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DISTRIBUTION OF THE PRÜFER ANGLE IN p-LAPLACIAN
EIGENVALUE PROBLEMS

YAN-HSIOU CHENG, CHUN-KONG LAW, YU-CHEN LUO

Abstract. The Prüfer angle is an effective tool for studying Sturm-Liouville
problems and p-Laplacian eigenvalue problems. In this article, we show that for

the p-Laplacian eigenvalue problem, when x is irrational in (0, 1), a sequence

of modified Prüfer angles (after modulo πp) is equidistributed in (0, πp). As a
function of x, ψn is also asymptotic to the uniform distribution on (0, πp).

1. Introduction

It is well known that when a real number x is irrational, the sequence {xn = 〈nx〉}
is dense in (0, 1). Here for any t ∈ R, the fractional part of t is denoted by
〈t〉 := t − [t]. It is equivalent to saying that {ξn = sin(nπx)} is dense in [−1, 1].
Furthermore, the above sequence {xn} is equidistributed in (0, 1) in the sense below
([10, p.105]).
Definition. A sequence {xn} ⊂ (0, 1) is said to be equidistributed in (0, 1) if for
any subinterval (a, b) ⊂ (0, 1),

lim
N→∞

1
N

N∑
n=1

χ(a,b)(xn) = b− a.

The above property is a basic one in ergodic theory. It tells us that the se-
quence spreads evenly in the interval (0, 1). In fact, this equidistribution theorem
is equivalent to the property that for any f ∈ L1(0, 1),∫ 1

0

f(x) dx = lim
N→∞

1
N

N∑
n=1

f(xn),

which in term is equivalent to saying that the transformation T (θ) = 〈θ + x〉 is
ergodic [10, 7].

Consider the Sturm-Liouville problem

− u′′ + q(x)u = λu (1.1)
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subject to boundary conditions

u(0) cosα+ u′(0) sinα = 0

u(1) cosβ + u′(1) sinβ = 0
(1.2)

where α, β ∈ [0, π), and q ∈ L1(0, 1). We call α, β the boundary phases.
The Prüfer substitution

u = r(x) sin θ(x), u′ = r(x) cos θ(x) (1.3)

is a useful method to study the Sturm-Liouville problem, such as the existence
of countably many simple eigenvalues, oscillations of the nth eigenfunction, the
asymptotics of the eigenvalues and eigenfunctions [6]. In [1], Atkinson showed
that the Sturm-Liouville properties are also valid when the coefficient function q is
L1. His method is also this Prüfer substitution in spirit. Furthermore, Binding and
Volkmer [4] (see also [5]) showed that one can use the Prüfer substitution method to
show the distribution of periodic and anti-periodic eigenvalues for periodic Sturm-
Liouville problems. (Traditionally the Hill discriminant function is used to prove
this distribution.) Thus the Prüfer angle is an effective tool for the Sturm-Liouville
theory. It would be interesting to explore further properties of this Prüfer angle.
In this paper, we shall study the equidistribution property.

In recent years, the Prüfer angle has been used to show that another class of
degenerate boundary value problems, the p-Laplacian eigenvalue problem, observes
the Sturm-Liouville properties, as shown by Binding and Drabek [3] (see also [2]).
Let (λn, yn) be the nth eigenpair of the boundary value problem

−(|y′|p−2y′)′ = (p− 1)(λ− q(x))|y|p−2y,

y(0)S′p(α) + y′(0)Sp(α) = 0,

y(1)S′p(β) + y′(1)Sp(β) = 0.

(1.4)

Here, Sp is called the generalized sine function and defined as the solution of the
initial value problem

(|S′p(x)|p−2S′p(x))′ + (p− 1)|Sp(x)|p−2Sp(x) = 0,

Sp(0) = S′p(0)− 1 = 0.

It is known that the function Sp is 2πp-periodic on R, where

πp ≡ 2
∫ 1

0

(1− tp)−1/pdt,

and for all x ∈ R, the following identity holds:

|Sp(x)|p + |S′p(x)|p = 1.

Note that πp is strictly decreasing in p [2]. When p = 2, we have π2 = π and
Sp(x) = sinx. Moreover, for q = 0 and p = 2, the Dirichlet eigenvalues and
eigenfunctions are λn = (nπ)2 and yn = sin(nπx).

For a > 0, let us define the fractional part of 〈t〉a (t (mod a)) by

〈t〉a := t− a · [t/a] .

