ c2E(t), ∀t ≥ 0, (4.17)

for two positive constants c1 and c2.

Proof. Let L (t) = F1(t) + 4F2(t) +N1(F3(t) + F4(t)) +N2F5(t)

|L (t)| ≤ ρ2

∫ 1

0

|ψψt|dx+ ρ1N1

∫ 1

0

∣∣ϕt(ϕ+
∫ x

0

ψ(y)dy
)∣∣dx

+
4ρ2ρ3

δ

∫ 1

0

∣∣θ ∫ x

0

ψt(y)dy
∣∣dx+ τρ3N1

∫ 1

0

∣∣θ ∫ x

0

q(y)dy
∣∣dx

+
∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ2(s)e−sρ|z2(x, ρ, s, t) ds dρ dx.

Exploiting Young’s, Poincaré, Cauchy-Schwarz inequalities, (2.4), and the fact that
e−sρ ≤ 1 for all ρ ∈ [0, 1], we obtain

|L (t)| ≤ c
∫ 1

0

(
ϕ2
t + ψ2

t + ψ2
x + (ϕx + ψ)2 + θ2 + q2

)
dx

+ c

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2(x, ρ, s, t) ds dρ dx

≤ cE(t).

Consequently, |L(t)−NE(t)| ≤ cE(t), which yields

(N − c)E(t) ≤ L(t) ≤ (N + c)E(t).

Choosing N large enough, we obtain estimate (4.17). �

Now, we are ready to state and prove the main result of this section.
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Theorem 4.8. Let (ϕ,ψ, θ, q, z) be the solution of (2.2). Then the energy func-
tional (2.4) satisfies,

E(t) ≤ k0e
−k1t, ∀t ≥ 0, (4.18)

where k0 and k1 are positive constants.

Proof. By differentiating (4.16) and recalling (4.1), (4.6), (4.7), (4.8), (4.13), and
(4.15), and letting ε1 = b

16 , we obtain

L′(t) ≤ −
[
m0N − cN1

(
1 +

1
ε2

)
− µ1N2

] ∫ 1

0

ϕ2
tdx−

[
ρ2 − 2ε2N1

] ∫ 1

0

ψ2
t dx

− [
ρ3

2
N1 − c]

∫ 1

0

θ2dx−m1N2

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2(x, ρ, s, t) ds dρ dx

− [
κ

2
N1 − c]

∫ 1

0

(ϕx + ψ)2dx−
[
βN − c− cN1

(
1 +

1
ε2

)] ∫ 1

0

q2dx

− b

4

∫ 1

0

ψ2
xdx− [m1N2 − cN1]

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2(x, 1, s, t) ds dx.

At this point, we set ε2 = ρ2/(4N1), then we choose N1 large enough so that

γ0 :=
ρ3

2
N1 − c > 0 and γ1 :=

κ

2
N1 − c > 0.

Once N1 is fixed, we then choose N2 large enough so that m1N2 − cN1 > 0.
Finally, we choose N large enough such that (4.17) remains valid and

γ2 := m0N − cN1

(
1 +

1
ε2

)
− µ1N2 > 0, γ3 := βN − c− cN1

(
1 +

1
ε2

)
> 0.

Thus, by letting γ4 := m1N2, we arrive at

L′(t) ≤ −
∫ 1

0

(
γ2ϕ

2
t +

ρ2

2
ψ2
t +

b

4
ψ2
x + γ1(ϕx + ψ)2 + γ0θ

2dx+ γ3q
2
)
dx

− γ4

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2(x, ρ, s, t) ds dρ dx.

By (2.4), we obtain
L′(t) ≤ −α0E(t), ∀t ≥ 0, (4.19)

for some α0 > 0. A combination of (4.17) and (4.19) gives

L′(t) ≤ −k1L(t), ∀t ≥ 0, (4.20)

where k1 = α0/c2. A simple integration of (4.20) over (0, t) yields

L(t) ≤ L(0)e−k1t, ∀t ≥ 0. (4.21)

Finally, by combining (4.17) and (4.21) we obtain (4.18) with k0 = c2E(0)
c1

, which
completes the proof. �
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