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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR
FIRST-ORDER NONLINEAR DIFFERENTIAL EQUATIONS

WITH TWO-POINT AND INTEGRAL BOUNDARY
CONDITIONS

MISIR J. MARDANOV, YAGUB A. SHARIFOV, HABIB H. MOLAEI

Abstract. In this article, we study the existence of solutions to boundary-

value problems for ordinary differential equations with two-point and integral

boundary conditions. Existence and uniqueness results are obtained by using
well known fixed point theorems. Some illustrative examples are also discussed.

1. Introduction

Many of the physical systems can be described by the differential equations
with integral boundary conditions. Integral boundary conditions are encountered
in various applications, such as population dynamics, blood flow models, chemical
engineering and cellular systems. Moreover, boundary-value problems with inte-
gral conditions constitute an interesting and important class of problems. They
include two, three, multi and nonlocal boundary-value problems as special cases.
For boundary-value problems with nonlocal boundary conditions and comments on
their importance, we refer the reader to [1, 2, 3, 4, 5, 6] and the references therein.

In this article, we study existence and uniqueness of the solutions of nonlinear
differential equations of the type

ẋ(t) = f(t, x(t)), for t ∈ [0, T ], (1.1)

with two-point and integral boundary conditions

Ax(0) +
∫ T

0

m(s)x(s)ds+Bx(T ) =
∫ T

0

g(s, x(s))ds, (1.2)

where A,B ∈ Rn×n are given matrices, det
(
A+

∫ T
0
m(s)ds+B

)
6= 0; f, g : [0, T ]×

Rn → Rn, are given functions. By C([0, T ]Rn) we denote the Banach space of all
continuous functions from [0, T ] into Rn with the norm

‖x‖ = max{|x(t)| : t ∈ [0, T ]},

where | · | is the norm in space Rn.
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We prove some new existence and uniqueness results by using a variety of fixed
point theorems. In Theorem 3.1 we prove an existence and uniqueness result by
using Banach’s contraction principle. In Theorem 3.2 we prove the existence of a
solution by using Schaefer’s fixed point theorem, while in Theorem 3.3 we prove
the existence of a solution via Leray-Schauder nonlinear alternative.

It is worth mention that the methods used in this paper are standard. Our
impact is implementation of these methods to the solution of the problem (1.1),
(1.2).

2. Preliminaries

We define a solution of the problem (1.1)-(1.2) as follows:
Definition. A function x ∈ C([0, T ]Rn) is said to be a solution of problem (1.1)-
(1.2) if ẋ(t) = f(t, x(t)), for each t ∈ [0, T ], and the boundary conditions (1.2) are
satisfied.

Lemma 2.1. Let y, g ∈ C([0, T ]Rn). Then the unique solution of the boundary-
value problem for the differential equation

ẋ(t) = y(t), t ∈ [0, T ] (2.1)

with boundary condition

Ax(0) +
∫ T

0

m(s)x(s)ds+Bx(T ) =
∫ T

0

g(s)ds (2.2)

is given by

x(t) = C +
∫ T

0

K(t, τ)y(τ)dτ, (2.3)

where

K(t, τ) =

{
Γ−1

(
A+

∫ t
0
m(τ)dτ

)
0 ≤ τ ≤ t

−Γ−1(
∫ T
t
m(τ)dτ +B), t ≤ τ ≤ T

,

C = Γ−1

∫ T

0

g(s)ds,

Γ = (A+
∫ T

0

m(t)dt+B).

Proof. If x = x(·) is a solution of the differential equation (2.1), then for t ∈ (0, T ),

x(t) = x(0) +
∫ t

0

y(τ)dτ, (2.4)

where x(0) is an arbitrary constant vector. In order to determine x(0) we require
that the function in equality (2.1) should satisfy condition (2.2), i.e.,

Γx(0) =
∫ T

0

g(t)dt−
∫ T

0

m(t)
∫ t

0

y(τ)dτdt−B
∫ T

0

y(t) dt.

Since det Γ 6= 0, we have

x(0) = C + Γ−1

∫ T

0

∫ T

t

m(τ)dτy(t)dt− Γ−1B

∫ T

0

y(t)dt. (2.5)
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Now in (2.4) we take into account the value x(0) determined from the equality (2.5)
and obtain

x(t) = C +
∫ T

0

K(t, τ)y(τ)dτ.