When a = 1, we denote this fractional part simply by 〈t〉. As discussed above,
when x is irrational, the sequence {〈nπx〉π} is equidistributed in (0, π). We shall
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see that a sequence of modified Prüfer angles {〈ψn(x)〉πp
} also observe this ergodic

behavior. Consider the modified Prüfer substitution

y(x) = R(x)Sp(ψ(x)), y′(x) = λ1/pR(x)S′p(ψ(x)). (1.5)

We call ψ(x) the modified Prüfer angle at x of the problem (1.4). It becomes ψn(x)
when associated with the nth eigenpair (λn, yn). We note that in literature ψ(x)
can also help to give estimates for the eigenvalues and nodal points. See [8].

Theorem 1.1. Fix any irrational number x ∈ (0, 1). For any boundary phases α
and β, the sequence {〈ψn(x)〉πp

} is equidistributed in (0, πp).

We remark that ψn(x) can be viewed as the phase of the eigenfunction yn at x,
analogous to the argument of the function sin(nπx). Moreover ψn(x) demonstrates
another property of uniform distribution, just like 〈nπx〉π.

Theorem 1.2. For q ∈ L1(0, 1), the distribution of the modifed Prüfer angle ψn
defined in (1.5) is asymptotic to the uniform distribution on (0, πp). That is, for
all t ∈ (0, πp),

Pn(t) := µ{x ∈ (0, 1) : 〈ψn(x)〉πp
< t} → t

πp
as n→∞ .

Here µ denotes the Lebesgue measure on R.

The above two theorems are the main results of this paper. To prove them, we
need to use the following lemma. Define CTp(x) ≡ S′p(x)/Sp(x) and let CT−1

p (x)
be the inverse function of CTp(x) taking value in (0, πp).

Lemma 1.3. The modified Prüfer angle ψn(x), defined in (1.5) for the p-Laplacian
eigenvalue problem (1.4), has the asymptotic formula

ψn(x) = λ1/p
n x+ ψn(0) +O(

1

λ
1−1/p
n

), (1.6)

where

ψn(0) =

{
0, if α = 0,
CT−1

p (−CTp(α)

λ
1/p
n

), if α > 0.

Proof. Since y′(x)
λ1/py(x)

= S′p(ψ(x))

Sp(ψ(x)) , differentiating both sides with respect to x, we
have

ψ′(x) = λ1/p − q(x)
λ1−1/p

|Sp(ψ(x))|p = λ1/p +O(
1

λ1−1/p
). (1.7)

Integrating (1.7) with respect to the nth eigenfunction from 0 to x and we have

ψn(x) = λ1/p
n x+ ψn(0) +O(

1

λ
1−1/p
n

). (1.8)

This completes the proof. �

Remark. If the eigenvalues λn →∞, then when α > 0,

lim
n→∞

ψn(0) =
πp
2
. (1.9)

In section 2, we shall prove Theorem 1.2. The proof of Theorem 1.1, using
Weyl’s criterion, will be given in section 3. In section 4, we shall see that the
classical Prüfer angle θn(x) after modulo πp is not equidistributed in (0, πp). Nor
is the sequence asymptotic to the uniform distribution.
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The question that whether the classical Prüfer angle is dense in (0, πp) or not is
still open. The problem seems to be related to continued fractions with bounded
and unbounded elements. It would be interesting to study this question.

As discussed above, the eigenvalues and eigenfunctions of the Sturm-Liouville
operators Hq behaves like H0, the case when the potential function q = 0. Say,
with Dirichlet boundary conditions has the asymptotics yn ∼ A sin(nπx) and the
nodal points x(n)

k ∼ k
n . For these asymptotic results, the use of another modified

Prüfer angle φn = ψn/
√
λn so that

φ′n = 1− q

λn
sin2(

√
λnφn(x)),

gives the simplest proof. The situation with the p-Laplacian operator is analogous.
This paper establishes another analogy of equidistribution between 〈ψn(x)〉π, and
〈nπx〉π which is associated with q = 0. It supports the fact that ψn/

√
λn was a

better choice.

2. Proof of Theorem 1.2

Lemma 2.1. For any t ∈ (0, πp), a > 0, b ∈ R, we have

(a) µ{x ∈ (0, πp) : 〈x+ b〉πp
< t} = t.

(b) µ{x ∈ (0, πp) : 〈ax〉πp < t} = t[a]
a + min

{
t
a , πp

(
1− [a]

a

)}
.

Proof. (a) Without loss of generality, we assume that b ∈ (0, πp). The statement is
trivial when t ≥ b. If t < b, it is easy to see that the measure is still t.

(b) First, it is clearly that if kπp ≤ ax < kπp+ t for k ∈ N∪{0}, then 〈ax〉πp
< t.

This means that for k = 0, . . . , [a]− 1,

kπp
a
≤ x < t

a
+
kπp
a

.

When k = [a], the contribution is either t
a or πp(1− |a|a ). We conclude that (b) is

also valid. �

Corollary 2.2. Let t ∈ (0, πp) and n ∈ N. As n→∞,

µ{x ∈ (0, πp) : 〈nx+ o(1)〉πp < t} = µ{x ∈ (0, πp) : 〈nx〉πp < t}+ o(1)

= t+ o(1).

Proof. From Lemma 2.1(b), µ{x ∈ (0, πp) : 〈nx〉πp < t} = t. It is clear that if
kπp ≤ nx + o(1) < kπp + t for k ∈ N ∪ {0}, then 〈nx + o(1)〉πp < t. This means
that for k = 0, . . . , n− 1,

kπp
n

+ o(
1
n

) ≤ x < kπp
n

+
t

n
+ o(

1
n

).

The case k = n only contributes o( 1
n ). We conclude that the formula is valid. �

We also need an eigenvalue asymptotic result proved in [9].
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Lemma 2.3. The eigenvalues λn in the p-Laplacian eigenvalue problem (1.4) has
the following asymptotic formula

λ1/p
n = nαβπp +

C̃Tp(β)(p−1) − C̃Tp(α)(p−1)

(nαβπp)p−1
+

1
p(nαβπp)p−1

∫ 1

0

q + o(
1

np−1
)

= nαβπp + o(1).
(2.1)

where

nαβ =


n, if α = β = 0
n− 1

2 , if α = 0 < β or α > 0 = β

n− 1, if α, ;β > 0 ,

and, for any γ ∈ [0, πp),

C̃Tp(γ)(p−1) =

{
0 if γ = 0
|CTp(γ)|p−2CTp(γ) if γ > 0 .

Proof of Theorem 1.2. From (1.8) and (2.1),

ψn(x) = λ1/p
n x+ ψn(0) + o(1) = nαβπpx+ ψn(0) + o(1).

Hence by Lemma 2.1,

Pn(t) := µ{x ∈ (0, 1) : 〈ψn(x)〉πp
< t}

= µ{x ∈ (0, 1) : 〈nαβπpx+ ψn(0) + o(1)〉πp < t}

=
1
πp
µ{x ∈ (0, πp) : 〈nαβx〉πp < t}+ o(1)

=
t[nαβ ]
πpnαβ

+ min
{ t

nαβ
, πp
(
1− [nαβ ]

nαβ

)}
+ o(1).

By the definition of nαβ , we conclude that Pn(t)→ t
πp

as n→∞. �

3. Proof of Theorem 1.1

We shall make use of Weyl criterion, a Fourier analytic equivalent condition for a
equidistributed sequence. The criterion was given by Weyl in 1916 and has proved
to be very useful. The interested reader may refer to [10, p. 115-123] for a clear
and interesting exposition.

Theorem 3.1. A sequence {xn} is equidistributed in (0, πp) if and only if for any
k ∈ Z \{0},

lim
N→∞

N∑
n=1

exp(
2ikπxn
πp

) = 0

Remark. When xn = 〈nx〉 in the interval (0, 1) with x irrational, then by a scaling,
the Weyl criterion is

lim
N→∞

N∑
n=1

exp(2πiknx) = 0. (3.1)

It means that along the unit circle on the complex plane, as we move by an argument
of 2πkx each time, the points do not overlap, but are so evenly distributed on the
unit circle that their average tends to 0.
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Lemma 3.2. Let {bn} be a sequence in R such that limN→∞
1
N

∑N
n=1 bn = b. Let

the sequence {an} satisfy an = bn+o(1) as n→∞. Then limN→∞
1
N

∑N
n=1 an = b.

Proof. Since limN→∞
1
N

∑N
n=1 bn = b, we find that, for ε > 0, there exists a N1 ∈ N

such that for all N ≥ N1, ∣∣ 1
N

N∑
n=1

bn − b
∣∣ ≤ ε

3
.

On the other hand, an = bn + o(1) as n→∞. Given ε > 0, there exists a N2 ∈ N
such that for all n ≥ N2, |an − bn| ≤ ε

3 . Now let

M =
N2−1∑
n=1

|an − bn|.

Let N0 ∈ N be such that N0 ≥ max{N1, N2,
3M
ε }. Then for all N ≥ N0,

∣∣ 1
N

N∑
n=1

an − b
∣∣ ≤ ∣∣ 1

N

N∑
n=1

(an − bn)
∣∣+
∣∣ 1
N

N∑
n=1

bn − b
∣∣

<
M + (N −N2 + 1) · ε/3

N
+
ε

3
< ε .

This completes the proof. �

Proof of Theorem 1.1. By Theorem 3.1, it suffices to show that

lim
N→∞

N∑
n=1

exp
(2ikπψn(x)

πp

)
= 0.