Thus we have proved that one can write the boundary-value problem (2.1), (2.2)
as the integral equation (2.3). One can immediately verify that a solution to the
integral equation (2.3) also satisfies the boundary-value problem (2.1), (2.2). �

Lemma 2.2. Assume that f, g ∈ C([0, T ] × RnRn). Then the function x(t) is a
solution of the boundary-value problem (1.1)-(1.2) if and only if x(t) is a solution
of the integral equation

x(t) =
∫ T

0

K(t, s)f(s, x(s))ds+ Γ−1

∫ T

0

g(s, x(s))ds. (2.6)

Proof. Let x(t) be a solution of the boundary-value problem (1.1), (1.2). Then in
the same way as in Lemma 2.1, we can prove that it is also a solution of the integral
equation (2.6). By direct verification we can show that the solution of the integral
equation (2.6) also satisfies equation (1.1) and nonlocal boundary condition (1.2).
Lemma 2.2 is proved. �

3. Main results

Define the operator P : C([0, T ]Rn)→ P ([0, T ]Rn) as

Px(t) = Γ−1

∫ T

0

g(t, x(t))dt+
∫ T

0

K(t, τ)f(τ, x(τ))dτ. (3.1)

Obviously, the problem (1.1), (1.2) is equivalent to the fixed point problem x = Px.
In consequence, problem (1.1), (1.2) has a solution if and only if the operator P
has a fixed point.

Our first result is based on the Banach fixed point theorem. It uses the assump-
tions:

(H1) There exists a continuous function N(t) > 0 such that

|f(t, x)− f(t, y)| ≤ N(t)|x− y|,

for each t ∈ [0, T ] and all x, y ∈ Rn;
(H2) There exists a continuous function M(t) > 0 such that

|g(t, x)− g(t, y)| ≤M(t)|x− y|,

for each t ∈ [0, T ] and all x, y ∈ Rn.

Theorem 3.1. Assume (H1), (H2) hold, and

L = T [SN +M ]‖Γ−1‖ < 1 . (3.2)

Then the boundary-value problem (1.1)-(1.2) has a unique solution on [0, T ], where

N = max
[0,T ]

N(t), M = max
[0,T ]

M(t),

S = max{‖(A+
∫ t

0

m(τ)dτ)‖, ‖(
∫ T

t

m(τ)dτ +B)‖}.
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Proof. Setting max[0,T ] |f(t, 0)| = Mf , max[0,T ] |g(t, 0)| = Mg and choosing

r ≥ [1− ‖Γ−1‖T (SN +M)]−1‖Γ−1‖(Mf +Mg),

we show that PBr ⊂ Br, where

Br = {x ∈ C([0, T ]Rn) : ‖x‖ ≤ r}.
For x ∈ Br, we have

‖(Px)(t)‖ ≤ max
[0,T ]

[∫ T

0

|K(t, s)||f(s, x(s))|ds
]

+
[
‖Γ−1‖

∫ T

0

|g(s, x(s))|ds
]

≤ max
[0,T ]

[∫ T

0

|K(t, s)|(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|)ds
]

+ ‖Γ−1‖
∫ T

0

(|g(s, x(s))− g(s, 0)|+ |g(s, 0)|)ds

≤ ‖Γ−1‖S(Nr +Mf )T + ‖Γ−1‖(Mr +Mg)T ≤ r.
Now, for any u, v ∈ Br we have

|(Pu)(t)− (Pv)(t)|

≤ ‖Γ−1‖
∫ T

0

|g(t, u(t))− g(t, v(t))|dt+
∫ T

0

|K(t, τ)||f(τ, u(τ))− f(τ, v(τ))|dτ

≤ ‖Γ−1‖
∫ T

0

M(t)|u(t)− v(t)|dt+ ‖Γ−1‖S
∫ T

0

N(t)|u(t)− v(t)dt|dt

≤ ‖Γ−1‖[M +NS]T‖u− v‖,
or

‖Pu− Pv‖ ≤ L‖u− v‖. (3.3)
From condition (3.2) it follows that ‖Pu − Pv‖ < ‖u − v‖. Therefore, P is

a contraction in Br. Therefore, in view of the contraction principle the operator
P defined by (3.1) has a unique fixed point in C([0, T ]Rn). Consequently, the
integral equation (2.6) (or the boundary-value problem (1.1), (1.2)) has a unique
solution. �

The second result is based on Schaefer’s fixed point theorem. It uses the as-
sumptions:

(H3) The function f : [0, T ]×Rn → Rn is continuous;
(H4) There exists a constant N1 > 0 such that |f(t, x)| ≤ N1 for each t ∈ [0, T ]

and all x ∈ Rn;
(H5) The function g : [0, T ]×Rn → Rn is continuous;
(H6) There exists a constant N2 > 0 such that |g(t, x)| ≤ N2 for each t ∈ [0, T ]

and all x ∈ Rn.

Theorem 3.2. Assume (H3)–(H6) Then the boundary-value problem (1.1)-(1.2)
has at least one solution on [0, T ].