Fixed x ∈ R, from (1.8) and (2.1),

ψn(x) = λ1/p
n x+ ψn(0) + o(1) = nαβπpx+ ψn(0) + o(1).

If α = β = 0, then ψn(0) = 0 and nαβ = n. Hence

ψn(x) = nπpx+ o(1).

Since {〈nπpx〉πp} is equidistributed in (0, πp), by Lemma 3.2, {〈ψn(x)〉πp} is also
equidistributed.

If α > 0 = β, then by (1.9), ψn(0) = πp

2 + o(1), and nαβ = n− 1
2 . Thus

ψ(x) = (n− 1
2

)πpx+
πp
2

+ o(1).

So when x ∈ (0, 1) is irrational, by taking any k ∈ Z \ {0},

1
N

N∑
n=1

exp
(

2πik(n− 1
2

)x+ πik
)

= eπik(1−x) · 1
N

N∑
n=1

exp(2πiknx),

which converges to 0 as N →∞. By Weyl’s criterion, {〈ψn(x)〉}πp
is also equidis-

tributed.
The other cases α = 0 < β and α, β > 0 are similar. �
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4. Classical Prüfer angle

The classical Prüfer angle θ(x) is defined through

y = R(x)Sp(θ(x)), y′ = R(x)S′p(θ(x)),

and the Prüfer angle θn(x) associated with the nth eigenpair satisfies

CTp(θn(x)) = λ
1
p
n CTp(ψn(x)). (4.1)

We denote

bn := 〈θn(x)〉πp = CT−1
p

(
λ

1
p
nCTp(nαβπpx+ ψn(0) + o(1))

)
,

taking value of the inverse function CT−1
p in (0, πp).

Theorem 4.1. For x ∈ (0, 1), the sequence of classical Prüfer angle {〈θn(x)〉πp}
is NOT equidistributed in (0, πp). Nor asymptotic to the uniform distribution.

Proof. Let I be the subinterval (CT−1
p (1), πp/2) ⊂ (0, πp/2). We shall see that for

any x ∈ (0, 1),

lim
N→∞

N∑
n=1

χI(bn) 6= 1
2
−
CT−1

p (1)
πp

. (4.2)

Observe that

χI(bn) = 1⇔ CT−1
p

(
λ1/p
n CTp(ψn(x))

)
∈ I =

(
CT−1

p (1),
πp
2

)
⇔ λ1/p

n CTp(ψn(x)) ∈ (0, 1)

⇔ 〈nαβπpx+ψn(0) + o(1)〉πp
∈
(
CT−1

p (λ−1/p
n ),

πp
2
) (4.3)

If α = β = 0, then nαβ = n and ψn(0) = 0. Hence χI(bn) = 1 if and only if

〈ψn(x)〉πp = 〈nπpx+ o(1)〉πp ∈ Jn :=
(
CT−1

p

(
λ−1/p
n

)
,
πp
2

)
.

Since limn→∞ CT−1
p (λ−1/p

n ) = πp

2 , the probability of bn in I tends to 0 as n→∞.
Therefore.

lim
N→∞

1
N

N∑
n=1

χI(bn)= lim
N→∞

1
N

N∑
n=1

χJn
(〈ψn(x)〉πp

) = 0 <
1
2
−
CT−1

p (1)
πp

,

because |Jn| → 0 as n→∞.
In case α > 0 = β, by (4.3),

χI(bn) = 1 ⇔ 〈(n− 1
2 )πpx+ πp

2 + o(1)〉πp
∈
(
CT−1

p

(
λ
−1/p
n

)
,
πp

2

)
⇔ 〈(n− 1

2 )πpx+ o(1)〉πp
∈
(
πp

2 + CT−1
p (λ−1/p

n ), πp
)
,

by Lemma 2.1(a). Therefore by a similar argument as above,

lim
N→∞

1
N

N∑
n=1

χI(bn) = 0 <
1
2
−
CT−1

p (1)
πp

.

Therefore, (4.2) is also valid. The other cases are similar.
On the other hand, from (4.1),

〈θn(x)〉πp
< t⇔ CT−1

p (λ
1
p
nCTp(ψn(x))) < t
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⇔ 〈ψn(x)〉πp
< CT−1

p (λ
−1
p
n CTp(t)).

Now for any t ∈ (0, πp), CT−1
p (λ

−1
p
n CTp(t))→ πp

2 . Hence

µ{x ∈ (0, 1) : 〈θn(x)〉πp
< t} = Pn(

πp
2

+ o(1))→ 1
2
,

as n→∞, by Theorem 1.2. �
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