Proof. We divide the proof into several main steps in which we show that under
the assumptions of the theorem, the operator P has a fixed point.
Step 1. The operator P under the assumptions of the theorem is continuous. Let
{xn} be a sequence such that xn → x in C([0, T ]Rn). Then for any t ∈ (0, T ),

|P (xn)(t)− P (x)(t)|
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≤ ‖Γ−1‖
∫ T

0

|g(t, xn(t))− g(t, x(t))|dt+
∫ T

0

|K(t, τ)||f(τ, xn(τ))− f(τ, x(τ))|dτ

≤ TM‖Γ−1‖max
[0,T ]
|g(t, xn(t))− g(t, x(t))|

+ TNS‖Γ−1‖max
[0,T ]
|f(t, xn(t))− f(t, x(t))|.

Since f and g are continuous functions, we have

‖P (xn)(t)− P (x)(t)‖ → 0, as n→∞.
Step 2. The operator P maps bounded sets into C([0, T ]Rn). Indeed, it is sufficient
to show that for any η > 0, there exists a positive constant l such that for each
x ∈ Bη = {x ∈ C([0, T ]Rn) : ‖x‖ ≤ η}, we have ‖P (x)‖ ≤ l. By (H4) and (H6) we
have for each t ∈ [0, T ],

|P (x)(t)| ≤
∫ T

0

|K(t, s)||f(s, x(s))|ds+ ‖Γ−1‖
∫ T

0

|g(s, x(s))|ds.

Hence,
|P (x)(t)| ≤ ‖Γ−1‖STN1 + ‖Γ−1‖TN2.

Thus,
‖P (x)(t)‖ ≤ ‖Γ−1‖STN1 + ‖Γ−1‖TN2 = l.

Step 3. The operator P maps bounded sets into equicontinuous sets of C([0, T ]Rn).
Let t1, t2 ∈ (0, T ], t1 < t2, Bη be a bounded set of C([0, T ]Rn) as in Step 2, and let
x ∈ Bη. Then

|P (x)(t2)− P (x)(t1)|

= |
∫ T

0

[K(t2, s)−K(t1, s)]f(s, x(s))ds|

≤ |Γ−1

∫ t2

t1

[A+
∫ t

0

m(τ)dτ ]f(t, x(t))dt+ Γ−1

∫ t2

t1

[B +
∫ T

t

m(τ)dτ ]f(t, x(t))dt|

≤ 2S‖Γ−1‖
∫ t2

t1

|f(t, x(t))|dt.

As t1 → t2, the right-hand side of the above inequality tends to zero. As a conse-
quence of Steps 1 to 3 together with the Arzela-Ascoli theorem, we can conclude
that P : C([0, T ]Rn)→ C([0, T ]Rn) is completely continuous.
Step 4. A priori bounds. Now it remains to show that the set

∆ = {x ∈ C([0, T ]Rn) : x = λP (x), for some 0 < λ < 1}
is bounded.

Let x = λ(Px) for some 0 < λ < 1. Thus, for each t ∈ [0, T ] we have

x(t) = λ
[ ∫ T

0

K(t, s)f(s, x(s))ds+ Γ−1

∫ T

0

g(s, x(s))ds
]
.

This implies by (H4) and (H6) (as in Step 2) that for each t ∈ [0, T ],

|P (x)(t)| ≤ ‖Γ−1‖(SN1 +N2)T.

Thus, for every t ∈ [0, T ] we have

‖x‖ ≤ ‖Γ−1‖(SN1 +N2)T.
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This shows that the set ∆ is bounded. As a consequence of Schaefer’s fixed point
theorem, we deduce that P has a fixed point which is a solution of the problem
(1.1)-(1.2). �

In the following theorem we give an existence result for the problem (1.1)-(1.2)
by means of an application of the Leray-Schauder type nonlinear alternative, where
the conditions (H4) and (H6) are weakened.

(H7) There exist θf ∈ L1([0, T ], R+) and continuous and nondecreasing ψf :
[0,∞)→ [0,∞) such that

|f(t, x)| ≤ θf (t)ψf (|x|),

for each t ∈ [0, T ] and all x ∈ R;
(H8) There exist θg ∈ L1([0, T ], R+) and continuous and nondecreasing ψg :

[0,∞)→ [0,∞) such that

|g(t, x)| ≤ θg(t)ψg(|x|),

for each t ∈ [0, T ] and all x ∈ R.
(H9) There exists a number K > 0 such that

K

‖Γ−1‖Sψf (K)‖θf‖L1 + ψg(K)‖Γ−1‖‖θ‖L1

> 1.

Theorem 3.3. Assume that (H3), (H5), (H7)–(H9) hold. Then the boundary-value
problem (1.1)-(1.2) has at least one solution on [0, T ].

Proof. Consider the operator P defined above. It can be easily shown that P is
continuous and completely continuous. For λ ∈ [0, 1] let x be such that for each
t ∈ [0, T ] we have x(t) = λ(Px)(t). Then from (H7) and (H8), for each t ∈ [0, T ]
we have

|x(t)| ≤
∫ t

0

|K(t, s)|θf (s)ψ(|x(s)|)ds+ ‖Γ−1‖
∫ T

0

θg(s)ψg(|x(s)|)ds

≤ ‖Γ−1‖Sψf (‖x‖)
∫ T

0

θf (s)ds+ ψg(‖x‖)‖Γ−1‖
∫ T

0

θg(s)ds.

Thus,

‖x‖
‖Γ−1‖Sψf (‖x‖)‖θf‖L1 + ψg(‖x‖)‖Γ−1‖‖θg‖L1

≤ 1.

Then, in view of (H9), there exists K such that ‖x‖ 6= K. Let us set

U = {x ∈ C([0, T ], R) : ‖x‖ < K}.

Note that the operator P : U → C([0, T ],R) is continuous and completely con-
tinuous. From the choice of U , there is no x ∈ ∂U such that x = λP (x) for some
λ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type [7],
we deduce that P has a fixed point x in U which is a solution of the problem
(1.1)-(1.2). This completes the proof. �
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4. Examples

In this section, we give examples to illustrate the usefulness of our main results.

Example 4.1. Let us consider the following nonlocal boundary-value problem for
the system of differential equations

ẋ1(t) = 0.1 sinx2, t ∈ [0, 1],

ẋ2(t) =
|x1|

(9 + et)(1 + |x1|)
,

(4.1)

with

x1(0) = 1, x2(1) =
∫ 1

0

2tx1(t)dt. (4.2)

We can rewrite the boundary conditions (4.2) in the equivalent form:(
1 0
0 0

)(
x1(0)
x2(0)

)
−
∫ 1

0

(
0 0
2t 0

)(
x1(t)
x2(t)

)
dt+

(
0 0
0 1

)(
x1(1)
x2(1)

)
=
(

1
0

)
.

Obviously,

Γ =
(

1 0
0 0

)
−
∫ 1

0

(
0 0
2t 0

)
dt+

(
0 0
0 1

)
=
(

1 0
−1 1

)
,

and the matrix Γ is invertible.

Evidently, Γ−1 =
(

1 0
1 1

)
, and ‖Γ−1‖ = 2.

Hence, the conditions (H1)–(H2) hold with N = 0.1, M = 0, S = 2. We can
easily see that the condition (3.2) is satisfied. Indeed,

L = ‖Γ−1‖SNT = 4× 0.1 = 0.4 < 1. (4.3)

Then, by Theorem 3.1 the boundary-value problem (4.1)-(4.2) has a unique solution
on [0, 1].

Example 4.2. On [0, 1] we consider the boundary-value problem
ẋ1 = sinx2,

ẋ2 = cosx1,

ẋ3 =
1
3
( 1

1 + x2
1

+
1

1 + x2
2

+
1

1 + x2
3

)
.

(4.4)

with

x1(0) = 0, x2(0) +
∫ 1

0

tx3(t)dt = 2, x3(1) = 1. (4.5)

Obviously, the matrix

Γ =

1 0 0
0 1 0
0 0 0

+
∫ 1

0

0 0 0
0 0 t
0 0 0

 dt+

0 0 0
0 0 0
0 0 1

 =

1 0 0
0 1 0.5
0 0 1


is invertible, and the functionf1f2

f3

 =

 sinx1

cosx2
1
3 ( 1

1+x2
1

+ 1
1+x2

2
+ 1

1+x2
3
)
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is continuous and bounded. Hence, by Theorem 3.2 the boundary-value problem
(4.4), (4.5) has at least one solution on [0, 1].

Conclusion. The boundary condition considered in this article is general enough
to cover a wide class of boundary-value problems. To illustrate this point, we
consider the following three cases:

(1) If g ≡ 0, A = E (E is a unit matrix), m(t) ≡ θ and B = θ, (θ is a zero
matrix), then we get the Cauchy problem.

(2) If g ≡ 0, m(t) ≡ θ, we get a two-point boundary-value problem.
(3) If g ≡ 0, A = θ, B = θ, we get a boundary problem with integral condition.

Also note that the methods of this article may be used for more general case of
(1.2),

n∑
i=0

Aix(ti) +
∫ T

0

m(t)x(t)dt = C,

where 0 = t0 < t1 < · · · < tn = T , det
(∑n

i=0Ai +
∫ T
0
m(t)dt

)
6= 0.
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